
Transforming Heterogeneous Data with Database Middleware:
Beyond Integration

L. M. Haas R. J. Miller B. Niswonger M. Tork Roth P. M. Schwarz E. L. Wimmers
flaura, niswongr, torkroth, schwarz, wimmersg@almaden.ibm.com; miller@cs.toronto.edu

1 Introduction

Many applications today need information from diverse data sources, in which related data may be represented
quite differently. In one common scenario, a DBA wants to add data from a new source to an existing warehouse.
The data in the new source may not match the existing warehouse schema. The new data may also be partially
redundant with that in the existing warehouse, or formatted differently. Other applications may need to integrate
data more dynamically, in response to user queries. Even applications using data from a single source often want
to present it in a form other than that it is stored in. For example, a user may want to publish some information
using a particular XML DTD, though the data is not stored in that form.

In each of these scenarios, one or more data sets must be mapped into a single target representation. Needed
transformations may include schema transformations (changing the structure of the data) [BLN86, RR98] and
data transformation and cleansing (changing the the format and vocabulary of the data and eliminating or
at least reducing duplicates and errors) [Val, ETI, ME97, HS95]. In each area, there is a broad range of
possible transformations, from simple to complex. Schema and data transformation have typically been studied
separately. We believe they need to be handled together via a uniform mechanism.

Database middleware systems [PGMW95, TRV96, ACPS96, Bon95] integrate data from multiple sources.
To be effective, such systems must provide a unified, queryable schema, and must be able to transform data from
different sources to conform to this schema when queries against the schema are issued. The power of their
query engines and their ability to connect to several information sources makes them a natural base for doing
more complex transformations as well. In this paper, we look at database middleware systems as tranformation
engines, and discuss when and how data is transformed to provide users with the information they need.

2 Architecture of a DB Middleware System

To be a successful data transformation engine for scenarios such as the above, a database middleware system
must have several features. Since data these days comes from many diverse systems, it must provide access to
a broad range of data sources transparently. It must have sufficient query processing power to handle complex
operations, and to compensate for limitations of less sophisticated sources. Some transformation operations
(especially the complex ones) require that data from different sources be interrelated in a single query.

We use Garlic [C+95] to illustrate the ideas of this paper. Figure 1 shows Garlic’s architecture, which is
typical of many database middleware systems [PGMW95, TRV96, ACPS96]. Garlic is a query processor; it

Copyright 1997 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for ad-
vertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

1



Integrated Schema

Query
Compilation

Query
Execution

Data Sources

Clients

Persistent
Metadata

Store

CLIO

Wrapper Interface

Wrapper Wrapper Wrapper Wrapper

Figure 1: Garlic architecture

optimizes and executes queries over diverse data sources posed in an object-extended SQL. Garlic’s powerful
query engine is capable of executing any extended SQL operation against data from any source. In both
planning and executing the query, it communicates with wrappers for the various data sources involved in the
query. Systems of this type have two opportunities to transform data: first, at the wrapper as the data is mapped
from the source’s model to the middleware model (Section 3), and second, by queries or views against the
middleware schema (Sections 4 and 5). However, understanding how the data needs to be transformed is not
always simple. The target representation is often only defined implicitly, by existing data. The data integration
tool, Clio, shown here and in more detail in Figure 4 will help users understand both their source’s data and the
target representation and will assist them in creating a mapping between them.

3 Data Transformation at the Wrapper

The most basic tasks of a wrapper are a) to describe the data in its repository and b) provide the mechanisms by
which users and the Garlic middleware engine may retrieve that data [RS97]. Since a data source is not likely
to conform to Garlic’s data model and data format, these two tasks imply that the wrapper must perform some
level of schema and data transformation. To make the task of writing a wrapper as easy as possible, the Garlic
wrapper architecture tries to minimize the required transformations, but wrappers can do more if desired.

The schemas of individual repositories are merged into the global schema via a wrapper registration step.
In this step, wrappers model their data as Garlic objects, and provide an interface definition that describes the
behavior of these objects. The interface is described using the Garlic Definition Language (GDL), which is a
variant of the ODMG Object Description Language [Cat96]. The interface definition provides an opportunity
for a wrapper to rename objects and attributes, change types and define relationships even if the data source
stores none. For example, a relational wrapper might model foreign keys as relationships. Developing interface
files is typically not hard. For simple data sources, it may be best to generate them manually, as simple sources
tend to have few object types, usually with fairly simple attributes and behavior. For more sophisticated sources,
the process of generating an interface file can often be automated. For example, a relational wrapper can decide
on a common mapping between the relational model and the Garlic data model (e.g. tuple = object, column =
attribute), and provide a tool that automatically generates the interface file by probing the relational database
schema. Wrappers must also provide an implementation of the interface which represents a concrete realization
of the interface. The implementation cooperates with Garlic to assign a Garlic object id (OID) to its objects,
and maps the GDL base types specified in the interface file to the native types of the underlying data source.

