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ABSTRACT

In earlier work, Bancilhon and Spyratos introduced the concept of a complement to a
database schema, and showed how this notion could be used in theories of decomposition and
update semantics. However, they also showed that, except in trivial cases, even minimal com-
plements are never unique, so that many desirable results, such as canonical decompositions,
cannot be realized. Their work dealt with database schemata which are sets and database
mappings which are functions, without further structure. In this work, we show that by adding
a modest amount of additional structure, many important uniqueness results may be obtained.
Specifically, we work with database schemata whose legal states form partially ordered sets
(posets) with least elements, and with database mappings which are isotonic and which pre-
serve this least element. This is a natural algebraic structure which is inherent in many im-
portant examples, including relational schemata constrained by data dependencies, with views
constructed by composition of projection, restriction, and selection. Other examples include
deductive database schemata in which views are defined by rules, and general first-order logic
databases.

Within this context of posets, we show that direct (i.e., independent) complements must be
unique, and that in fact the directly complementable views have the structure, in a very natural
sense, of a Boolean algebra. Decompositions of the schema then become identifiable with finite
subalgebras of this Boolean algebra. To demonstrate the utility of our approach, we examine
in some detail its applicability to the relational model. Particularly, we establish that under
the condition that the schema is constrained by universal Horn sentences, there is a unique
ultimate decomposition into a finite set of type restrictions. The latter are a special class of
views which includes classical projections which occur in direct decompositions. In particular,
classical join-based decomposition is completely recovered within a framework which explicitly
axiomatizes independence via null values.



0. Introduction

0.1 Motivation and Overview

The notion of decomposition of a database schema has long been identified as an important
one. With the development of the relational approach over the past two decades, various de-
composition theories for this model have been developed. In early work on the relational model,
Codd [13] showed that certain types of anomalies in data representation could be avoided by
normalization, a particular form of decomposition. Subsequently, a more general theory of
relational schema decomposition arose from the theories of joins [1] and acyclicity [18], as did
more elaborate theories of normalization [16, 17]. These approaches all share the common fea-
ture that they address the decomposition of a very specific class of schemata, namely relational
schemata constrained by functional and join dependencies.

In this paper, we provide a complementary approach to decomposition of database schemata
which is not restricted to a specific class of schemata, but which rather makes the fewest
assumptions necessary to support the results. Such a general theory is important for several
reasons. First of all, while the traditional relational model has remained an important one,
there has recently been much interest in more sophisticated data models, such as object-oriented
models [3], deductive models [42, 11], and incomplete-information models [20, 45]. The specific
relational decomposition theories cited above do not extend in an obvious way to any of these
other models. As these alternate data models mature, specific decomposition theories will
likely arise. However, such theories should not start from scratch, ignoring those results already
achieved in the traditional relational case. Rather, they should be based upon whatever general
principles the relational theory can provide. To do so, a better understanding of how the
specific relational decomposition theories fit into a general framework is necessary. Second,
within the relational model itself there are other concepts of decomposition, such as horizontal
decomposition [46, 14], which deserve to be better understood. And finally, the notion of
decomposition has been shown to be intimately related to the support of view updates via the
constant complement strategy [5], and so with a better understanding of decomposition will we
acquire a better understanding of the difficult problem of view update.

We address primarily directly complemented views; that is, views which are the constituents
in decompositions of schemata into independent components. Our approach is motivated by the
decomposition theory of Bancilhon and Spyratos [4, 5], in which database schemata are just sets
and views are surjective functions. The limitation of their framework is that it is too general;
it is impossible to obtain any kind of useful uniqueness theorems because too many mappings
are admitted as views. In particular, complements are unique only in trivial cases. The key
is to add just the right amount of additional structure. Our proposal is that this amount
is precisely to require that each database schema have the structure of a ⊥-poset; that is, a
partially ordered set with a least element. Database morphisms are required to be order and
least-element preserving. Many examples of interest possess this additional structure, including
relational schemata constrained by data dependencies in the sense of [19] with project-restrict-
join database morphisms, as well as logic databases ordered under theory containment and
deductive databases. With this modest amount of additional structure, we show that direct
complements are unique when they exist, and that any two decompositions have a coarsest
unique refinement. When the number of directly complemented views is finite, we furthermore
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have unique ultimate decompositions.
The approach presented in this paper is distantly related to our earlier work on relational

decomposition [26, 27]. However, the current work is simpler and at the same time applicable
to a wide variety of schema types, because we formulate prove our main results while working
solely with the underlying order-theoretic structure. The specific applications, such as to the
relational theory, are then built on top of this framework. Our previous work, on the other
hand, dealt directly with the relational model.

The only other work of which we are aware which uses order-theoretic concepts to construct
complements is that of Keller and Ullman [37], who assume that the states of the database
schema form not only a ⊥-poset, but in fact a finite Boolean algebra. While such an assumption
easily leads to uniqueness results, it is also far too strong to be of any practical value. Very few
database applications admit a model in which the legal databases form a Boolean algebra. In
this paper, we are successful in recapturing the main results of [37], within a far less constraining
and more realistic framework.

As we have already noted, this paper deals exclusively with direct complements, in which
the views are independent. A comparable theory for subdirect complements, in which the
component views are dependent upon one another, requires a somewhat different approach.
This is discussed further in Part 3.

The paper is divided into two principal parts. Part 1 contains the development of the general
theory of database decomposition in a general setting, assuming only the simple order-based
algebraic structure mentioned above. The cornerstone result on decomposition structure states
that direct complements are unique when they exist, and that the set of all complemented views
of a schema forms a Boolean algebra, with view complementation corresponding to complemen-
tation in the algebra. Furthermore, the direct decompositions are in bijective correspondence
with the atomic Boolean subalgebras of this algebra. It is also shown that the views which
participate in a decomposition have the very special structure (up to isomorphism) of an ideal
view. Roughly speaking, this means that the view must a subschema (as well as a quotient
schema) of the main schema which is being decomposed.

Part 2 contains selected applications of the theory of Part 1 to the relational model. Our
intent is not to provide a complete theory of relational decomposition, as that would constitute
several papers in itself. Rather, the direction of this section is guided by an interest in provid-
ing a basic understanding how the traditional theory of join-based decomposition fits into the
larger picture. In harmony with our earlier work [26, 27, 29], we work with a Boolean algebra
of domain types, rather than a set of disjoint domains. Such a framework is not merely a super-
ficial extension of the traditional one; rather, it is shown to be essential in the representation
of null values, which are a necessary part of any join-based decomposition into independent
components.

Section 2.1 provides the essential foundations for our approach. The key result is that under
the assumption that the schema to be decomposed is governed by universal Horn constraints
(which include all total dependencies in the sense of [19]), each view in any direct decomposition
is tuple based. This means that the view mapping functions need only look at one tuple at a
time; the computation of the view does not depend upon combinations of tuples being present
or absent.

Section 2.2 examines decomposition into a particularly simple kind of tuple-based view,
the type restrictions, in which the the only relevant property of a tuple, for view computation
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purposes, is the type domain of each of its entries. The key result here is that if we impose
the additional constraint corresponding to the property of a dependency being typed [19], then
decompositions governed by universal Horn sentences must be type restrictions. We further
show that the set of all such type restrictions is finite, thus establishing that any schema
satisfying the above conditions has a unique ultimate decomposition into a finite set of type
restrictions. To illustrate the power of this representation, we show in particular how the
classical notion of a decomposition into projections based upon a join dependency may be
recaptured in this framework. This representation makes very clear how to formally represent
the use of nulls to achieve true independent decomposition, a topic which has been treated
informally for many years, but has only recently seen formalization, even within the specific
join- and functional-dependency governed framework [12].

An important concept in the use of nulls in decomposition is tuple subsumption. For
example, if ν is a null and c is an ordinary domain value, we may say that the tuple (a, b, ν) is
subsumed by the tuple (a, b, c). In Section 2.3, we show how to explicitly incorporate this sort
of subsumption into the order-based relational model. The use of such subsumption provides
models of join-based decomposition which are perhaps more aesthetic than those of Section 2.2,
since subsumed tuples need not be represented. We show, however, that this is merely a surface
difference, as we prove a representation theorem which provides, for any subsumption-based
model, an equivalent (both logically and order theoretically) type-restriction based model.
This is a key result, because while models with tuple subsumption may be more aesthetic,
type-restriction based models are much easier to manipulate mathematically.

Section 2.4 provides a very brief discussion of horizontal decomposition within our frame-
work.

0.2 Prerequisites and Notation

While the mathematical results developed herein may be understood on a formal level with
little or no knowledge of database theory, the motivation for the direction of the paper, as well
as an understanding of the examples, requires a fundamental knowledge of the terminology,
notation, and principal results of the theory of relational databases, such as may be found in
[2], [39], [44], and [47]. For Part 2 of this paper, we also assume some basic knowledge of first-
order logic, as may be found in [15], [22], and [43]. However, except for a few proofs which may
be skipped without loss of continuity, only a rather basic knowledge of syntax and semantics is
essential, and an understanding of the survey article [21] should prove sufficient.

The notions of partial order, lattice, and Boolean algebra are used extensively, although no
knowledge of any but the most fundamental definitions and results is assumed without explicit
reference. The appropriate definitions and background may be found in [25] and [8].

1. The Theory of Order-Based Decomposition

In this part, we present a general theory of schema decomposition within the context of ⊥-
posets. While we give some motivating examples from the standard relational approach, the
general results are not rooted in the relational model in any way.
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1.1 Schemata and Views

1.1.1 Motivating example – the property of isotonicity Let F be the relational
schema with only one domain A and exactly two unary relational symbols R[A] and S[A].
There are no constraints, other than that the two relations share the same domain A. We let
ΓR = (R[A], πR) and ΓS = (S[A], πS) denote the views which preserve identically the named re-
lation, and discard the other. Under any reasonable definition, {ΓR,ΓS} forms a decomposition
of F into independent components. Indeed, the state of F can be trivially recovered from the
combined states of ΓR and ΓS, and these two views can be updated completely independently,
with their resulting states always defining a unique state of F. Furthermore, barring any de-
composition based upon additional structure of A (such as horizontal decomposition [46]), it
seems clear that this is the only “reasonable” nontrivial decomposition.

It is quite easy, however, to produce another decomposition totally within the relational
framework. For any particular databaseM of the schema F, denote the corresponding relational
instances of R and S by RM and SM , respectively. Define the view ΓT = (T [A], γT ) to have a
single unary relation symbol T [A], with the view mapping γT : (RM , SM) 7→ (RM ∪SM)\(RM ∩
SM). In other words, the state of T [A] is the symmetric difference of the states of R[A] and
S[A]. It is easy to see that the state of F may be uniquely recovered by knowing the states of
both ΓR and ΓT ; indeed, we can recover the state of S[A] by computing the symmetric difference
of the relation instances of R[A] and T [A]. Furthermore, ΓR and ΓT may be independently
updated, with the instance of S[A] tracking as the symmetric difference.

In terms of preserving the structure of the schema F as well as the data contained in the
particular instance, the decomposition {ΓR,ΓS} seems more natural than {ΓR,ΓT}. Each of
the views ΓR and ΓS is a simple projection, while ΓT makes use of a more complex operator,
symmetric difference. The key abstraction here is that projection is a isotonic operator; as the
state of the base schema F becomes smaller (under the ordering defined by relation-by-relation
inclusion), so does the state of any projection. However, symmetric difference is not isotonic;
if we insert tuples into the state of the relation R[A] while keeping S[A] constant, the state of
T [A] must become smaller. Formally, ΓR and ΓS are isotonic views, while ΓT is not.

