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Abstract. Support for ontology evolution is extremely important in ontology en-
gineering and application of ontologies in dynamic environments. A core aspect
in the evolution process is the to guarantee consistency of the ontology when
changes occur. In this paper we discuss the consistent evolution of OWL ontolo-
gies. We present a model for the semantics of change for OWL ontologies, con-
sidering structural, logical, and user-defined consistency. We introduce resolution
strategies to ensure that consistency is maintained as the ontology evolves.

1 Introduction

Most of the work conducted so far in the field of ontologies has focused on ontology
construction issues, which assumes that domain knowledge encapsulated in an ontology
does not change over time. However, in a more open and dynamic environment, the
domain knowledge evolves continually [5]. These changes include accounting for the
modification in the application domain, incorporating additional functionality according
to changes in the users’ needs, organizing information in a better way, etc.

Ontology evolution can be defined as the timely adaptation of an ontology to the
arisen changes and the consistent management of these changes. It is not a trivial pro-
cess, due to the variety of sources and consequences of changes, it thus cannot be per-
formed manually by the ontology engineer. Therefore, this process needs to be sup-
ported by the ontology management system. An important aspect in the evolution pro-
cess is to guarantee the consistency of the ontology when changes occur, considering the
semantics of the ontology change. A formalization of the semantic of change requires
a definition of the ontology model together with its change operations, the consistency
conditions and rules to enforce these conditions.

There exists a number of languages for ontologies, both proprietary and standards-
based. They differ not only in their syntax, but more importantly in their semantics.
The OWL ontology language is a standard for representing ontologies on the Web [8].
However, the semantics of change operations for OWL has not been considered so far.
In this paper, we focus on the evolution of OWL ontologies. More precisely, we consider
the OWL DL language, including sublanguages such as OWL Lite.

The approach presented in this paper builds partly on our previous work in ontol-
ogy evolution [18], which we adapt towards handling OWL ontologies. The differences
are mostly reflected in the ontology consistency definition. As we will show, it does
not suffice to define a fixed set of consistency conditions, due to the characteristics of
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the various sublanguages and the varying usage contexts. Instead, we define the consis-
tency of OWL ontologies at three different levels: structural, logical, and user-defined
consistency.

We further define methods for detecting and resolving inconsistencies in an OWL
ontology after the application of a change. Finally, as for some changes there may be
several different consistent states of the ontology, we define resolution strategies allow-
ing the user to control the evolution. We exemplarily present resolution strategies for
various consistency conditions.

This paper is organized as follows: The ontology evolution process is described in
Section 2. In Section 3 we define the notions of ontology, ontology change operations,
and the semantics of change. In Sections 4, 5, and 6 we discuss how to detect and
resolve structural inconsistency, logical inconsistency and user-defined inconsistency,
respectively. Before we conclude, we present an overview of related work.

2 Evolution Process

Ontology evolution can be defined as the timely adaptation of an ontology and consis-
tent management of changes. The complexity of ontology evolution increases as on-
tologies grow in size, so a structured ontology evolution process is required. We follow
the process described in [18]. The process starts with capturing changes either from ex-
plicit requirements or from the result of change discovery methods. Next, in the change
representation phase, changes are represented formally and explicitly. The semantics of
change phase prevents inconsistencies by computing additional changes that guarantee
the transition of the ontology into a consistent state. In the change propagation phase all
dependent artifacts (ontology instances on the Web, dependent ontologies and applica-
tion programs using the changed ontology) are updated. During the change implemen-
tation phase required and induced changes are applied to the ontology in a transactional
manner. In the change validation phase the user evaluates the results and restarts the
cycle if necessary.

In this paper we focus on the semantics of change phase. Its role is to enable the res-
olution of a given ontology change in a systematic manner by ensuring the consistency
of the whole ontology. It is realized through two tasks:

– Inconsistency Detection: It is responsible for checking the consistency of an on-
tology with the respect to the ontology consistency definition. Its goal is to find
”parts” in the ontology that do not meet consistency conditions;

– Change Generation: It is responsible for ensuring the consistency of the ontology
by generating additional changes that resolve detected inconsistencies.