2



Oracle Database Wrapper

Relational Schema Garlic Schema

CREATE TABLE COUNTRIES f
NAME VARCHAR(30) NOT NULL,
CLIMATE VARCHAR(256),
HIGHESTPEAK NUMBER(4),
PRIMARY KEY(NAME) g

interface Country Type f
attribute string name;
attribute string climate;
attribute long highest peak;

g;

CREATE TABLE CITIES f
NAME VARCHAR(40) NOT NULL,
COUNTRY VARCHAR(30) NOT NULL,
POPULATION NUMBER(4),
ELEVATION NUMBER(7,2),
AREA NUMBER(7,2),
PRIMARY KEY(NAME),
FOREIGN KEY(COUNTRY)

REFERENCES COUNTRIES g

interface City Type f
attribute string name;
attribute ref<Country Type> country;
attribute long population;
attribute double elevation;
attribute double area;

g;

Hotel Web Site Wrapper

interface Hotel Type f
attribute string name;
attribute string street;
attribute string city;
attribute string country;
attribute long postal code;
attribute string phone;
attribute string fax;
attribute short number of rooms;
attribute float avg room price;
attribute short class;
void display location;

g;

Figure 2: Example of wrapper schemas

A hypothetical travel agency application illustrates the kinds of simple schema and data transformations that
wrappers can perform. The agency would like to integrate an Oracle database of information on the countries
and cities for which it arranges tours with a web site that contains up-to-date booking information for hotels
throughout the world. Figure 2 shows the orginal table definitions and the new interface definitions for the two
relational tables, and the interface file for the web site. The relational wrapper renamed the HIGHESTPEAK
field to highest peak, and exposed the foreign key COUNTRY on the CITIES table as an explicit reference
to a Country object in the integrated database. The wrapper must be able to map requests for this attribute
from the integrated database (in OID format) into the format expected by the relational database (as a string), and
vice versa. In addition, the POPULATION, ELEVATION and AREA columns are all stored as type NUMBER,
yet population has type long in the interface file, while elevation and area are doubles.

Each hotel listing on the web site contains HTML-tagged fields describing that hotel, and a URL to map the
location of a particular hotel given its key. In the interface definition file, the HTML fields are represented as
attributes of the Hotel object, each with an appropriate data type, though the web site returns all data in string
format. The map capability is exposed as a method on the Hotel object. It is the wrapper’s responsibility to map
names to the fields on the HTML page, and to convert data from strings into appropriate types.

4 Data Transformation in the Middleware

Views are an important means of reformatting data, especially for middleware, as the data resides in data sources
over which the user has little control. Views provide the full power of SQL to do type and unit conversions
not anticipated by the wrapper, merging or splitting of attributes, aggregations and other complex functions. In
Garlic, object views allow further restructuring of data. It is frequently the case that the information about a
particular conceptual entity is part of several objects stored in various data sources. However, end-users want
to see a single object. An object view creates a new “virtual” object. This virtual object requires no storage
since attributes are specified in a query rather than stored as base data. Every virtual object in Garlic is based
on another object (which could itself be a virtual object). Garlic uses the OID of the base object as the basis for
the virtual object’s OID, and provides a function, LIFT, to map the base OID to the virtual object’s OID.

One important reason to have virtual objects is to allow new behavior, i.e., new methods, to be defined for
these objects. Methods on views can also be used to “lift” methods on the base objects so that virtual objects can
retain the base object’s functionality. Each method on a virtual object is defined by an SQL query. This query
has access to the OID of the virtual object upon which the method is invoked via the keyword self , and can find
the OID of the base object, if needed. Methods return at most one item; otherwise a run-time error results.

3



interface city listing Type f
attribute string name;
attribute string country;
attribute float population in millions;
attribute float elevation in meters;
attribute set<ref<Hotel Type>> hotels;
string find best hotel(IN long budget);

g;

create view city listing (name, country, population in millions, elevation in meters, hotels, self)
as select C.name, C.country, C.population/1000000, C.elevation*0.3048,

MAKESET(H.OID), LIFT(’city listing’, C.OID)
from Cities C, Hotels H
where C.name=H.city and UCASE(C.country->name)=H.country
group by C.name, C.country, C.population, C.elevation, C.OID

create method find best hotel(long budget)
return
select h1.name from unnest self.hotels h1
where h1.class> all (select h2.rating from unnest self.hotels h2

where h2.name 6 = h1.name and h2.avg room price � budget)
and h1.avg room price � budget