Many of the naturally occurring views, at least in the relational theory, are isotonic (e.g.,
projection, restriction, join), and a reasonable decomposition theory could well consider only
such views. Indeed, the main decomposition theories of the relational model have used only
projection as a view-defining operation. Thus, while we do not claim that isotonic views are
the only important ones, they are sufficiently important that a theory restricted to them (as
we shall present in this paper) is of sufficient interest provided that it can provide important
results not obtainable in more general contexts.

1.1.2 Motivating example – the property of order isomorphism In this example,
we alter the previous example slightly by formally adding the relational symbol T to the base
schema to be decomposed. More precisely, let G be the relational schema with domain A

and the three relational symbols R[A], S[A], and T [A]. The only constraint states that in any
instance M = (RM , SM , TM), any domain element a ∈ A must occur in none of {RM , SM , TM},
or in exactly two of them. In other words, any relation instance is the symmetric difference of
the other two. Each of the three views ΓR = (R[A], πR), ΓS = (S[A], πS), and ΓT = (T [A], πT )
retain the named relation and discard the others. Now all three of the views {ΓR,ΓS,ΓT} are

4



isotonic, and any two of them form a decomposition into independent components; the third
can always be recovered from the other two by computing the symmetric difference. Thus,
there are three structurally identical decompositions.

The problem here is not with the views, which are all isotonic, but rather with the schema G

itself. The symmetric difference constraint creates a situation in which a deletion to one relation
must result in an insertion to another. We rule out such decompositions by requiring that the
decomposition map be not only a bijection, but an order isomorphism as well. To illustrate via
a specific example, suppose that M is the database state of G with RM = {a, b}, SM = {a},
TM = {b}. Then a decomposition of G into (ΓR,ΓS) would send this state ({a, b}, {a}, {b})
to ({a, b}, {a}). Now if we delete a from RM , the new state of the decomposition becomes
({b}, {a}) (a smaller state under the natural relation-by-relation ordering). We must reflect
this by the base schema state ({b}, {a}, {a, b}), which is not smaller than the original state
({a, b}, {a}, {b}). Therefore the decomposition map is not an order isomorphism.

We now proceed to the formal definitions.

1.1.3 Schemata and morphisms A ⊥-poset database schema D is a triple
(LDB(D),≤D,⊥D), in which LDB(D) is a set, called the legal databases of D, ≤D is a par-
tial order relation1 on LDB(D) with a least element, and ⊥D explicitly identifies that least
element. Usually, we shall abbreviate ≤D to just ≤, and ⊥D to ⊥, since context will make clear
which subscripts are appropriate. Additionally, since we shall consider only ⊥-poset database
schema in Part 1 of this paper, the term database schema shall, by default, mean ⊥-poset
database schema (possibly with additional structure) throughout this part.

Let Y = {Di | i ∈ I} be an arbitrary set of database schemata, indexed by some set I. The
product schema of Y , denoted

∏
Y or

∏
i∈I Di, has as its underlying set the cartesian product∏

i∈I LDB(Di), with ordering (xi)i∈I ≤ (yi)i∈I if and only if xi ≤ yi for each i ∈ I. The least
element is (⊥Di

)i∈I . If Y is empty, the product schema
∏
Y is taken to be the zero schema 0,

whose underlying set is the singleton {⊥}.
Now let D1 = (LDB(D1),≤,⊥) and D2 = (LDB(D2),≤,⊥) be database schema. A mor-

phism f from D1 to D2 is a function f ′ : LDB(D1) → LDB(D2) which is preserves the least
element and which is isotonic. More formally, we require the following two properties.

(⊥p-i) f ′(⊥) = ⊥.

(⊥p-ii) (∀x, y ∈ LDB(D1))(x ≤ y ⇒ f ′(x) ≤ f ′(y))

We write f : D1 → D2 to denote that f is such a morphism, and because it is sometimes
essential to distinguish the morphism from its underlying function, the prime superscript will
always be used to identify the latter. It is immediate the the composition of morphisms is a
morphism. We define section, retraction, and isomorphism in the categorical sense [33]. More
precisely, f : D1 → D2 is a section if it has a left inverse; i.e., there is a morphism g : D2 → D1

such that g ◦ f is the identity on D1. The morphism f is a retraction if it has a right inverse;
i.e., if there is such a g such that f ◦ g is the identity on D2. Finally, f is an isomorphism if it
is both a section and a retraction.

The following characterizations are easily verified.

1We always assume partial orders to be reflexive; i.e., x ≤ x for any x.
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1.1.4 Proposition Let D1 and D2 be database schemata, and let f : D1 → D2 be a mor-
phism.

(a) f is a section if and only if it is injective, and, for each pair x, y ∈ LDB(D1), x ≤ y if
and only if f ′(x) ≤ f ′(y).

(b) f is a retraction if and only if it is surjective and for each pair x, y ∈ LDB(D2) with
x ≤ y, there are z ∈ (f−1)

′
({x}) and w ∈ (f−1)

′
({y}) such that z ≤ w.

(c) f is an isomorphism if and only if it is a surjective section.

2

We now interpret our definitions of schema and view in terms of three common database
frameworks.

1.1.5 Example – standard relational interpretation In the relational model, the nat-
ural ordering is relation-by-relation inclusion. Typically, relational schemata are assumed to be
constrained by so-called dependencies, which are sentences of the following form.

(∀x1, x2, . . . , xr)((A1∧A2∧ . . . ∧Am)⇒ (∃y1, y2, . . . , yr)(B1∧B2∧ . . . ∧Bn))

Here the Ai’s are relational atoms, and the Bi’s are either relational atoms or else statements
of equality between terms. It is argued in [19] that most reasonable relational constraints are of
this form. If we work with schemata constrained by such constraints, then we immediately have
property (⊥p-i), since the empty model (all relations empty) is a model of any such dependency,
and the empty model is then ⊥.

As for the isotonicity condition (⊥p-ii), we have already observed in 1.1 that the most
common database mappings, such as projection, restriction, and join are isotonic. Only those
which involve negation, such as difference, are not.

In Section 2.3, we shall formally extend the relational model to include nulls, and define
another ordering relation based upon tuple subsumption, much in the same spirit as the work
of Zaniolo [50]. In that context, we establish that the conditions of 1.1.3 are met as well.

1.1.6 Example – deductive database interpretation Datalog is a recursive query lan-
guage for the relational model [11, 10]. The notion of a relational schema is the same as in the
traditional case, but a database mapping (or query) from schema D to schema V in Datalog
is a set of universal Horn clauses of the form

C1 ← C11, .., C1n1;
C2 ← C21, .., C2n2;
.. ..

Ck ← Ck1, .., C1nk
.

The Ci’s use relation symbols from V, while the Cij’s use relation symbols from both D and V.
The key observation is that because all literals are positive, a larger database for D will result in
a larger image computed for V. Isotonicity is guaranteed; indeed, a cornerstone of this entire
framework is that the query may be computed as the least fixpoint of the above operators.
Preservation of the least model is immediate as well, so our decomposition framework applies
to the deductive database setting.
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1.1.7 Example – incomplete information database interpretation In an incomplete
information schema, a database is not a single structure satisfying the constraints, but rather a
set of such structures. Usually, such a database is specified by a set of first order sentences, and
the set of structures is just the set of models of those sentences [21, 45], but there are certainly
other possibilities. In any case, let D be a database schema, and let CLDB(D) denote the set
of legal complete-information databases of D, in the usual sense. Let ILDB(D) denote the set
of incomplete-information databases, which is exactly the set of all subsets of CLDB(D). We
order ILDB(D) under reverse inclusion; that is, S1 ≤ S2 if S2 ⊆ S1. Larger elements in this
ordering contain more information, hence fewer possible worlds. The least element is the set of
all subsets of CLDB(D).

We take morphisms in this context to be induced by the complete-information case. That
is, f : D1 → D2 is a morphism if there is an underlying function g : CLDB(D1) → CLDB(D2)
such that f ′(S) = {g(s) | s ∈ S}. In general, such a mapping will not be least-element
preserving. However, in the special case that g is surjective, it clearly will be. As will be seen
as our presentation unfolds, we work exclusively with morphisms whose underlying functions
are surjective. Hence, in the cases that we consider, this definition yields a valid ⊥-poset
morphism.

Thus, the incomplete information setting fits into our general decomposition framework as
well.

1.1.8 Views and view morphisms Given a database schema D, a view of D is a pair
Γ = (V, γ) in which V is a database schema and γ : D→ V is a morphism whose underlying
function f ′ is surjective. We call D the base schema, V the view schema, and γ the view
mapping. The collection of all views of D is denoted View(D).

Given views Γ1 = (V1, γ1) and Γ2 = (V2, γ2) of D, a view morphism f : Γ1 → Γ2 is a
database morphism f : V1 → V2 such that the following diagram commutes.

D

V1 V2










�

γ1

J
J
J

JĴ

γ2

-f

f is an isomorphism of views when it has a left and right inverse. It is immediate that view
isomorphism induces an equivalence relation on View(D). We let [View(D)] denote the partition
on View(D) induced by this equivalence. That is, two views are in the same block of [View(D)]
if and only if they are isomorphic.

We also have the following important observation.

1.1.9 Lemma – uniqueness of view morphisms Given two views Γ1 = (V1, γ1) and
Γ2 = (V2, γ2) of the database schema D, there is at most one morphism f : Γ1 → Γ2, and f ′

is necessarily surjective.

Proof: These are actually special cases of more general facts from category theory ([33,
5.11, 6.8]), but we give a direct proof. Let f, g : Γ1 → Γ2 each be view morphisms, and let
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x ∈ LDB(V1). Since γ1
′ is surjective, there is a y ∈ LDB(D) with γ1

′(y) = x. But then
f ′(x) = g′(x) = γ2

′(y), whence f = g. Finally, since γ2
′ is surjective, it is immediate that f ′

must be as well. 2

1.1.10 Special schemata and views The morphism guaranteed by the above lemma is
of sufficient importance to warrant a special notation. When it exists, we denote the unique f
which makes the above diagram commute by λ(Γ1,Γ2). This furthermore allows us to regard
Γ2 as a view of V1. We call this new view the relativization of Γ2 to Γ1, and denote it by
Λ(Γ1,Γ2) = (V2, λ(Γ1,Γ2)). In [30], more specific results regarding the structure of relative
views is provided.

There are two special views of a schema D which we will need often. The identity view,
denoted Γ>(D) = (D, 1D), preserves identically the base schema D; the view mapping 1D

′ is
the identity on LDB(D). The zero view, denoted Γ⊥(D) = (0, 0D), has as its underlying schema
the zero schema 0. The view mapping 0′

D sends all elements of LDB(D) to the state ⊥.

1.2 The Decomposition Morphism and Types of Decompositions

1.2.1 Notational convention Unless otherwise noted, throughout Sections 1.2 and 1.3,
we let D denote a ⊥-poset database schema, and X = {Γi | i ∈ I} an arbitrary finite set of
views of D, with Γi = (Vi, γi).

Our goal is to identify the properties which X must have in order that it be a decomposition
of D. To begin, we must formally identify the meaning of decomposition.