The semantics of change phase of the ontology evolution process is shown in Figure
1. Changes are applied to an ontology in a consistent state (c.f. Change Application in
Figure 1), and after all the changes are performed, the ontology must remain consis-
tent (c.f. Change Resolution in Figure 1). This is done by finding inconsistencies in the
ontology and completing required changes with additional changes, which guarantee
the consistency. Indeed, the updated ontology is not defined directly by applying a re-
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quested change. Instead, it is indirectly characterized as an ontology that satisfies the
user’s requirement for a change and it is at the same time a consistent ontology.

In this paper we specifically consider the semantics of change phase for OWL DL
ontologies. Ontology consistency in general is defined as a set of conditions that must
hold for every ontology [18]. Here, we have to distinguish various notions of consis-
tency:

– Structural Consistency: First, we have to consider the structural consistency, which
ensures that the ontology obeys the constraints of the ontology language with re-
spect to how the constructs of the ontology language are used.

– Logical Consistency: Then, we need to consider the formal semantics of the ontol-
ogy: Viewing the ontology as a logical theory, we consider an ontology as logically
consistent if it is satisfiable, meaning that it does not contain contradicting infor-
mation.

– User-defined Consistency: Finally, there may be definitions of consistency that are
not captured by the underlying ontology language itself, but rather given by some
application or usage context. The conditions are explicitly defined by the user and
they must be met in order for the ontology to be considered consistent.

We note that most of the existing evolution systems (including the schema evolu-
tion systems as well) consider only the structural consistency. The role of an ontology
evolution system is not only to find inconsistencies in an ontology and to alert an ontol-
ogy engineer about them. Helping ontology engineers notice the inconsistencies only
partially addresses the issue. Ideally, an ontology evolution system should be able to
support ontology engineers in resolving problems at least by making suggestions how
to do that.

Moreover, an inconsistency may be resolved in many ways. In order to help to user
to control and customize this process, we have introduced the so-called resolution strate-
gies. Resolution strategies are developed as a method of “finding” a consistent ontology
that meets the needs of the ontology engineer. An resolution strategy is the policy for
evolution with respect to the his/her requirements. It unambiguously defines the way in
which a change will be resolved, i.e. which additional changes will be generated.

In the rest of this paper we formally define different types of consistency and elab-
orate on how corresponding inconsistencies can be detected and resolved.
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3 Ontology Model and Ontology Change Operations

The goal of ontology evolution is to guarantee the correct semantics of ontology changes,
i.e. ensuring that they produce an ontology conforming to a set of consistency condi-
tions. The set of ontology change operations – and thus the consistency conditions –
depends heavily on the underlying ontology model. Most existing work on ontology
evolution builds on frame-like or object models, centered around classes, properties,
etc. However, as in this work we focus on the evolution of OWL DL ontologies, we
follow the axiom-centered ontology model, heavily influenced by Description Logics.
In this section, we will first review the ontology model, define change operations for
this model, and describe the semantics of change.

3.1 Ontology Model

OWL DL is a syntactic variant of the SHOIN (D) description logic [7]. Hence, al-
though several XML and RDF syntaxes exist, for convenience we will adhere to the
more compact, traditional SHOIN (D) syntax. For the correspondence between this
notation and various OWL DL syntaxes see [7].

We use a datatype theory D, a set of concept names NC , sets of abstract and concrete
individuals NIa

and NIc
, respectively, and sets of abstract and concrete role names NRa

and NRc
, respectively.

The set of SHOIN (D) concepts is defined by the following syntactic rules, where
A is an atomic concept, R is an abstract role, S is an abstract simple role, T(i) are
concrete roles, d is a concrete domain predicate, ai and ci are abstract and concrete
individuals, respectively, and n is a non-negative integer:

C → A | ¬C | C1 � C2 | C1 � C2 | ∃R.C | ∀R.C | ≥ nS | ≤ nS | {a1, . . . , an} |
| ≥ nT | ≤ nT | ∃T1, . . . , Tn.D | ∀T1, . . . , Tn.D

D → d | {c1, . . . , cn}
A SHOIN (D) ontology O is a finite set of axioms of the form1: concept inclusion

axioms C � D, transitivity axioms Trans(R), role inclusion axioms R � S and T �
U , concept assertions C(a), role assertions R(a, b), individual (in)equalities a ≈ b, and
a 
≈ b, respectively. The common distinction between RBox, TBox and ABox is not
relevant for this work. We denote the set of all possible ontologies with O.