Figure 3: A sample view definition, with method

To register an object view in Garlic, the user must provide both an interface and an implementation
(definitions of the view and any methods), as illustrated in Figure 3. This view, based on the City objects
defined in Section 3, creates City Listing objects that have most of the attributes of a City (but omit, for
example, area), and an associated set of hotels. The view definition shows how these objects would be created.
It uses some of Garlic’s object extensions to SQL, including a path expression to get the name of the City’s
country, and a new aggregate function, MAKESET, that creates a set. Note that the LIFT function is used to
compute the OID of the new virtual object. All the attributes of the virtual object must be included in the select
list. The view definition does some simple unit conversions using arithmetic functions, and uses the uppercase
function to map country names from the Oracle database to the names of countries in the Web source. More
complex mappings (using translation tables or user-defined functions, for example) would also be possible. The
method finds the best hotel within a certain budget in the city on which it is invoked. The budget is an argument
of the method. Note the use of self to identify the correct set of hotels.

5 Data Mapping and Integration

We have described two components of Garlic that provide important data transformation facilities. The wrappers
provide transformations required by the individual data sources, including data model translation and simple
schema and data transformations. Object views enhance the wrapper transformations with a general view mech-
anism for integrating schemas. Object views support integrated cooperative use of different legacy databases,
through query language based transformations, such as horizontal or vertical decomposition (or composition)
of classes. Such transformations are required to integrate overlapping portions of heterogeneous databases.

In addition, we are working to provide a more powerful suite of schema and data transformations to permit
integration of schemas that exhibit schematic discrepancies, and matching of data objects that represent the same
real-world entity. Across heterogeneous data sources, different assumptions may have been made as to what data
is time invariant and therefore appropriate to include as metadata rather than data. Data under one schema may
be represented as metadata (for example, as attribute or class names) in another. Such heterogeneity has been
referred to as schematic heterogeneity. Traditional query languages are not powerful enough to restructure both
data and metadata [Mil98, LSS96]. Likewise, in heterogeneous systems different representations of the same
entity in different sources are common. The same object may be identified by a different name in two sources,
or even by a different key. Further, different entities may bear similar names in different sources. Identifying
equivalent objects and merging them also requires new, powerful transformations [ME97, HS95, Coh98].

In many tasks requiring data translation, the form of the translated data (its schema) is fixed or at least
constrained. In a data warehouse, the warehouse schema may be determined by the data analysis and business
support tasks the warehouse must support. As new data sources are added to the warehouse, their schemas
must be mapped into the warehouse schema, and equivalent objects must be found and converged. Hence,

4



VIEW MERGE

VIEW

GENERATOR

CORRESPONDENCE

GENERATOR

VALIDITY

CHECK

GRAPHIC

USER

INTERFACE

SOURCE

SCHEMA

TARGET

SCHEMA

SCHEMA

READERS

CORRESPONDENCE ENGINE

MAPPING GENERATOR

META

QUERY

ENGINE

INPUT SCHEMAS

OUTPUT VIEW DEFINITIONS

Figure 4: Tool architecture

the integrated view is no longer synthesized via a set of transformations local to individual source databases.
Rather, it must be possible to discover how a source’s schema components and data correspond to a fixed target
schema and any existing data. Unlike traditional schema and data integration, this mapping process may require
non-local transformations of source schemas and data objects.

As an example, consider the Hotel Type defined in Figure 2. Now imagine that a new source of hotel data
has become available, in which some of the data is redundant with the original web source, but most is not. This
new source of data has a collection for each country: one for France, one for China, etc. We wish to incorporate
this new source in such a way that the user sees only one collection of hotels. However, there are several
obstacles to this goal. First, there is schematic heterogenity: in the new source the country name is metadata
rather than an attribute value. Second, the system needs to be able to identify when hotels from the two sources
are the same. The same hotel may be identified by a different name in the two sources (e.g., “Hyatt St. Claire”
vs. “St. Claire Hyatt”), and two different hotels may have the same name (e.g., “Holiday Inn Downtown” exists
in many cities). Metadata transformations that use higher order query language operators [Ros92] are needed
for the former, dynamic cleansing operations such as joins based on similarity [Coh98] for the latter.

6 Building the Integrated Schema

Converting from one data representation to another is time-consuming and labor-intensive, with few tools avail-
able to ease the task. We are building a tool, Clio1, that will create mappings between two data representations
semi-automatically (i.e., with user input). Clio moves beyond the state of the art in several ways. First, while
most tools deal with either schema integration or data transformation, it tackles both. Second, it applies a full
database middleware engine to these problems, giving it significantly more leverage than the ad hoc collections
of tools available today, or the lightweight “agents” proposed by others. Third, it will exploit the notion of a
target schema, and, where it exists, target data, to make the integration problem more tractable. Fourth, because
the middleware engine is being enhanced with more powerful transformation capabilities (Section 5) than most,
it will allow more complex transformations of both schema and data. Finally, it will use data mining techniques
to help discover and characterize the relationships between source and target schema and data.