1.2.2 The decomposition morphism of a set of views The decomposition morphism
∆〈X〉 : D →

∏
X has as underlying function ∆〈X〉′ : LDB(D) →

∏
i∈I LDB(Vi), given on

elements by s 7→ (γi
′(s))i∈I . (It is trivial to verify that ∆〈X〉 is indeed a morphism.) When

X is the empty set, we take ∆〈X〉 to be the underlying mapping 0D : D→ 0 of the zero view
Γ⊥(D).

In any reasonable decomposition of a schema D, we demand that the state of D be recov-
erable from the collective states of the components of the decomposition. There are, however,
two important variants on this theme. In a subdirect decomposition, the individual components
of the decomposition may be interrelated. In a direct decomposition, on the other hand, the
individual components of the decomposition must be independent of one another. In the ter-
minology of [6], subdirect decomposition mandates the representation principle, while direct
decomposition mandates both the representation principle and the separation principle.

1.2.3 The types of decomposition

(a) X is a subdirect decomposition of D if ∆〈X〉 is a ⊥-poset section.
(b) X is a direct decomposition of D if ∆〈X〉 is a ⊥-poset isomorphism.
(c) X is independent if ∆〈X〉 is a ⊥-poset retraction.
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In the case that X is a decomposition (either kind), the left inverse of ∆〈X〉 is called the
reconstruction map, because it provides the formula for reconstructing the state of the original
schema from those of the component views in the decomposition.

Although independence is not a type of decomposition, we have included the definition
because of its importance in the formulation of decomposition. Intuitively, independence of a
set of views means that there are no constraints relating their states; any of the views may take
on any of its states regardless of the states of the others. Note that a direct decomposition is
precisely a subdirect decomposition whose elements are independent.

We have borrowed the adjectives direct and subdirect from the field of universal algebra.
The interested reader is invited to compare our definitions with those of direct product and
subdirect product as given in [24].

To crystallize the significance of these forms of decomposition, we illustrate them in terms
of a familiar example.

1.2.4 Example Let E be the relational schema R[ABCD], constrained by the join depen-
dency 1 [AB,BC,CD]. For each member Z of {A,B,C,AB,BC,CD,ABC,BCD,
ABCD}, let ΓZ denote the view (R[Z], πZ). These views compute the obvious projections
on E. For example, ΓAB = (R[AB], πAB) computes the AB projection.

The family S1 = {ΓA,ΓB,ΓC ,ΓD} is not either kind of decomposition, since we cannot
recover R[ABCD] from its unary projections. On the other hand, by the classical theory of join
dependencies [1], the decomposition of E into S2 = {ΓABC ,ΓBCD} satisfies the representation
principle, since the join dependency 1 [ABC,BCD] is entailed by 1 [AB,BC,CD], and so
we can reconstruct R[ABCD] from these projections by computing their join. Hence S2 is a
subdirect decomposition of E. However, it is not a direct decomposition, because the views
are interrelated; they have the “common component” ΓBC embedded within them. In any
decomposition, the view states must agree on these common components.

Consider now the family S3 = {ΓAB,ΓBC ,ΓCD}. This is also a subdirect decomposition,
since the join dependency 1 [AB,BC,CD] allows us to reconstruct R[ABCD] from these three
projections. However, this is not a direct decomposition either. Indeed, ΓAB and ΓBC have
the common component ΓB, while ΓBC and ΓCD have the common component ΓC . It has
been well known for many years in relational decomposition theory that the judicious use of
null values can make S3 independent. However, it was not until comparatively recently that
this was adequately formalized in the literature, even for the special case of join and functional
dependencies as the only constraints [12]. We raise this point here because our general approach
requires that such independence be completely formalized. It cannot differentiate between the
type of inter-view dependence in S2 and that in S3, because that distinction lies in subtleties
of the relational model, and not in the more global mathematical properties of decomposition.
In Sections 2.2 and 2.3, we show how to formalize this notion of independence in the relational
model without any recourse to specific constraints.

It is interesting to note that no subset of {Γz | z ∈ Z} containing more than one element
is independent, since if one of the projections is empty, then they must all be empty. To
achieve independence in the relational model, we must either allow nulls, or else take views of a
multirelational schema. (For example, if we were to add a second relation S[DEF ] to E, with
no interrelational constraints, then clearly any projection on R[ABCD] is independent of any
projection of S[DEF ]. Also, the views ΓR and ΓS of 1.1.1 are clearly independent.)
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1.2.5 Complements A complement of a view Γ1 is nothing more than a second view Γ2

with the property that {Γ1,Γ2} is a decomposition. More precisely, let Γ1 and Γ2 be views of
the schema D. Γ2 is a subdirect complement of Γ1 if {Γ1,Γ2} forms a subdirect decomposition
of D. Similarly, Γ2 is a direct complement of Γ1 if {Γ1,Γ2} forms a direct decomposition of D.
We also say in these cases that {Γ1,Γ2} forms a subdirect or direct complementary pair, as the
case may be.

In [4, 5], the term complement is used to define what we call a subdirect complement.
Bancilhon and Spyratos do not use a special term for what we call a direct complement. We
have not followed their terminology because, in the algebraic framework in which we will work,
the usual meaning of “complement” will correspond to what we have defined to be a direct
complement, and not subdirect complement.

1.3 Algebraic Characterization of Direct Decomposition

In this section, we develop the general properties of direct decompositions, and prove that di-
rect complements are unique. The key observation is that, within the ⊥-poset context, direct
complements have a very special structure. The overall idea is as follows. Let {Γ1,Γ2} be a
direct complementary pair of D, with Γ1 = (V1, γ1) and Γ2 = (V2, γ2). Since the decom-
position mapping ∆〈{Γ1,Γ2}〉 is an isomorphism, we may form its inverse (∆〈{Γ1,Γ2}〉)

−1 :
V1 ×V2 → D. Now if we restrict (∆〈{Γ1,Γ2}〉)

−1 to V1 × 0, we get a natural embedding of
V1 in D. This embedding is the least left inverse of γ1 in the natural ordering of morphisms
(f1 ≤ f2 if and only if f1(x) ≤ f2(x) for all x in the domain). Thus, V1 may be regarded as a
natural subschema of D. Similarly, V2 may be regarded as such a subschema.

Now let Γ3 = (V3, γ3) be another direct complement of Γ1. Since V2 is a subschema of D,
we may use {Γ1,Γ3} to decompose V2 as well. But since {Γ1,Γ2} is also a direct complementary
pair, we have that Γ1 and Γ2 are independent, and so the decomposition of V2 using {Γ1,Γ3}
must yield the decomposition 0 × V3. In other words, the natural embedding of LDB(V3)
in LDB(D) must be a subset of the natural embedding of LDB(V2) in LDB(D). Similarly,
the natural embedding of LDB(V2) in LDB(D) must be a subset of the natural embedding of
LDB(V3) in LDB(D), whence they must be equal. Translating back to the original (non-ideal)
structure of the views Γ2 and Γ3, we have that these views must be isomorphic.

Of course, we have omitted many details in the preceding sketch, and the goal of this section
is to fill them in. We start by characterizing the algebraic structure which the states of a directly
complemented view will have. They form what we term a complete ideal, which is a property
closely related to that of an ideal in a lattice [25]. This permits us to restrict our attention to
decompositions into views with this very special and powerful embedding property, which we
call ideal views.

1.3.1 Ideals and ideal views A subset J ⊆ LDB(D) is called a complete ideal of D if the
following two conditions are satisfied.

(ci-i) x ∈ J and y ≤ x implies y ∈ J .

(ci-ii) x ∈ LDB(D) implies sup({y ∈ J | y ≤ x}) exists in LDB(D) and is itself in J .

Note that sup(∅) = ⊥, so that ⊥ is a member of every complete ideal. The set of all complete
ideals of D is denoted Ideal(D). The complete ideal J is called principal if there is an a ∈ J
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such that J = {x ∈ LDB(D) | x ≤ a}. We denote such a principal ideal by 〈a〉.
An ideal subschema of D is a schema J in which LDB(J) is a complete ideal of D. The

morphism ε〈D,J〉 : D → J is given on elements by x 7→ sup({y ∈ LDB(J) | y ≤ x}). Note in
particular that ε〈D,J〉′ is quasi-contracting (ε〈D,J〉′(x) ≤ x for any x) and that it must be the
identity when restricted to LDB(J).

Let Γ = (V, γ) be a view of D. Γ is called an ideal view if V is an ideal subschema of D

and γ = ε〈D,V〉. The set of all ideal views of D is denoted IView(D). Note that we have a
natural bijective correspondence between IView(D) and Ideal(D) via (V, ε〈D,V〉) 7→ LDB(V),
so that we may reduce the study of ideal views to that of ideals. Also, it is important to note
that both Γ>(D) and Γ⊥(D) are ideal views.

In the theory of lattices, ideals are closed under the join operation. In general, joins need
not exist in ⊥-posets, but when they do, we have that they remain in any ideal from which the
elements joined are taken.

1.3.2 Lemma – closure of ideals under least upper bounds Let J be a complete ideal
of D, and let A ⊆ J . If sup(A) exists in LDB(D), then this supremum is in fact an element of
J .

Proof: Define b = sup({y ∈ J | y ≤ sup(A)}). Now b ∈ J by property (ci-ii), and yet
b ≤ sup(A). But c ≤ b for each c ∈ A, so sup(A) ≤ b. Thus b = sup(A). 2

1.3.3 Fixpoints and ideals Let Γ = (V, γ) be an ideal view of D. We define Fixpoint(Γ)
= {x ∈ LDB(D) | γ′(x) = x}. This set is called the fixpoints of Γ and also, in harmony with
common mathematical usage, the set of fixpoints of γ ′. The following lemma illustrates the
critical importance of fixpoints in the context of ideal views.

1.3.4 Lemma – characterization of ideals in terms of fixpoints Let Γ = (V, γ) be
an ideal view of D. Then Fixpoint(Γ) = LDB(V).

Proof: If x ∈ LDB(V), then x = sup({y ∈ LDB(V) | y ≤ x}), and so γ ′(x) = x. On
the other hand, if x ∈ Fixpoint(Γ), then γ ′(x) = x and since γ′(x) ∈ LDB(V), we must have
x ∈ LDB(V). 2

1.3.5 Lemma – characterization of ideal view morphisms Let Γ1 = (V1, γ1) and
Γ2 = (V2, γ2) be ideal views of D. Then:

(a) There is a view morphism Γ1 → Γ2 iff LDB(V2) ⊆ LDB(V1).

(b) If it exists as a view at all (see 1.1.10), then Λ(Γ1,Γ2) is in fact an ideal view of Γ1,
with λ(Γ1,Γ2) = ε〈V1,V2〉.

(c) If Γ1 and Γ2 are isomorphic, then Γ1 = Γ2. In words, isomorphic ideal views are in fact
identical.