Example 1. As a running example, we will consider a simple ontology modelling a
small research domain, consisting of the following axioms:
Researcher � Person, Student � Person (students and researchers are persons),
Article � Publication (articles are publications), � � ∀author−.Publication,
� � ∀author.Person, (the domain and range of author are publications, persons,
resp.), Article(anArticle) (anArticle is an article), Researcher(peter), Researcher
(ljiljana) (peter and ljiljana are researchers), author(anArticle, peter), author
(anArticle, ljiljana) (peter and ljiljana are authors of anArticle).

1 For the direct model-theoretic semantics of SHOIN (D) we refer the reader to [9].
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3.2 Ontology Change Operation

Based on the ontology model, we can now define ontology change operations.

Definition 1 (Ontology Change Operations). An ontology change operation oco ∈
OCO is a function oco : O → O. Here OCO denotes the set of all change operations.

For the above defined ontology model of SHOIN (D), we allow the atomic change
operations of adding and removing axioms, which we denote with α+ and α−, re-
spectively. Obviously, representing changes at the level of axioms is very fine-grained.
However, based on this minimal set of atomic change operations, it is possible to de-
fine more complex, higher-level descriptions of ontology changes. Composite ontology
change operations can be expressed as a sequence of atomic ontology change opera-
tions. The semantics of the sequence is the chaining of the corresponding functions:
For some atomic change operations oco1, ..., ocon we can define ococomposite(x) =
ocon ◦ ... ◦ oco1(x) := ocon(...(oco1))(x).

3.3 Semantics of Change

The semantics of change refers to the effect of the ontology change operations and the
consistent management of these changes. The consistency of an ontology is defined in
terms of consistency conditions, or invariants that must be satisfied by the ontology. We
then define rules for maintaining these consistency conditions by generating additional
changes.

Definition 2 (Consistency of an Ontology). We call an ontology O consistent with
respect to a set of consistency conditions K iff for all κ ∈ K, O satisfies the consistency
condition κ(O).

At this point, we do not make any restriction with respect to the representation of the
consistency conditions. They may be expressed for example as logical formulas or func-
tions. In the following, we will further distinguish between structural, logical and user-
defined consistency conditions: KS , KL, and KU , respectively. We will call an ontology
structurally consistent, logically consistent and user-defined consistent, if the respective
consistency conditions are satisfied for the ontology.

Change Generation. If we have discovered that an ontology is inconsistent, i.e. some
consistency condition is not satisfied, we need to resolve these inconsistencies by gen-
erating additional changes that lead to a consistent state. These changes are generated
by resolution functions:

Definition 3 (Resolution Function). A resolution function � ∈ P is a function � : O×
OCO → OCO, which returns for a given ontology and an ontology change operation
an additional change operation (which may be composite).

A trivial resolution function would be a function which for a given ontology and change
operation simply returns the inverse operation, which effectively means a rejection of
the change. Obviously, for a consistent input ontology, applying a change followed by
the inverse change will result in a consistent ontology.
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In general, there may be many different ways to resolve a particular inconsistency,
i.e. different resolution functions may exist. We can imagine a resolution function that
initially generates a set of alternative potential change operations, which may be pre-
sented to the user who decides for one of the alternatives. Such a resolution function
that depends on some external input is compatible with our definition of a resolution
function.

We can now define the notion of a resolution strategy:

Definition 4 (Resolution Strategy). A resolution strategy RS is a total function RS :
K → P that maps each consistency condition to a resolution function. Further we
require that for all possible ontologies O ∈ O and for all oco ∈ OCO and all κ ∈ K, the
assigned resolution function � = RS(κ) generates changes oco′ = �(O, oco), which
– applied to the ontology oco′(O) – result in an ontology that satisfies the consistency
condition κ.

The resolution strategy is applied for each ontology change operation in straight-
forward manner: As long as there are inconsistencies with respect to a consistency
condition, we apply the corresponding resolution function.

Please note that a resolution function may generate changes that violate other con-
sistency conditions (resulting in further changes that in turn may violate the previous
consistency condition). When defining a resolution strategy, one therefore has to make
sure that the application of the resolution strategy terminates, either by prohibiting that
a resolution function introduces inconsistencies with respect to any defined consistency
condition, or by other means, such as cycle detection.