The tool has three major components, as shown in Figure 4: a set of Schema Readers, which read a schema
and translate it into an internal representation (possibly XML); a Correspondence Engine, which finds “matching”
parts of two schemas; and a Mapping Generator, which will generate view definitions to map data in the source

1Named for the muse of history, so that it will deal well with legacy data!

5



schema into data in the target schema. The Correspondence Engine has three major subcomponents: a GUI for
graphical display of the two schemas, a correspondence generator, and a component to test correspondences for
validity. Initially, the Correspondence Engine will expect the user to identify possible correspondences, via the
graphical interface, and will provide appropriate data from source and target (using the meta query engine) for
verifying the correspondences and identifying the nature of the relationship (again, initially relying on the user).
This will be an iterative process. Over time, we anticipate increasing the “intelligence” of the tool using mining
techniques so that it can propose correspondences, and eventually, verify them.

Clio must be general, flexible, and extensible. We expect to have a library of code modules (e.g. Java Beans)
for transformation operators, which the middleware engine will be able to apply internally. Open research issues
include what set of transformations are useful, and whether all transformations (particularly data cleansing) can
be done efficiently on the fly. We believe Clio’s modular design provides the flexibility required to experiment
with a wide range of transformation operators, allowing it to serve as a test bed for further research in this area.

References

[ACPS96] S. Adali, K. Candan, Y. Papakonstantinou, and V. S. Subrahmanian. Query caching and optimization in
distributed mediator systems. In Proc. ACM SIGMOD, 25(2):137–148, Montreal, Canada, June 1996.

[BLN86] C Batini, M. Lenzerini, and S. Navathe. A comparative analysis of methodologies of database schema
integration. ACM Computing Surveys, 18(4):323–364, 1986.

[Bon95] C. Bontempo. DataJoiner for AIX. IBM Corporation, 1995.

[C+95] M. Carey et al. Towards heterogeneous multimedia information systems. In Proc. of the Intl. Workshop on
Research Issues in Data Engineering, March 1995.

[Cat96] R. G. G. Cattell. The Object Database Standard – ODMG-93. Morgan-Kaufmann, San Mateo, CA, 1996.

[Coh98] W. Cohen. Integration of heterogeneous databases without common domains using queries based on textual
similarity. In Proc. ACM SIGMOD, 27(2):201–212, Seattle, WA, June 1998.

[ETI] ETI - Evolutionary Technologies International. http://www.evtech.com/.

[HS95] M. Hernandez and S. Stolfo. The merge/purge problem for large databases. In Proc. ACM SIGMOD,
24(2):127–138, San Jose, CA, May 1995.

[LSS96] L. Lakshmanam, F. Sadri, and I. N. Subramanian. SchemaSQL - A Language for Interoperability in Relational
Multi-database Systems. In Proc. of the Conf. on Very Large Data Bases (VLDB), Bombay, India, 1996.

[ME97] A. Monge and C. Elkan. An efficient domain-independent algorithm for detecting approximately duplicate
database records. Proc. of SIGMOD 1997 Workshop on Data Mining and Knowledge Discovery, May 1997.

[Mil98] R. J. Miller. Using Schematically Heterogeneous Structures. Proc. ACM SIGMOD, 27(2):189–200, Seattle,
WA, June 1998.

[PGMW95] Y. Papakonstantinou, H. Garcia-Molina, and J. Widom. Object exchange across heterogeneous information
sources. In Proc. IEEE Conf. on Data Engineering, pages 251–260, Taipeh, Taiwan, 1995.

[Ros92] K. A. Ross. Relations with Relation Names as Arguments: Algebra and Calculus. Proc. ACM PODS, pages
346–353, San Diego, CA, June 1992.

[RR98] S. Ram and V. Ramesh. Schema integration: Past, present, and future. In A. Elmagarmid, M. Rusinkiewicz,
and A. Sheth, editors, Management of Heterogeneous and Autonomous Database Systems. Morgan-Kaufmann,
San Mateo, CA, 1998.

[RS97] M. Tork Roth and P. Schwarz. Don’t scrap it, wrap it! a wrapper architecture for legacy data sources. In
Proc. of the Conf. on Very Large Data Bases (VLDB), pages 266–275, Athens, Greece, August 1997.

[TRV96] A. Tomasic, L. Raschid, and P. Valduriez. Scaling heterogeneous databases and the design of DISCO. In
Proc. ICDCS, 1996.

[Val] Vality Technology Incorporated. http://www.vality.com/.

6