Proof: (a) First assume that the morphism λ(Γ1,Γ2) : Γ1 → Γ2 exists, and let x ∈
Fixpoint(Γ2), so that x = γ2

′(x) = (λ(Γ1,Γ2)
′ ◦ γ1

′)(x). Now γ1
′(x) = sup({y ∈ LDB(V1) | y ≤

x} = sup({y ∈ LDB(V1) | y ≤ γ2
′(x)}, and so γ1

′(x) ∈ Fixpoint(Γ2) by (ci-i), whence
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γ1
′(x) = (γ2

′ ◦ γ1
′)(x) = (λ(Γ1,Γ2)

′ ◦ γ1
′ ◦ γ1

′)(x) = (λ(Γ1,Γ2)
′ ◦ γ1

′)(x) = γ2
′(x) = x, so

that x ∈ Fixpoint(Γ1). Thus LDB(V2) ⊆ LDB(V1).
Conversely, suppose that LDB(V2) ⊆ LDB(V1), and let g : LDB(V1) → LDB(V2) be the

mapping defined by g(x) = γ2
′(x). Then g is a ⊥-poset morphism (since it is a restriction of

γ1
′ and g ◦γ1

′ = γ2
′). Hence, in view of the uniqueness result of 1.1.9, g must be the underlying

function of λ(Γ1,Γ2).
(b) Assume again that the morphism λ(Γ1,Γ2) : Γ1 → Γ2 exists, and furthermore let x ∈
LDB(V1) ∩ Fixpoint(Γ2). Then, by 1.3.4, x ∈ Fixpoint(Γ1) as well. Thus λ(Γ1,Γ2)

′(x) =
(λ(Γ1,Γ2)

′ ◦ γ1
′)(x) = γ2

′(x), whence LDB(V2) is an ideal of LDB(V1), and so Λ(Γ1,Γ2) is an
ideal view of V1, with λ(Γ1,Γ2) = ε〈V1,V2〉.
(c) This follows immediately from (b), noting in particular that λ(Γ1,Γ2) = ε〈V,V2〉 must be
the identity. 2

1.3.6 Lemma – characterization of ideal intersection Let J1 and J2 be complete ideals
of D, and let x ∈ LDB(D). Put x1 = sup({y ∈ J1 | y ≤ x}) and x12 = sup({y ∈ J2 | y ≤ x1}).
Then

(a) x12 ∈ J1 ∩ J2.

(b) {y ∈ J1 ∩ J2 | y ≤ x} = {y ∈ J1 ∩ J2 | y ≤ x12}.

(c) J1 ∩ J2 is a complete ideal of D.

Proof: (a) We have that x1 ∈ J1 and x12 ∈ J2 by property (ci-ii). But x12 ∈ J1 as well by
property (ci-i), since x12 ≤ x1.
(b) follows directly from (a).
(c) It is immediate that J1 ∩ J2 satisfies (ci-i). To establish (ci-ii), it suffices to note that x12 is
already in J1∩J2, so that by (b), sup({y ∈ J1∩J2 | y ≤ x}) = sup({y ∈ J1∩J2 | y ≤ x12}) = x12.
2

1.3.7 Schema and view intersection The previous lemma implies that we may “inter-
sect” ideal subschemata and ideal views as well. If V1 and V2 are ideal subschemata of D,
we define V1 ∩ V2 to be the subschema with LDB(V1 ∩V2) = LDB(V1) ∩ LDB(V2), and
the ordering inherited from D. In view of the previous lemma, V1 ∩ V2 is an ideal sub-
schema of D. Now if Γ1 = (V1, γ1) and Γ2 = (V2, γ2) are ideal views of D, we define
Γ1 ∩ Γ2 = (V1 ∩V2, ε〈D,V1 ∩V2〉).

1.3.8 Relative schemata and views If J is an ideal subschema of D and Γ = (V, γ) is
an ideal view of D, then by 1.3.6(c) and 1.3.7, we know that J ∩V is also a subschema of D.
But since LDB(J ∩V) is in fact a subset of LDB(J), we may regard J ∩V to be a subschema
of J, and make the following definitions unambiguously.

(a) If Γ = (V, γ) is an ideal view of D, Γ|J denotes the ideal view (V∩J, ε〈J,V ∩ J〉) of J.

(b) If Y is a set of ideal views of D, Y|J denotes {Γ|J | Γ ∈ Y }.
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1.3.9 Lemma Let X be a direct decomposition of D into ideal views. Then, for any x ∈
LDB(D), x = sup({γi

′(x) | i ∈ I}).

Proof: Since γi
′(x) ≤ x for any i (recall that γi

′ = ε〈D,Vi〉
′ and so must be quasi-

contracting), it is immediate that x is an upper bound for {γi
′(x) | i ∈ I}. On the other

hand, suppose also that y ∈ LDB(D) is such that γi
′(x) ≤ y for all i ∈ I. Then γi

′(x) =
(γi

′ ◦ γi
′)(x) ≤ γi

′(y) for all i ∈ I, whence x ≤ y, since ∆〈X〉 is an order isomorphism. Hence
x is the least upper bound; i.e., x = sup({γi

′(x) | i ∈ I}). 2

The following lemma is the critical result. It says that we may always, up to isomorphism,
characterize a direct decomposition of a ⊥-poset schema as a decomposition into ideal views.

1.3.10 Lemma Suppose that X is a direct decomposition of D, so that the decomposition
map ∆〈X〉 : D →

∏
i∈I Vi is an isomorphism. Then there is a unique family {Ji | i ∈ I} of

ideal subschemata of D and a family {hi : Vi → Ji | i ∈ I} of isomorphisms, with the inverse
of

g = D
∆〈X〉
−→

∏

i∈I

Vi

∏
i∈I

hi

−→
∏

i∈I

Ji

being (xi)i∈I 7→ sup({xi | i ∈ I}).

Proof: For each k ∈ I, put LDB(Jk) = (∆〈X〉−1)
′
(
∏
i∈I αi), where

αi =

{
LDB(Vi) if i = k;
{⊥} otherwise.

Now let hk : Vk → Jk be defined by x 7→ (∆〈X〉−1)
′
(δik(x))i∈I , where

δik(x) =

{
x if i = k;
⊥ otherwise.

It is easily verified that Jk is an ideal subschema and that hk is an isomorphism for each k ∈ I.

Now for any x = (xi)i∈I ∈
∏
i∈I Ji, let λk(x) be the I-tuple whose kth entry is xk, and whose

other entries are all ⊥. Then any such x is equal to sup({λi(x) | i ∈ I}), by the previous
lemma. However, g−1, being an isomorphism, preserves all suprema that may exist. Hence
(g−1)

′
(x) = (g−1)

′
(sup({λi(x) | i ∈ I})) = sup({(g−1)

′
(λi(x)) | i ∈ I}) = sup({xi | i ∈ I}), as

was to be shown. Since each Ji is isomorphic to Vi, the uniqueness follows from 1.3.5(c). 2

1.3.11 Theorem – representation of directly complemented views Every directly
complemented view is naturally isomorphic to a unique ideal view.

Proof: In the above lemma, we represent the arbitrary complemented view Γi = (Vi, γi)
with the ideal view (Ji, ε〈D,Ji〉), via the isomorphism hi. 2

In the examples of 1.1.1 and 1.1.2, we illustrated incompatible decompositions of the example
schemata F and G. We now proceed to establish such incompatibility cannot occur with ideal
views. The key is that any direct decomposition of the main schema D also qualifies as a direct
decomposition of any ideal subschema of D. To refine two decompositions into ideal views, we
simply decompose all of the views of one using the decomposition specified by the other.
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1.3.12 Proposition Let J be an ideal subschema of D, and suppose that X is a direct
decomposition of D into ideal views. Then X|J is a direct decomposition of the schema J.

Proof: It suffices to establish that for any x ∈ LDB(D), x ∈ LDB(J) if and only if (∀i ∈
I)(γi

′(x) ∈ LDB(J) ∩ LDB(Vi)). The “⇒” implication is immediate. To show that “⇐”
implication, suppose that x ∈ LDB(D) with (∀i ∈ I)(γi

′(x) ∈ LDB(J) ∩ LDB(Vi)). Now by
(ci-ii), sup({y ∈ LDB(J) | y ≤ x} ∈ LDB(J). But {γi

′(x) | i ∈ I} ⊆ {y ∈ LDB(J) | y ≤ x}
(since γi = ε〈D,Vi〉), and so x = sup({γi

′(x) | i ∈ I}) (see 1.3.9) is in LDB(J) as well. 2

1.3.13 Refinement theorem for decompositions Let X and Y be sets of ideal views
which are direct decompositions of D. Then {Γx ∩ Γy | Γx ∈ X and Γy ∈ Y } is also a direct
decomposition for D into ideal views.

Proof: The proof follows directly from the above proposition. We first apply the decomposi-
tion X, and then apply the decomposition Y to each subschema of the X decomposition. The
resulting views are exactly of the given form. 2

1.3.14 Corollary Let X and Y be direct decompositions of D. Then there is a least de-
composition Z which is finer than both X and Y , in the precise sense that every view in Z is
the meet of a view from X and a view from Y . 2

1.3.15 Corollary – uniqueness of direct complements Let {Γ1,Γ2} and {Γ1,Γ3} be
direct complementary pairs of views of D. Then Γ2 and Γ3 are isomorphic. In other words,
direct complements are unique up to isomorphism.

Proof: By 1.3.11, we know that every directly complemented view of D is isomorphic to
a unique ideal view, so we may assume that the Γi’s are all ideal. Now we set X = {Γ1,Γ2}
and Y = {Γ1,Γ3}, and apply 1.3.13. We get that {Γ1 ∩ Γ1,Γ1 ∩ Γ3,Γ2 ∩ Γ1,Γ2 ∩ Γ3} is a
decomposition. This reduces to {Γ1,Γ2 ∩ Γ3}, since Γ1 ∩ Γ1 = Γ1 and Γ1 ∩ Γ3 = Γ2 ∩ Γ1 =
Γ⊥(D). Now let x ∈ LDB(V3); then (ε〈D,V1〉

′(x), ε〈D,V2〉
′(x)) = (⊥, x). Thus, we must

also have (ε〈D,V1〉
′(x), ε〈D,V2 ∩V3〉

′(x)) = (⊥, x), whence LDB(V2 ∩V3) = LDB(V3); i.e.,
Γ2 ∩ Γ3 = Γ3. Thus, the complement is unique up to isomorphism. 2

1.3.16 Remark – guaranteed nonuniqueness in the set-based case The above corol-
lary is in striking contrast to Theorem 4.4 of [5], which establishes that minimal complements
are never unique within a purely set-based framework, except in the trivial cases of the identity
view or the zero view. However, the proof of Bancilhon and Spyratos is for subdirect com-
plements, and requires slight modification to apply to direct complements as well. We sketch
the general idea for the direct complement case. Let Γ1 = (V1, γ1) and Γ2 = (V2, γ2) be
complementary views, with neither the identity view nor the zero view. Let a, b ∈ LDB(D)
with γ1

′(a) = γ1
′(b). We are then guaranteed that γ2

′(a) 6= γ2
′(b), else Γ2 would not be a

complement of Γ1. Define γ3
′ : LDB(D)→ LDB(V2) by the following rule.

γ3
′(x) =





γ2
′(b) if x = a;

γ2
′(a) if x = b;

γ2
′(x) otherwise.
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Now if we drop the requirement that view morphisms satisfy conditions (⊥p-i) and (⊥p-ii) of
1.1.3, then it is easy to verify that Γ3 = (V3, γ3), with LDB(V2) = LDB(V3) will be a “view”,
which is also a direct complement of Γ1. Thus, unless it is the zero view or the identity view,
if Γ1 has a direct complement, then it always has another, disregarding ordering constraints.
The power of 1.3.15 is in its assertion that such a Γ3 can never be a ⊥-poset view.

1.3.17 Notation If Γ = (V, γ) is a complemented ideal view of D, we write Γ = (V, γ) to
denote its unique complement in IView(D).

It is often the case that we wish to extract a decomposition of D from amongst a set of views.
For example, we may speak of a decomposition into projections. It is thus important to have
an understanding of the algebraic structure of decompositions within a larger context of a set
of views. In the following, we provide some basic results in this direction.