In the following chapters we will introduce various evolution strategies to maintain
the structural, logical and user-defined consistency of an ontology.

4 Structural Consistency

Structural consistency considers constraints that are defined for the ontology model
with respect to the constructs that are allowed to form the elements of the ontology
(in our case the axioms). However, in the context of OWL ontologies, there exist vari-
ous sublanguages (sometimes also called species), such as OWL DL, OWL Lite, OWL
DLP [19]. These sublanguages differ with respect to the constructs that are allowed
and can be defined in terms of constraints on the available constructs. The role of these
sublanguages is to be able to define ontologies that are “easier to handle”, either on
a syntactic level to for example allow easier parsing, or on a semantic level to trade
some of the expressivity for decreased reasoning complexity. It is thus important that
the ontology evolution process provides support for dealing with defined sublanguages:
When an ontology evolves, we need to make sure that an ontology does “not leave its
sublanguage”.

Because of the variety of the sublanguages, it is not possible to operate with a pre-
defined and fixed set of structural consistency conditions. Instead, we allow to define
sublanguages in terms of arbitrary structural consistency conditions along with the cor-
responding resolution functions that ensure that an ontology change operation does not
lead out of the defined sublanguage. Please note that because of the definition of the
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ontology model, we do not allow to construct ontologies outside of the OWL DL lan-
guage.

4.1 Structural Consistency Conditions

We will in the following define what it means for an ontology to be structurally con-
sistent with respect to a certain ontology sublanguage. A sublanguage is defined by a
set of constraints on the axioms. Typically, these constraints disallow the use of certain
constructs or the way these constructs are used.

Some constraints can be defined on a “per-axiom-basis”, i.e. they can be validated
for the axioms individually. Other constraints restrict the way that axioms are used in
combination. In the following we will show how such consistency conditions can be
defined for a particular sublanguage.

Consistency Condition for the OWL Lite sublanguage. OWL Lite is a sublanguage of
OWL DL that supports only a subset of the OWL language constructs [2]. We will now
show how it can be defined in terms of a set of structural consistency conditions KS

2:

– κS,1 disallows the use of disjunction C � D,
– κS,2 disallows the use of negation ¬C,
– κS,3 restricts the use of the concept C �D such that C and D be concept names or

restrictions,
– κS,4 restricts the use of the restriction constructors ∃R.C, ∀R.C such that C must

be a concept name,
– κS,5 limits the values of stated cardinalities to 0 or 1, i.e. n ∈ {0, 1} for all restric-

tions ≥ nR, ≤ nR,
– κS,6 disallows the usage of the oneOf constructor {a1, . . . , an}.

4.2 Resolving Structural Inconsistencies

Once we have discovered inconsistencies with respect to the defined sublanguage, we
have to resolve them. An extreme solution would be to simply remove the axioms that
violate the constraints of the sublanguage. This would certainly not meet the expected
requirements. A more advanced option is to try to express the invalid axiom(s) in a way
that is compatible with the defined sublanguage. In some cases, it may be possible to
retain the semantics of the original axioms.

Resolution Strategies for OWL Lite. In the following we will present a possible resolu-
tion strategy for the OWL Lite sublanguage by defining one resolution function for each
of the above consistency conditions in KS . Although OWL Lite poses many syntactic
constraints on the syntax of OWL DL, it is still possible to express complex descrip-
tions using syntactic workarounds, e.g. introducing new concept names and exploiting
the implicit negation introduced by disjointness axioms. In fact, using these techniques,

2 Please note that the constraints for the OWL DL language are already directly incorporated
into the ontology model itself.
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OWL Lite can fully capture OWL DL descriptions, except for those containing individ-
ual names and cardinality restrictions greater than 1 [8].

– �s,1 replaces all references to a concept C � D with references to a new concept
name CorD, and adds the following axiom: CorD ≡ ¬(¬C � ¬D),

– �s,2 replaces all references to a concept ¬C in an added axiom with references to
a new concept name NotC, and adds the following two axioms: C ≡ ∃R.� and
NotC ≡ ∀R.⊥, where R is a newly introduced role name,

– �s,3 replaces all references to a concept C (or D), where C (or D) is not a concept
name or restriction, in concepts C � D with references to a new concept name aC
(or aD), and adds the following axiom: aC ≡ C (or aD ≡ D),

– �s,4 replaces all references to a concept C (where C is not a concept name) in
restrictions ∃R.C or ∀R.C with references to a new concept name aC, and adds
the following axiom: aC ≡ C.