1.3.18 Fully commuting views Given a view Γ = (V, γ), the congruence of Γ is the
set Congr(Γ) = {(x, y) ∈ LDB(D) × LDB(D) | γ ′(x) = γ′(y)}. It is trivial to verify that
Congr(Γ) is an equivalence relation on LDB(D). In the case that Γ is an ideal view, note
that the equivalence classes of Congr(Γ) are in bijective correspondence with LDB(V) via the
association (x ∈ LDB(V)) 7→ {y ∈ LDB(D) | (x, y) ∈ Congr(Γ)}.

Let Γ1 = (V1, γ1) and Γ2 = (V2, γ2) be any views whatever of D (not necessary ideal).
We say that Γ1 and Γ2 are fully commuting if Congr(Γ1) ◦ Congr(Γ2) = Congr(Γ2) ◦ Congr(Γ1),
with “◦” denoting ordinary relational composition. The following result is critical.

1.3.19 Proposition Let Γ1 = (V1, γ1) and Γ2 = (V2, γ2) be ideal views of D, and suppose
further that S = {Γ1,Γ2} be a subdirect decomposition of D into ideal views. Then S is a direct
decomposition if and only if the following two conditions are met.

(a) Γ1 ∩ Γ2 = Γ⊥(D).

(b) Γ1 and Γ2 are fully commuting.

Proof: First of all, let us establish that (a) and (b) together are equivalent to asserting that
Congr(Γ1) ◦ Congr(Γ2) = Congr(Γ2) ◦ Congr(Γ1) = LDB(D) × LDB(D). Assume first that (a)
and (b) hold, and let (x, y) ∈ LDB(D)× LDB(D). Let (x1, y1) = (ε〈D,V1〉

′(x), ε〈D,V1〉
′(y)).

Then ε〈D,V2〉
′(x1) = ε〈D,V2〉

′(y1) = ⊥, since since Γ1∩Γ2 = Γ⊥(D). Hence (x1,⊥), (y1,⊥) ∈
Congr(Γ2). Since (x, x1), (y, y1) ∈ Congr(Γ1) by construction, it follows that (x, y) ∈ Congr(Γ1)◦
Congr(Γ2)◦Congr(Γ2)◦Congr(Γ1) = Congr(Γ1)◦Congr(Γ2); i.e., these two congruences commute
and their composition is LDB(D)× LDB(D).

Conversely, assume that Congr(Γ1) ◦ Congr(Γ2) = Congr(Γ2) ◦ Congr(Γ1) = LDB(D) ×
LDB(D). Let x ∈ LDB(V1)∩ LDB(V2). Then, in particular, (x,⊥) ∈ Congr(Γ1) ◦Congr(Γ2), so
there is a y ∈ LDB(D) such that (x, y) ∈ Congr(Γ1) and (y,⊥) ∈ Congr(Γ2). Now x ≤ y, since
y = ε〈D,V1〉

′(x), and so ε〈D,V2〉
′(x) ≤ ε〈D,V2〉

′(y) = ⊥, i.e., (x,⊥) ∈ Congr(Γ2). But since
x ∈ LDB(V2), we must have x = ⊥. Thus Γ1 ∩ Γ2 = Γ⊥(D).

Note further that S is a subdirect decomposition if and only if Congr(Γ1) ∩ Congr(Γ2) =
{(x, x) | x ∈ LDB(D)}. Armed with these facts, the key is to use the well-known result on
direct decompositions of algebras which states that ∆〈S〉′ is a bijection if and only if Γ1 and Γ2
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are fully commuting, Congr(Γ1)◦Congr(Γ2) = LDB(D)×LDB(D), and Congr(Γ1)∩Congr(Γ2) =
{(x, x) | x ∈ LDB(D)} [8, Cor. 2, Chap. 4]. But since we are assuming that S is a subdirect
decomposition, we know that ∆〈S〉 is a section. Hence surjectivity is sufficient to guarantee
that it is an isomorphism, by 1.1.4(c). 2

1.3.20 The Bounded Weak Partial Lattice of Ideal Views There is a natural partial
order structure on IView(D) given by Γ1 ≤ Γ2 if and only if Γ1 ∩ Γ2 = Γ1. In terms of
ideals, if Γ1 = (V1, γ1) and Γ2 = (V2, γ2), this is equivalent to LDB(V1) ⊆ LDB(V2). (See
1.3.5(a).) This order has the greatest element Γ>(D) and the least element Γ⊥(D). Our goal is
to create a lattice-like structure based upon this ordering which will enable us to represent the
decompositions of D as suitable substructures. The following definitions are the appropriate
ones.

We define two partial operations on IView(D). The meet operation ∧ : IView(D)×IView(D)→
IView(D) is given by

Γ1 ∧ Γ2 =

{
Γ1 ∩ Γ2 if Γ1 and Γ2 are fully commuting
undefined otherwise

The join operation ∨ : IView(D)× IView(D)→ IView(D) is given by

Γ1 ∨ Γ2 =

{
sup({Γ1,Γ2}) if this supremum exists in the underlying partial order
undefined otherwise

The structure (IView(D),∨,∧,Γ>(D),Γ⊥(D)) constitutes what is known as a bounded weak
partial lattice, and is denoted IView(D). For a complete discussion of the definition and
terminology, consult [25, Chap. I, Sec. 5]. For our purposes, it is sufficient to know that if we
extract a substructure in which the operations of join and meet are total, then we get a lattice.

A Boolean subalgebra of IView(D) is a Boolean algebra2 B = (B,∨B,∧B, (−),>B,⊥B)
with B ⊆ IView(D), >B = Γ>(D), ⊥D = Γ⊥(D), and ∨B and ∧B the respective restrictions of
∨ and ∧ to B×B. The complementation operation (−) is necessarily induced by the underlying
lattice structure [25, Ch. I, Sec. 6, Lem. 1].

1.3.21 Counterexample It is not the case that the congruences of any two ideal are
fully commuting, so the meet operation of IView(D) is indeed partial. For a specific coun-
terexample, let S = {a, b, c} and let P be the schema with LDB(P) the set of all subsets
of S except {a, b}, ordered by set inclusion. Think of P as governed by the single “depen-
dency” (∀M ∈ LDB(P))(((a ∈ M)∧(b ∈ M)) ⇒ (c ∈ M)). Define Γ1 = (V1, γ1) to be
the ideal view with LDB(V1) = {∅, {a}}, and define Γ2 = (V2, γ2) to be the ideal view
with LDB(V2) = {∅, {b}, {c}, {b, c}}. The congruences of Γ1 and Γ2 do not commute, as
({b}, {a, c}) ∈ (Congr(Γ1) ◦ Congr(Γ2)) \ (Congr(Γ2) ◦ Congr(Γ1)). Fortunately, we have the
following.

2We no not explicitly disallow the trivial case of a one-element Boolean algebra, but this can only occur if
D is the zero schema.
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1.3.22 Lemma Let X be a direct decomposition of D. Then any two elements of X are
fully commuting.

Proof: Let Γj ∈ X. It is immediate that Congr(Γj) =
⋂
{Congr(Γi) | i ∈ I \ {j}}. By 1.3.16,

we have that Congr(Γj) and Congr(Γj) are fully commuting with Congr(Γj) ◦ Congr(Γj) =
LDB(D) × LDB(D). Since for any i ∈ I \ {j} we have Congr(Γj) ⊆ Congr(Γi), it follows that
Congr(Γj) ◦ Congr(Γi) = Congr(Γi) ◦ Congr(Γj) = LDB(D)× LDB(D) as well. 2

1.3.23 Main decomposition theorem The directly complemented ideal views of D form
a Boolean subalgebra of the bounded weak partial lattice IView(D). In this Boolean algebra, the
(Boolean) complement is the direct complement, and the decompositions of D are in bijective
correspondence with the finite Boolean subalgebras of IView(D).

Proof: Let Γ1 = (V1, γ1) and Γ2 = (V2, γ2) each be directly complemented ideal views.
Define Γ12 to be Γ1 ∩ Γ2, Γ12 to be Γ1 ∩ Γ2, Γ12 to be Γ1 ∩ Γ2, and Γ12 to be Γ1 ∩ Γ2. Then
{Γ12,Γ12,Γ12,Γ12} forms a direct decomposition of D by 1.3.13, and any pair from this set is
fully commuting, by the previous lemma.

First let us address the existence of the meet of two directly complemented ideal views. It is
immediate that Congr(Γ1) = Congr(Γ12)∩Congr(Γ12), and Congr(Γ2) = Congr(Γ12)∩Congr(Γ12),
and so Congr(Γ1) ◦ Congr(Γ2) = Congr(Γ12). Similarly, Congr(Γ2) ◦ Congr(Γ1) = Congr(Γ12).
Thus, Γ1 and Γ2 are fully commuting, and hence Γ1 ∧ Γ2 exists in IView(D) as Γ1 ∩ Γ2.

Next, we turn to the issue of existence of the join Γ1∨Γ2 of two directly complemented ideal
views Γ1 and Γ2. Now if Γ1 ∨ Γ2 is to exist as a complemented element of IView(D), then de

Morgan’s classic identity [25, Ch. I, Sec. 6, Lemma 3] tells us that it must be Γ1 ∧ Γ2 = Γ12.
Let us now directly construct this view, making use of the fact that we already know that
{Γ12,Γ12,Γ12,Γ12} is a direct decomposition of D. Extending the notation of the previous
paragraph, we write Γ12 = (V12, γ12), Γ12 = (V12, γ12), Γ12 = (V12, γ12), and Γ12 =
(V12, γ12). Define Γ3 = (V3, γ3) by LDB(V3) = LDB(V12) × LDB(V12) × LDB(V12) and
γ3

′ : LDB(D)→ LDB(V3) by x 7→ (γ12
′(x), γ12

′(x), γ12
′(x)). It is immediate that Γ3 is a view; in-

deed γ3 = g◦∆〈{Γ12,Γ12,Γ12,Γ12}〉, with g′ : LDB(V12)×LDB(V12)×LDB(V12)×LDB(V12)→
LDB(V12)×LDB(V12)×LDB(V12) given on elements by (x12, x12, x12, x12) 7→ (x12, x12, x12). In
words, g throws away the Γ12 component, and preserves the other three. Furthermore, {Γ12,Γ3}
is a direct complementary pair, since ∆〈{Γ1,Γ3}〉 = ∆〈{Γ12,Γ12,Γ12,Γ12}〉. But now, by 1.3.11,
Γ3 is isomorphic to an ideal view, which must be Γ12.

To complete the proof that Γ12 is indeed Γ1 ∨Γ2, we must show that it is the smallest ideal
view which is larger than both Γ1 and Γ2, using the definition of join in 1.3.20. Now Γ12 =

Γ1 ∩ Γ2 is a directly complemented ideal view, as just established. We claim that it is in fact
Γ1∨Γ2. To establish this, let Γ5 = (V5, γ5) be any ideal view with the properties Γ1 ≤ Γ5, Γ2 ≤
Γ5, and Γ5 ≤ Γ12. We use the notation Γ12 = (LDB(V12), γ12), and let x ∈ LDB(V12). Now set
(x12, x12, x12, x12) = ∆〈{Γ12,Γ12,Γ12,Γ12}〉

′(x) ∈ LDB(V12)×LDB(V12)×LDB(V12)×LDB(V12)
to be the decomposition of x by the four-element direct decomposition {Γ12,Γ12,Γ12,Γ12} of
D. It is immediate that x12 = ⊥, since x ∈ LDB(V12). But since Γ12,Γ12 ≤ Γ1 ≤ Γ5 and
Γ12 ≤ Γ2 ≤ Γ5, we have that {x12, x12, x12} ⊆ LDB(V5). But x = sup({x12, x12, x12, x12) =
sup({x12, x12, x12,⊥}) = sup({x12, x12, x12}) ∈ LDB(V5)} by 1.3.9 and 1.3.2. Thus Γ12 ≤ Γ5,
and so these two views must be equal. Hence, Γ12 is the least upper bound of Γ1 and Γ2, and
so is Γ1 ∨ Γ2, by definition.
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Finally, we must address the issue of complements. We have already established that com-
plements of meets of directly complemented ideal views exist, and the existence of complements
for joins then follows from de Morgan’s identity. That the Boolean complement is the direct
complement is immediate from the definitions.

Conversely, let Γ1 and Γ2 be complementary elements in IView(D) (in the sense that
Γ1 ∧ Γ2 = Γ⊥(D) and Γ1 ∨ Γ2 = Γ>(D)). Then it is immediate from the definition of ∧
in IView(D) and from 1.3.17 that {Γ1,Γ2} forms a direct complementary pair. Hence any
Boolean subalgebra of IView(D) must contain only directly complemented views, whence any
Boolean subalgebra of IView(D) must be itself a subalgebra of the Boolean algebra of all
complemented views.

We have now established that the directly complemented ideal views of D form a Boolean
subalgebra of IView(D), and that the algebra complement and direct complement coincide. To
complete the proof, we must show that the decompositions of D are in bijective correspondence
with the finite Boolean subalgebras of IView(D). If X is a decomposition, then the elements
of X are independent, by 1.3.17 and 1.3.20. Hence they surely generate a finite Boolean
algebra in which they are the atoms. Conversely, let B is a finite Boolean subalgebra of
the algebra of all complemented views, with atoms3 X. Then, for any two element partition
{X1, X2} of X, {

∨
X1,

∨
X2} will be a complementary pair in IView(D). However, since view

complement and algebra complement are the same, it follows that this pair is also a direct
decomposition of D. Finally, repeated application of 1.3.11 then assures us that X will also
be a decomposition. Thus, the decompositions of D are in bijective correspondence with the
finite Boolean subalgebras. 2

1.3.24 Notation We let DCIView(D) denote the set of all directly complemented ideal
views of D, and we let DCIView(D) denote the Boolean algebra whose underlying set is
DCIView(D), with operations are those inherited from IView(D).

We next show that any Boolean algebra (up to isomorphism) can arise as DCIView(D) with
appropriate choice of D, so that it is impossible to assert anything more about DCIView(D)
without making some restrictions on D. The easiest way to see this is to take an example in
which LDB(D) has the structure of a Boolean algebra. It is then the case that the decomposi-
tions of D are in bijective correspondence with the Boolean subalgebras of LDB(D).

1.3.25 Proposition Let D be a poset which is also a Boolean algebra. Then the ideal
views of D are all defined by principal ideals, and they are in bijective correspondence with the
elements of LDB(D), via the association (x ∈ LDB(D)) 7→ 〈x〉. This bijection furthermore
defines a Boolean algebra isomorphism.

Proof: Let x ∈ LDB(D). Let >D denote the greatest element of D. If J is an ideal of D,
then by (ci-ii) sup({y ∈ J | y ≤ >D}) ∈ J , and this must be the greatest element in J . Thus,
by (ci-i), J = {x ∈ LDB(D) | x ≤ sup{y ∈ J | y ≤ >D}}; that is, J is the principal ideal
〈sup({y ∈ J | y ≤ >D})〉. Upon translating from ideals to ideal views, we have the required
bijection. 2

3Recall that x is an atom in a Boolean algebra if for any y with y ≤ x, either y = x or else y is the least
element.
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Decompositions of database schemata are naturally regarded to be into a finite number of
views. To achieve a finite ultimate decomposition in a particular application, we must establish
that the complemented ideal views are finite in number. The following definition recaptures
this.

1.3.26 Definition A finite decomposition framework is a sublattice L of IView(D) with
the greatest element Γ>(D) and least element Γ⊥(D), such that the set of all complemented
elements of L is finite (and so DCIView(D) forms a finite Boolean algebra).

1.3.27 Proposition Let L be a finite decomposition framework. Then D has a unique
ultimate direct decomposition Y within L, with Y consisting of precisely the atoms of L.

Proof: It is immediate that the set of all complemented atoms of L forms a direct de-
composition of D which cannot further be refined within L. Now let Γ = (V, γ) be any
atom of L. Using 1.3.12, we may decompose V using the atoms of L. But for each such atom
Γα = (Vα, γα), we must have that LDB(Vα)∩LDB(V) is either LDB(Vα) or {⊥}, else LDB(Vα)
would not be an atom of L. Hence Γ must itself be one of the members of Y ; in other words,
all atoms of L are complemented. 2

2. Application to Relational Schema Decomposition

A good general decomposition theory for database schemata should at least recapture the most
important specific results. In this part of the paper, we examine the most fundamental ways in
which the theory of Part 1 interacts with the relational model, and we show how to completely
recapture join-based decomposition.

2.1 The General Structure of Relational Decomposition

The traditional framework for relational schema decomposition, being based upon the idea of
disjoint domains, does not provide the formal framework necessary to adequately deal with null
values, which are essential for projection-based decomposition into independent components.
Rather than augment the traditional framework in an ad hoc fashion, we work directly with
a framework in which the domains form a finite Boolean algebra. This idea has already been
employed in some logic-based approaches to relational database theory, such as [45]. This not
only provides a simple means of formalizing null values, but it also allows us to model horizontal
decompositions based upon type, as first suggested by Smith [46].

2.1.1 Type algebras

(a) A type algebra is a triple T = (T,K,A), where:

(i) T is a finite set of unary relation symbols, called the types.

(ii) K is a finite set of constant symbols, called the names. For convenience, it is always
assumed that T ∩K = ∅.
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(iii) A is a theory in the language of Lang(T ) of T , which is the first-order language with
equality whose (other) relational symbols are those of T, whose constant symbols are
those of K, and which has no other function symbols.

(iv) For each τ1, τ2 ∈ T, there is a τ3 ∈ T such that A |= (∀x)(τ3(x) ⇔ τ1(x)∨τ2(x)). τ3 is
denoted by τ1 ∨ τ2 and is called the union (or join) of τ1 and τ2.

(v) For each τ1, τ2 ∈ T, there is a τ3 ∈ T such that A |= (∀x)(τ3(x) ⇔ τ1(x)∧τ2(x)). τ3 is
denoted by τ1 ∧ τ2 and is called the intersection (or meet) of τ1 and τ2.

(vi) For each τ ∈ T, there is a τ̄ ∈ T such that A |= (∀x)(τ̄ (x) ⇔ ¬τ(x)). τ̄ is called the
complement of τ .

(vii) There is a type τ> ∈ T such that A |= (∀x)(τ>(x)). τ> is called the universal type.
The complement of τ> is called the empty type, and is denoted by τ⊥.

(viii) For each a ∈ K and τ ∈ T, either A |= τ(a) or else A |= τ̄ (a).

(b) Let τ1, τ2 ∈ T in the type algebra T .

(i) We write τ1 ≤ τ2 if (∀x)(τ1(x)⇒ τ2(x)) ∈ A.

(ii) We say that τ1 and τ2 are equivalent (written τ1 = τ2) if τ1 ≤ τ2 and τ2 ≤ τ1.

(c) Let τ ∈ T. τ is atomic if for any type τ1 ∈ T for which τ1 ≤ τ , either τ1 = τ or else τ1 = τ⊥.
The set of all atomic types of T is denoted by Atoms(T ).

(d) For a ∈ K, the base type of a is the least type τ ∈ T such that A |= τ(a), and is denoted
BaseType(a). More generally, for any type υ, we say that say that a is of type υ if A |= υ(a).
Clearly, this is the case if and only if BaseType(a) ≤ υ.

Equivalent types are just different names for the same predicate. It is clear that conditions
(iv)-(vii) endow equivalence classes of elements of T with the structure of a finite Boolean
algebra. Since no confusion can result from the renaming, we shall not develop a special notation
for equivalence classes, but rather just regard T as a Boolean algebra, with the understanding
that a type may have more than one name. τ> is the greatest element of the algebra; its
complement is the empty type τ⊥. Note that the atomic types in the sense of (c) above are
precisely those types which are atoms in this underlying Boolean algebra.

2.1.2 Type assignments Let T = (T,K,A) be a type algebra. A type assignment for T
is any model µ of A. More precisely, µ is defined by a set D(µ), together with an assignment
to each τ ∈ T of a subset (= unary relation) Domµ(τ) of D(µ), and to each k ∈ K an element
kµ ∈ D(µ), in such a way that the axioms A are satisfied. In keeping with the traditional
approach, Domµ(τ) is called the domain of τ , and D(µ) is called the universe of µ. We extend
the notion of base type to domain elements by defining, for each x ∈ D(µ), BaseType(x, µ) to be
the unique atomic type for which x ∈ Domµ(τ). Note that under this setup, {Domµ(τ) | τ ∈ T}
truly becomes a Boolean algebra under the usual set-theoretic operations of union, intersection,
and complement.

Type assignments are the analog of the assignments of domains to attributes in the more
conventional approach. As such, we would like them to be uniquely defined by the axioms of
T . Unfortunately, this is not possible within first-order means unless we axiomatize for each
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τ ∈ T a fixed finite upper bound on the size of each Domτ (µ), independently of µ. The limited
compromises which are possible are outside of the scope of this work. Here, we will merely
ensure that the underlying type assignment is not changed by database mappings, so that the
base schema and all views refer to the same domain.

2.1.3 Convention Throughout the rest of this paper, unless specifically stated to the con-
trary, we assume that there is a fixed type algebra T = (T,K,A), as well as a fixed but arbitrary
type assignment µ. In any results, we must ensure that the statements hold regardless of the
choice of µ.

2.1.4 Relational schemata and instances A relational schema D = (Rel(D),Con(D))
over T = (T,K,A) is a pair such that Rel(D) is a finite set of relational symbols and Con(D)
is a set of sentences in the first-order language with equality whose nonlogical symbols include
precisely the nonlogical symbols of T plus the relation symbols in Rel(D). This language is
called the language of D, and is denoted Lang(D). We always assume that Con(D) |= A. A
basis for Con(D) is any set Σ of sentences with Σ ∪ A |= Con(D). The schema D is finitely
axiomatizable if Con(D) has a finite basis. The arity (number of arguments) of a symbol
R ∈ Rel(D) is denoted by Ar(R).

A legal database (or instance) of the schema D is just a model of Con(D); that is, a structure
which satisfies all of the constraints. In keeping with the notation of the previous sections, the
set of all legal databases of D which agree with µ is denoted LDB(D, µ). Occasionally, we will
need to speak of databases which are not legal. DB(D, µ) denotes those structures which are
legal databases of (Rel(D),A) and which agree with µ. In other words, this latter set ignores
the constraints of the schema, except for those of the underlying type algebra.

If M ∈ DB(D, µ), the associated relation for R ∈ Rel(D) is denoted RM . The operations
of intersection and union are defined relation-wise on DB(D, µ). Thus, for nonempty Y ⊆
DB(D, µ) and R ∈ Rel(D), R∩Y =

⋂
{RM |M ∈ Y }, and R∪Y =

⋃
{RM |M ∈ Y }.