While these first four resolution functions simply apply syntactic tricks while preserving
the semantics, there exist no semantics-preserving resolution functions for the consis-
tency conditions κS,5 and κS,6.

However, we can either try to approximate the axioms, or in the worst case, simply
remove them to ensure structural consistency. We can thus define:

– �s,5 replaces all cardinality restrictions ≥ nR with restrictions ≥ 1R and removes
all axioms containing cardinality restrictions ≤ nR,

– �s,6 replaces all occurrences of the concept {a1, . . . , an} with a new concept D
and adds assertions D(a1), ...,D(an).

Example 2. Suppose we wanted to add to the ontology from Example 1 the axiom
Publication � ∃author.¬Student, i.e. stating that all publications must have an au-
thor who is not a student. As this axiom violates consistency condition κS,2, resolution
function �s,2 would generate a composite change that adds the following semantically
equivalent axioms instead: Publication � ∃author.NotStudent, Student ≡ ∃R.�,
NotStudent ≡ ∀R.⊥, resulting in a structurally consistent ontology.

5 Logical Consistency

While the structural consistency is only concerned about whether the ontology con-
forms to certain structural constraints, the logical consistency addresses the question
whether the ontology is “semantically correct”, i.e. does not contain contradicting in-
formation.

5.1 Definition of Logical Consistency

The semantics of the SHOIN (D) description logic is defined via a model-theoretic se-
mantics, which explicates the relationship between the language syntax and the model
of a domain: An interpretation I = (�I , ·I) consists of a domain set �I , disjoint
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from the datatype domain �I
D, and an interpretation function ·I , which maps from in-

dividuals, concepts and roles to elements of the domain, subsets of the domain and
binary relations on the domain, respectively3. An interpretation I satisfies an ontol-
ogy O, if it satisfies each axiom in O. Axioms thus result in semantic conditions
on the interpretations. Consequently, contradicting axioms will allow no possible
interpretations.

We can thus define a consistency condition for logical consistency κL that is satis-
fied for an ontology O if O is satisfiable, i.e. if O has a model. Please note, that because
of the monotonicity of the logic, an ontology can only become inconsistent by adding
axioms: If a set of axioms is satisfiable, it will still be satisfiable when any axiom is
deleted. Therefore, we only need to check the consistency for ontology change opera-
tions that add axioms to the ontology.

Example 3. Suppose, we start out with the ontology from our Example 4.2, i.e. the
initial example extended with the axiom Student � ¬Researcher (Students and Re-
searchers are disjoint). This ontology is logically consistent.

Suppose we now wanted to add the axiom Student(peter), stating that the indi-
vidual peter is a student. Obviously, this ontology change operation would result in an
inconsistent ontology, as we have stated that students and researchers are disjoint on the
one hand, and that peter is a student and a researcher on the other hand.

Now, there may be many ways how to resolve this inconsistency. One possibility
would be to reject the change Student(peter). Alternatively, we could also remove
the assertion Researcher(peter). However, if both of these assertions are correct, the
user may not be happy with either decision. The most intuitive one may be to retract
the axiom Student � ¬Researcher, but also this may not satisfy the user. A further,
more complex change, would be to introduce a new concept PhdStudent, which need
not be disjoint with researchers.

5.2 Resolving Logical Inconsistencies

In the following, we will present resolution functions that will allow us to define resolu-
tion strategies to ensure logical consistency. The goal of these resolution functions is to
determine a set of axioms to remove to obtain a logically consistent ontology with “min-
imal impact” on the existing ontology. Obviously, the definition of minimal impact may
be depend on the particular user requirements. A very simple definition could be that
the number of axioms to be removed should be minimized. More advanced definitions
could include a notion of confidence or relevance of the axioms. Based on this notion
of “minimal impact” we can define an algorithm that generates a minimal number of
changes that result in a maximal consistent subontology.

However, in many cases it will not be feasible to resolve logical inconsistencies
in a fully automated manner. We therefore also present a second, alternative approach
for resolving inconsistencies that allows the interaction of the user to determine which
changes should be generated. Unlike the first approach, this approach tries to localize
the inconsistencies by determining a minimal inconsistent subontology.