2.1.5 The rôle of type assignments in our approach In the traditional approach to
relational database theory [39], attributes play a central rôle in that they define the admissible
domains for columns of relations. In our approach, constraints defining admissible types for
columns take over this rôle. An example will make this clear. Suppose that R is a ternary
relation symbol, and suppose that the attributes for columns 1, 2, and 3 are A, B, and C,
respectively. In the usual notation, we would write R[ABC]. A legal relation of R would
be constrained to consist of triples from dom(A) × dom(B) × dom(C), where the dom’s are
preassigned attribute domains. In our approach, such constraints are expressed directly using
types. To each attribute assign a type; call these τA, τB, and τC , respectively. Then the typing
constraint is expressed by

(∀x)(∀y)(∀z)(R(x, y, z)⇒ τA(x)∧τB(y)∧τC(z))

and this sentence becomes member of Con(D). We may still use notation like R[ABC], with
the understanding that it is an abbreviation for the existence of underlying types τA, τB, τC ,
as well as the above first-order constraint.
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2.1.6 Orderings on LDB(D, µ) In order to apply the theory developed in the first part
of this paper, we must assign an ordering to the database states in LDB(D, µ). There are
(at least) two such ordering of importance in the relational theory. The first is the natural
inclusion ordering, and simply orders the states on the basis of relation-by-relation inclusion.
The second is called the null-augmented ordering, and requires that we augment T with null
values, and then allow a more complex ordering relation in which nulls represent “smaller”
values than non-nulls. Although the null-augmented ordering is actually a generalization of
the natural inclusion ordering, it is also substantially more complex to manage, and many of
the results which are straightforward for the natural ordering case become quite complex in
the null-augmented ordering case. To keep the presentation as understandable as possible, we
therefore restrict our attention in this section and the next to the natural ordering, and then
separately develop results for the null-augmented ordering in 2.3.

Formally, the natural inclusion ordering⊆ on LDB(D, µ) is via relation-by-relation inclusion.
That is, M1 ⊆ M2 if and only if for all R ∈ Rel(D), RM1 ⊆ RM2 . The schema D is compatible
for ⊆ if it admits a least model under this ordering. In the case that D is compatible for ⊆,
the underlying ⊥-poset schema is D̃[⊆] = (LDB(D, µ),⊆,⊥), with ⊆ as just defined and ⊥ the
least model.

2.1.7 Morphisms and Views We define morphisms logically rather than algebraically.
As an intuitive guide, the reader may think of the definition of a morphism D1 → D2 as a
set of queries, one for each R ∈ Rel(D2), expressed in a relational calculus ([39, 10.2]) of the
language of D1. The formal definition is as follows.

Let D1 and D2 be relational schemata. A morphism f : D1 → D2 is an interpretation of
Lang(D2) into Lang(D1) which is the identity on T and which is logically correct. More precisely,
for each R ∈ Rel(D2) we are given a formula Def(f, R) in Lang(D1) (called the interpretation
formula for R) with exactly the variables {v1, .., vAr(R)} free. This in turn induces a function
f ∗ : DB(D1, µ) → DB(D2, µ) which sends each M ∈ DB(D1, µ) to the structure f ∗(M), with
Rf∗(M) the relation which is explicitly defined by the formula Def(f, R) relative to M . (See [36]
for a detailed explanation of this idea, including many examples.) The variable vi identifies
the ith column of this relation. (As a notational convention, we shall always use the variable vi
to mark the ith column of an interpretation formula.) The interpretation f is logically correct
if f ∗(LDB(D1, µ)) ⊆ LDB(D2, µ) for any type assignment µ. In other words, f is logically
correct if it maps legal states of D1 into legal states of D2. In this case, the underlying function
f ′ : LDB(D1, µ) → LDB(D2, µ) is defined to be the appropriate restriction of f ∗. If D1 and
D2 are compatible for ⊆, then f is termed compatible for ⊆ provided that f ′ defines a ⊥-poset
morphism in the sense of 1.1.3. This underlying ⊥-poset morphism is denoted f̃ [⊆]. As f ′ and

f̃ [⊆]
′
denote the same function, we use the former notation in lieu of the latter. As in the order-

theoretic case, the morphism f : D1 → D2 is an isomorphism if there is another morphism
g : D2 → D1 such that both f ◦ g and g ◦ f are identities.

Two morphisms f, g : D1 → D2 with the property that f ′ = g′ are termed equivalent. We
do not distinguish between such morphisms, as they are just different logical representations for
the same query. Also, morphisms may be composed in a natural sense. The reader is referred
to [15] or [36] for details, and to the latter paper as well for a much more detailed presentation
of the use of logical interpretations to define database mappings.
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A view of the relational schema D is just a pair Γ = (V, γ) in which V is also a relational
schema and γ : D → V is a morphism such that f ′ is surjective for any choice of µ. If D, V,
and γ are each compatible for ⊆, then Γ clearly defines a ⊥-poset view in the sense of 1.1.8,
which we denote by Γ̃[⊆] = (D̃[⊆], γ̃[⊆]). We call such a view a ⊆-view. The ⊆-view Γ is an ideal
⊆-view if Γ̃[⊆] is an ideal view of D̃[⊆], in the sense of 1.3.1.

2.1.8 Notation and Conventions For the rest of this section and throughout Section 2.2,
unless specifically stated to the contrary (such as in examples), we assume that D is a relational
schema which is compatible with ⊆. Furthermore, when we say that X = {Γi | i ∈ I} is a
(direct) decomposition or is independent, we shall mean precisely that each Γi is a ⊆-view, and

that {Γ̃i
[⊆]

| i ∈ I} is a (direct) decomposition in the sense of 1.2.3.

2.1.9 The structure of ideal views Let Γ = (V, γ) be an ideal ⊆-view of D. Within the
relational framework governed by the natural ordering, ideal views, as defined in the previous
section, have a very particular structure. Namely, for any R ∈ Rel(D) and any M ∈ LDB(D, µ),

we must have that Rγ′(M) ⊆ RM , since ε〈D̃[⊆], Ṽ[⊆]〉
′
is quasi-contracting. This in turn implies

that the interpretation formula Def(γ, R) must be expressible in the form R(v1, .., vAr(R))∧Φ,
with Φ a formula in the language of D with at most {v1, .., vAr(R)} free. The formula Φ is called
the restrictor of R for Γ, and is denoted Rstr(Γ, R). This characterization immediately provides
us with a representation for the meet of two ideal views, as given below.

2.1.10 Proposition Let Γ1 = (V1, γ1) and Γ2 = (V2, γ2) be ideal ⊆-views of D. Then
the view Γ3 = (V3, γ3) defined by Rstr(Γ3, R) = Rstr(Γ1, R)∧Rstr(Γ2, R) for each R ∈ Rel(D)

is also an ideal ⊆-view, and Γ̃3

[⊆]

= Γ̃1

[⊆]

∩ Γ̃2

[⊆]

, in the sense of 1.3.7. 2

One of the thornier issues in the theory of views of relational database schemata is that the
axiomatization of a quite reasonably defined view may be far more complex than that of the
base schema itself. For example, Hull [34, Lemma 4.1] provides an example of a single-relation
schema constrained only by three functional dependencies, and a simple projective view of four
of its five columns, such that the view schema is not finitely axiomatizable. In addition, it is not
difficult to construct an equally simple example of a view consisting of two projections which is
not axiomatizable by first-order means [31]. The following proposition, which not only states
that finite-axiomatizability is preserved by ideal ⊆-views, but which also provides an explicit
formula for the axiomatization, is therefore quite important.

2.1.11 Proposition Let Γ = (V, γ) be an ideal ⊆-view of D and let Σ be a basis for
Con(D). Then a basis for Con(V) is given by

Σ ∪ {(∀v1.., vAr(R))(R(v1, .., vAr(R))⇒ Rstr(γ, R)) | R ∈ Rel(D)}.

In particular, if D is finitely axiomatizable, so too is V.

Proof: On the one hand, since γ ′ must be surjective, any M ∈ LDB(V, µ) must be the
image under γ′ of some P ∈ LDB(D, µ). Hence, any such M must satisfy the above constraints.
On the other hand, if M ∈ DB(V, µ) satisfies the above constraints, then it is, a fortiori, in
LDB(D, µ), and it furthermore must map to itself under γ ′. Therefore, it is in LDB(V, µ). 2
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Vardi [48, Thm. 3] has already established that a view which is a component in a direct
decomposition of a finitely axiomatized schema must itself be finitely axiomatizable. The
above proposition extends this result for order-compatible views, since an ideal view need not
have a direct complement.

2.1.12 Tuple-based ideal views Let Γ = (V, γ) be an ideal ⊆-view of D. In general,
the restrictor Rstr(γ, R) for a given R ∈ Rel(D) may be an arbitrarily complex first-order
formula. It turns out, however, that under suitable circumstances we can establish that it has
a particularly simple form, in which Rstr(γ, R) is totally independent of the current state of the
database. The action of γ ′ then becomes one of simply examining each tuple of each relation,
and, independently of any other tuples in the database, either discarding it or else retaining it
for the view state. More formally, we say that Γ is tuple-based if for any M1,M2 ∈ LDB(D, µ),
any R ∈ Rel(D), and any Ar(R)-tuple x ∈ RM1 ∩ RM2 , we have x ∈ Rγ′(M1) if and only if
x ∈ Rγ′(M2).

2.1.13 Examples The notion of a tuple-based view is quite intuitive, and it is perhaps not
immediately obvious how an ideal view can fail to have this property. Therefore, before we
establish the conditions under which an ideal ⊆-view must be tuple based, let us consider a few
simple examples of ⊆-views which are not tuple based, so that we have a better idea of what
can go wrong.

Let the type algebra T have exactly three atomic types τA, τB, and τC , each admitting an
infinite number of distinct domain values. Let D be the relational schema with four relational
symbols R1[AB], R2[AB], R3[BC], and R4[ABC]. Here we have used the domain names as
abbreviations for constraints, as in 2.1.5. For example, R1[AB] means that R1 is a binary
relation symbol with the constraint R1(v1, v2)⇒ (τA(v1)∧τB(v2)). In addition to these domain
constraints, assume that D is governed by the following constraint.

(∀v1, v2, v3)(R4(v1, v2, v3)⇔ ((R1(v1, v2)∨R2(v1, v2))∧R3(v2, v3)))

In other words, R4 is the union of the two joins R1[AB] 1 R3[BC] and R2[AB] 1 R3[BC].
Define the view Γ1 = (V1, γ1) to be the ideal ⊆-view which preserves R1 identically, but
drops the other three relations. Thus, Rstr(γ1, R1) = true,4 but Rstr(γ1, R2) = Rstr(γ1, R3) =
Rstr(γ1, R4) = false. Define Γ2 = (V2, γ2) and Γ3 = (V3, γ3) with respect to R2 and R3

similarly. Clearly each of these views is tuple based. Now Γ1∨Γ3 also exists as an ideal ⊆-view
Γ13 = (V13, γ13). Indeed, put Rstr(γ13, R1) = Rstr(γ13, R3) = true, Rstr(γ13, R2) = false, and
Rstr(γ13, R4) = R1(v1, v2)∧R3(v2, v3). Then Γ13 is clearly this join, yet there is no way that we
can make Rstr(γ13, R4) tuple based. We must select from R4 only those tuples arising from
the join of R1 and R3, and exclude those arising from the join of R2 and R3. Note also that
{Γ13,Γ2} is a direct complementary pair, so that this phenomenon applies even to views which
are complemented.