3 For a complete definition of the interpretation, we refer the reader to [7].
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Alternative 1: Finding a Consistent Subontology. In our model we assume that the
ontology change operations should lead from one consistent ontology to another con-
sistent ontology. If an ontology change operation (adding an axiom, α+) would lead to
an inconsistent ontology, we need to resolve the inconsistency by finding an appropriate
subontology O′ ⊂ O (with α ∈ O′) that is consistent. We do this by finding a maximal
consistent subontology:

Definition 5 (Maximal consistent subontology). An ontology O′ is a maximal con-
sistent subontology of O, if O′ ⊆ O and O′ is logically consistent and every O′′ with
O′ ⊂ O′′ ⊆ O is logically inconsistent.

Intuitively, this definition states that no axiom from O can be added to O′ without losing
consistency. In general, there may be many maximal consistent subontologies O′. It is
up to the resolution strategy and the user to determine the appropriate subontology to
be chosen.

The main idea is that we start out with the inconsistent ontology O ∪ {α} and iter-
atively remove axioms until we obtain a consistent ontology. Here, it is important how
we determine which axioms should be removed. This can be realized using a selection
function. The quality of the selection function is critical for two reasons: First, as we
potentially have to search all possible subsets of axioms in O for the maximal consistent
ontology, we need to prune the search space by trying to find the relevant axioms that
cause the inconsistency. Second, we need to make sure that we remove the dispensible
axioms. (Please note that a more advanced strategy could consider to only remove parts
of the axiom.)

The first problem of finding the axioms that cause the inconsistency can be ad-
dressed e.g. using a notion of syntactic relevance by analyzing how the axioms are
structurally connected:

We can realize a selection function based on structural connectedness:

Definition 6 (Connectedness). Given a set of axioms O, two axioms α and β are di-
rectly structurally connected – denoted with connected(α, β) –, if there exists an ontol-
ogy entity e ∈ NC ∪ NIa

∪ NIc
∪ NRa

∪ NRc
that occurs in both α and β.

The second problem of only removing dispensable axioms requires more semantic
selection functions. These semantic selection functions can for example exploit infor-
mation about the confidence in the axioms that allows us to remove less probable ax-
ioms. Such information is for example available in probabilistic ontology models, such
as [4], but will not be considered in this paper.

In the following, we present an algorithm (c.f. Algorithm 1) for finding (at least)
one maximal consistent subontology using the definition of structural connectedness
(c.f. Definition 6): We maintain a set of possible candidate subontologies Ω, which
initially contains only O ∪ {α} (c.f. line 1), i.e. the consistent ontology O before the
change and the added axiom α. In every iteration, we generate a new set of candidate
ontologies (line 3) by removing one axiom β1 from each candidate ontology (line 7)
that is structurally connected with α or an already removed axiom (in O \ O′, line 6),
until at least one of the candidate ontologies is a consistent subontology (line 12). The
termination is guaranteed based on the fact that once we have removed all axioms from
O ∪ {α} that are transitively connected with α, the ontology again must be consistent
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Algorithm 1 Determine consistent subontology for adding axiom α to ontology O

1: Ω := {O ∪ {α}}
2: repeat
3: Ω′ := ∅
4: for all O′ ∈ Ω do
5: for all β1 ∈ O′ \ {α} do
6: if there is a β2 ∈ ({α} ∪ (O \ O′)) such that connected(β1, β2) then
7: Ω′ := Ω′ ∪ {O′ \ {β1}}
8: end if
9: end for

10: end for
11: Ω := Ω′

12: until there exists an O′ ∈ Ω such that O′ is consistent

(provided that α itself is consistent and O was consistent before adding α). As we
remove exactly one axiom from each candidate ontology in one iteration, the resulting
ontology will not only be maximal with respect to the above definition, but also maximal
with respect to cardinality, i.e. the number of axioms in the ontology.

The corresponding resolution function �L,1 thus generates changes that remove the
minimal set of axioms to ensure consistency: O\O′, where O′ is the maximal consistent
ontology.

Alternative 2: Localizing the Inconsistency. In the second alternative, we do not try
to find a consistent subontology, instead we try to find a minimal inconsistent ontology,
i.e. a minimal set of contradicting axiom. We call this process Localizing the inconsis-
tency. Once we have localized this minimal set, we present it to the user. Typically, this
set is considerably smaller than the entire ontology, such that it will be easier for the
user to decide how to resolve the inconsistency.

Definition 7 (Minimal inconsistent subontology). An ontology O′ is a minimal in-
consistent subontology of O, if O′ ⊆ O and O′ is inconsistent and for all O′′ with
O′′ ⊂ O′ ⊆ O, O′′ is consistent.

Intuitively, this definition states that the removal of any axiom from O′ will result in a
consistent ontology.

Again using the definition of connectedness, we can realize an algorithm (c.f. Al-
gorithm 2) that is guaranteed to find a minimal inconsistent ontology: We maintain a
set Ω with candidate ontologies, which initially only consists of the added axiom {α}
(c.f. line 1). As long as we have not found an inconsistent subontology, we add one
structurally connected axiom (line 6) to each candidate ontology (line 7).

Because of the minimality of the obtained inconsistent ontology, it is sufficient to re-
move any of the axioms to resolve the inconsistency. The minimal inconsistent ontology
can be presented to the user, who can select the appropriate axiom to remove.

It may be possible that one added axiom introduced multiple inconsistencies. For
this case, the above algorithm has to be applied iteratively.
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Algorithm 2 Localize inconsistency introduced by adding axiom α to ontology O

1: Ω := {{α}}
2: repeat
3: Ω′ := ∅
4: for all O′ ∈ Ω do
5: for all β1 ∈ O \ O′ do
6: if there is a β2 ∈ O′ such that connected(β1, β2) then
7: Ω′ := Ω′ ∪ {O′ ∪ {β1}}
8: end if
9: end for

10: end for
11: Ω := Ω′

12: until there exists an O′ ∈ Ω such that O′ is inconsistent

Example 4. We will now show how Algorithm 2 can be used to localize the incon-
sistency in our running example, which has been introduced by adding the axiom α
Student(peter). Applying the algorithm, we start out with the candidate ontology
Ω := {{Student(peter)}}. Adding the structurally connected axioms, we obtain:
Ω := {{Student(peter), Researcher(peter)}, {Student(peter), Student �
Person},{Student(peter), Student � ¬Researcher}, {Student(peter),
Student(ljiljana)},{Student(peter), author(anArticle, peter)}}. All of these can-
didate ontologies are still consistent. In the next iteration, adding the structurally con-
nected axiom Student � ¬Researcher to the candidate ontology {Student(peter),
Researcher(peter)} will result in the minimal inconsistent subontology
{Student(peter), Researcher(peter), Student � ¬Researcher}.

The removal of any of these axioms (which one is to be decided by the user), will
lead to a consistent ontology.

6 User-Defined Consistency

The user-defined consistency takes into account particular user requirements that need
to be expressed “outside” of the ontology language itself. While an ontology may be
structurally consistent (e.g. be a syntactically correct ontology according to a particular
OWL sublanguage) and may be logically consistent, it may still violate some user re-
quirements. We can identify two types of user-defined consistency conditions: generic
and domain dependent.

Generic consistency conditions are applicable across domains and represent e.g.
best design practice or modeling quality criteria. For example, OntoClean [20] formal-
izes a set of meta-properties representing the philosophical notions of rigidity, identity,
unity, and dependence. These meta-properties are assigned to properties (corresponding
to concepts in DL terminology) of the ontology. Constraints on the taxonomic relation-
ships define the consistency of the ontology, e.g. a non-rigid property cannot subsume
a rigid property.
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Domain dependent consistency conditions take into account the semantics of a par-
ticluar formalism of the domain. An example are consistency conditions for the OWL-S
process model [17] to verify web service descriptions.

In the following we exemplarily show how user-defined consistency conditions and
corresponding resolutions function can be described to ensure modeling quality condi-
tions. Such modeling quality conditions cover redundancy, misplaced properties, miss-
ing properties, etc. We refer the reader to [18] for a complete reference.

One example of redundancy is concept hierarchy redundancy. If a direct super-
concept of a concept can be reached through a non-direct path, then the direct link is
redundant. We can thus define a consistency condition that disallows concept hierrachy
redundancy: κU,1 is satisfied if for all axioms C1 � Cn in O there exist no axioms in
O with C1 � C2, ..., Cn−1 � Cn. We can further define a corresponding resolution
function �U,1 that ensures this consistency condition by generating a change operation
that removes the redundant axiom C1 � Cn.

Example 5. Suppose, we start out with the ontology from our Example 4.2, i.e. the ini-
tial example extended with the axiom Professor � Person (a professor is a person).
This ontology is consistent with respect to the consistency definition κU,1.

Suppose we now want to add the axiom Professor � Researcher, stating that
the a professor is a researcher. Obviously, this ontology change operation would result
in an ontology that is inconsistent with respect to κU,1 since there is an alternative
path (through the concept Researcher) between the concept Professor and its direct
super-concept Person. The resolution function �U,1 would generate a change operation
that removes the axiom Professor � Person.

7 Related Work

In the last decade there has been very active research in the area of ontology engineer-
ing. The majority of research studies in this area are focused on construction issues.
However, coping with the changes and providing maintenance facilities require a dif-
ferent approach. There are a very few approaches investigating the problems of inducing
changes in ontologies.

[18] defines an ontology evolution process which we have adapted for our work.
However, the semantics of change in [18] focuses on the KAON ontology model, which
is fundamentally different from the OWL ontology model, as described earlier. A tax-
onomy of ontology changes for the OWL ontologies can be found in [10]. However, in
[10] the the ontology model follows a more object-oriented view, whereas we follow
the axiomatic ontology model of [14].

While there exist significant differences between schema evolution and ontology
evolution, as elaborated in [13], particular aspects of schema evolution in databases are
relevant for our work. [16] provides an excellent survey of the main issues concerned.
A sound and complete axiomatic model for dynamic schema evolution in object-based
systems is described in [15]. This is the first effort in developing a formal basis for the
schema evolution research. The authors define consistency of a schema with a fixed set
of invariants or consistency conditions that are tailored to the data model.
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However, in the context of OWL ontologies, the notion of consistency is much more
mulitfaceted. First, the existing work only considers structural consistency. Not only is
the set of structural constraints different due to the difference in the underlying models.
We further support the evolution of various fragments (sublanguages) of OWL that are
defined using different structural constraints. Furthermore, we consider the notions of
logical and user-defined consistency.

Regarding the notion of logical conistency, the research done in belief revision is
of interest: Here, the revision problem is concerned about resolving contradictions by
minimal mutilation of a set of beliefs. The combination of classical approaches with
description logics is subject of ongoing research [6].

Finally, there are several tools that support species validation (corresponding to
our structural consistency) or localizing inconsistencies in ontologies. For example,
the OWL Protege Plugin [11] provides species validation including explanations where
certain problems occurred. The OWL Protege Plugin also provides explanations on on-
tology changes, i.e. new subsumptions that have been inferred, logical inconsistencies
that have been introduced (based on RACER reasoning services). [1] presents a “symp-
tom” ontology describing inconsistencies and errors in ontologies. It provides various
levels of severity provides a classification of inconsistencies. However, there is no sup-
port for preserving consistency in the case that consistency conditions are violated in
the presence of ontology changes.

8 Conclusion and Outlook for Future Work

In this paper we have presented an approach to formalize the semantics of change for
the OWL ontology language (for OWL DL and sublanguages in particular), embed-
ded in a generic process for ontology evolution. Our formalization of the semantics of
change allows to define arbitrary consistency condititions – grouped in structural, logi-
cal, and user-defined consistency – and to define resolution strategies that assign reso-
lution functions to that ensure these consistency conditions are satisfied as the ontology
evolves. We have shown examplarily, how such resolution strategies can be realized for
various purposes.

The methods described in the previous sections have been implemented on top of
KAON24, an ontology management system and inference engine that supports a large
subset of OWL DL. The implementation includes evolution strategies for various frag-
ments of ontology languages, including OWL DL, OWL Lite, as well evolution strate-
gies for logical consistency. Additionally it allows to plug-in further evolution strategies
for structural consistency (to support additional sublanguages), logical consistency, and
user-defined consistency. The approach will be evaluated in the context of various on-
going research projects, including SEKT and OntoGov.

In the future we plan to describe on ontology definition meta-model (ODM) in
the style of [3] on top of our axiomatic ontology model and to define the semantics
of change for the ODM to support users and applications that prefer a more object-
oriented-like ontology model.

4 http://kaon2.semanticweb.org/

http://kaon2.semanticweb.org/
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