The above example is somewhat anomalous in that it is not constrained by data dependencies
in the sense of [19]. The constraint that R4 is the union of two joins is not expressible as a data
dependency. One might therefore still conjecture that if D has a basis of data dependencies,

4We use true (resp. false) to denote the sentence which is always true (resp. false).
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then all ideal ⊆-views will be tuple-based. The following example shows that conjecture to be
false.

2.1.14 Example We modify the previous example slightly by adding two new atomics type
τW1 and τW2. Each of these types has exactly one possible domain value. The constant symbol a1

represents the unique value for τW1 , and a2 represents the unique value for τW2 . The definitions
of R1, R2, and R3 remain unchanged. We add relation R5[ABCW ], defined as follows.

(∀v1, v2, v3, v4)((R5(v1, v2, v3, v4)∧τW1(v4))⇔ (R1(v1, v2)∧R3(v2, v3)))

(∀v1, v2, v3, v4)((R5(v1, v2, v3, v4)∧τW2(v4))⇔ (R2(v1, v2)∧R3(v2, v3)))

This new relation is just like R4 of the previous example, except that we have used the extra
column to tag the origin of the tuple. Now define the constraint for R4 to be the following.

(∀v1, v2, v3)(R4(v1, v2, v3)⇔ (∃x)(R5(v1, v2, v3, x))

This will yield exactly the same R4 as in the previous example. The join Γ13 = Γ1 ∨ Γ3 will
be the same as in the previous example, except that the restrictor Rstr(γ13, R5) = false must
be added to account for the new relation. Again note that {Γ13,Γ2} is a direct complementary
pair. This time, however, D has a basis consisting of data dependencies in the sense of [19].
Indeed, the only sentence specified above which is not a data dependency is the “⇐” direction
of the constraint for R4. But it may be replaced with the following pair of data dependencies.

(∀v1, v2, v3, v4)((R5(v1, v2, v3, v4)∧τW1(v4))⇒ (R1(v1, v2)∧R3(v2, v3)))

(∀v1, v2, v3, v4)((R5(v1, v2, v3, v4)∧τW2(v4))⇒ (R2(v1, v2)∧R3(v2, v3)))

The last example, while constrained by dependencies, is not constrained by total or universal
dependencies. Rather, existential quantification is essential in the representation. On the other
hand, the penultimate example, while constrained by universal sentences, is not constrained
by data dependencies. If we combine the two conditions, and require universal dependencies,
we get total data dependencies. Such dependencies are a special case of a more general class
of first-order sentences, called universal Horn sentences, [43, 25.12], which imply an important
model-theoretic property known as closure (or preservation) under intersections [41].

2.1.15 Closure under intersections The schema D is closed under intersections (or ∩-
closed) if for any nonempty Y ⊆ LDB(D, µ),

⋂
Y ∈ LDB(D, µ) also.5 Note that we do not

require
⋂
∅ to exist in LDB(D, µ). This would imply the existence of a largest model, which is

unrealistic and unnecessary.

5In [41], the property is stated only for finite intersections, while we require intersections of arbitrary
nonempty sets of models to be models. It is easy to see that such arbitrary intersections of models of a
universal Horn theory is still a model; finiteness is not an issue. The reader should also be careful not to confuse
closure under intersections with the intersection property [40, Def. 4.1], which is a much weaker property.
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2.1.16 Lemma Let D be ∩-closed, and let Γ = (V, γ) be an ideal ⊆-view of D.

(a) For any nonempty Y ⊆ LDB(D, µ), we have γ ′(
⋂
Y ) =

⋂
{γ′(M) |M ∈ Y }.

(b) Γ is tuple-based.

Proof: (a) Let Y ⊆ LDB(D, µ) be nonempty but otherwise arbitrary. We immediately have
that γ′(

⋂
Y ) ⊆

⋂
{γ′(M) | M ∈ Y }. On the other hand,

⋂
{γ′(M) | M ∈ Y } ⊆

⋂
Y , so

γ′(
⋂
{γ′(M) | M ∈ Y }) ⊆ γ′(

⋂
Y ). But γ′(

⋂
{γ′(M) | M ∈ Y }) =

⋂
{γ′(M) | M ∈ Y }, since

the latter is already in the ideal defined by Γ. Hence
⋂
{γ′(M) |M ∈ Y } ⊆ γ′(

⋂
Y ).

(b) Let M1,M2 ∈ LDB(D, µ), let R ∈ Rel(D), and let x ∈ RM1 ∩ RM2, with x ∈ Rγ′(M1) as
well. Then x ∈ Rγ′(M1)∩M2 as well. But γ′(M1) ∩M2 ∈ LDB(V, µ), and so γ′(M1) ∩ M2 =
γ′(γ′(M1) ∩M2) = γ′(γ′(M1)) ∩ γ

′(M2) = γ′(M1) ∩ γ
′(M2). Hence x ∈ Rγ′(M2), so Γ is tuple

based. 2

2.1.17 Lemma If Con(D) has a basis consisting of universal Horn sentences, then D is
∩-closed.

Proof: It is easy to verify directly that the set of models of any family of universal Horn
sentences is closed under intersection of nonempty sets. The only point needing elaboration is
the effect of the axioms in A, which need not be universal Horn. However, we are requiring
that all models be identical on T , and so all intersections will be identical on this component.
Therefore, the proof for universal Horn sentences works in this case as well. 2

2.1.18 Theorem Let Con(D) have a basis of universal Horn sentences. Then any decom-
position of D (into ideal ⊆-views) consists entirely of tuple-based views.

Proof: Combine 2.1.16 and 2.1.17. 2

In particular then, if Con(D) has a basis consisting of total data dependencies, a decompo-
sition into ideal ⊆-views will always be tuple based. Since all ⊆-order based decompositions
may be so represented, this provides in some sense a theoretical justification for the intuitive
notion of the simplicity and naturalness of universal Horn sentences in general and total data
dependencies in particular.

It is possible to establish that the set of all tuple-based views of a given schema D is finite,
and so will form a finite decomposition framework when D has the model intersection property.
However, the proof is rather complex, and many of the resulting views are of limited interest in
practice. Therefore, we shall not pursue that topic further in this paper. Rather, we now turn
to a special but most interesting class of tuple-based views, those whose restrictors depend only
upon the types of the elements in the tuple.

2.2 Restrictive Relational Decomposition

In this section, we continue to investigate decompositions with respect to the natural ordering
⊆, but narrow the scope of our attention to those views whose restrictors look only at the types
(in the sense of the type algebra T ) of the entries in the tuples. To motivate the importance
of such views, we formulate the classical notion of a join-based decomposition within the ideal
⊆-view framework.
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2.2.1 Example Let us examine is some detail how to recapture the decomposition of a
relation R[ABCD] into the three projections R[AB], R[BC], and R[CD]. In the traditional
approach [39, 7.7], all that we require is that the base schema D be constrained by the join
dependency 1 [AB,BC,CD], which is an abbreviation for the following sentence.

(∀vA, vB, vC , vD, xA, xC , xD, yA, yB, yD)

((R(vA, vB, vC , vD)∧R(xA, vB, xC , xD)∧R(yA, yB, xC , yD))⇒ R(vA, vB, xC , yD)) (tjd)

However, such a decomposition is only subdirect; the components are not independent. To
achieve independence, we must allow null values [12]. In our formalization, we have five atomic
types. The types τA, τB, τC , and τD are the atomic types corresponding to the domain names.
Each of these four types is axiomatized to have infinitely many domain elements. The type τν is
the null type. It is axiomatized to have exactly one domain element, which is represented by the
constant symbol ν. The schema D has the single relation symbol R. To the join dependency,
we must add constraints identifying exactly where nulls may and may not appear. To do so,
we introduce two parameterized abbreviations for sentences. For any S ⊆ {A,B,C,D}, let
ForbidNulls(S) denote the following sentence.

(∀vA, vB, vC , vD)((R(vA, vB, vC , vD)∧(
∧
i∈S

τν(vi)))⇒ false). (fn(S))

In words, the sentence ForbidNulls(S) mandates that a tuple which has nulls in each of
the positions identified by S cannot occur. We require that it hold for all minimal S which
are not subsets of a complement (relative to {A,B,C,D}) of one of {A,B}, {B,C}, and
{C,D}. In other words, we stipulate that ForbidNulls(S) hold for S = {A,C}, S = {B,C},
and S = {B,D}.

Similarly, for S ∈ {A,B,C,D}, let RequireNulls(S) denote the following sentence.

(∀vA, vB, vC , vD)((R(vA, vB, vC , vD)∧(
∧
i∈S

τi(vi)))⇒ R(ξA, ξB, ξC , ξD)). (rn(S))

Here ξi is defined by

ξi =

{
vi if i ∈ S
ν otherwise.

The sentence RequireNulls(S) mandates that whenever a tuple t occurs with all posi-
tions identified by S nonnull, then the tuple obtained by replacing the entries in all
other columns by nulls is also in that instance. We require that it hold for all S

which are supersets of one of {A,B}, {B,C}, and {C,D}, except that we may omit
{A,B,C,D}. In other words, we stipulate that RequireNulls(S) hold for all S ∈
{{A,B}, {B,C}, {C,D}, {A,B,C}, {A,B,D}, {A,C,D}, {B,C,D}}.

We cannot use the join dependency (tjd) directly, since it would indiscriminately include
nulls in the joined tuples; rather, we must replace it with the following.

(∀vA, vB, vC , vD, xA, xC , xD, yA, yB, yD)

((((τA(vA)∧τB(vB))∨(τB(vB)∧τC(xC))∨(τC(xC)∧τD(yD)))∧

R(vA, vB, vC , vD)∧R(xA, vB, xC , xD)∧R(yA, yB, xC , yD))⇒ R(vA, vB, xC , yD)) (j)
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Constraint (j) is the same as the traditional join dependency (tjd), except that it only selects
those tuples with non-nulls in the right places. Indeed, in the absence of nulls (j) and (tjd) are
identical, so that we could in fact have given (j) in place of (tjd), and we may regard (j) as
“the” join dependency 1 [AB,BC,CD], without sacrificing the classical case.

Define the ideal ⊆-view ΓAB = (VAB, γAB) to have LDB(VAB, µ) = {M ∈
LDB(D, µ) | ((xA, xB, xC , xD) ∈ RM) ⇒ ((xC = ν)∧(xD = ν))}. The view mapping γAB
has Def(γAB, R) = (R(vA, vB, vC , vD)∧τA(vA)∧τB(vB)∧τν(vC)∧τν(vD)). Note that ΓAB is essen-
tially the projection of the first two columns of R, because if (xA, xB, xC , xD) is any tuple in
any instance of R, then (xA, xB, ν, ν) must be in that instance of R as well, since the con-
straint RequireNulls({A,B}) must hold. The two nulls provide no additional information, and
serve only as placeholders. The views ΓBC = (VBC , γBC) and ΓCD = (VCD, γCD) are de-
fined analogously with respect to the second and third, and third and fourth columns of R,
respectively.

With these definitions, it is easy to see that {ΓAB,ΓBC ,ΓCD} is a direct decomposition of
D into ideal ⊆-views, which very closely resembles the classical (subdirect) projective decom-
position governed by the join dependency 1 [AB,BC,CD]. The differences are due to the need
to explicitly include nulls in the formalism, in order that independence of the views may be
realized.

It is important to note that all of the required constraints are universal Horn; in fact, they
are total data dependencies. Therefore, axoimatization with nulls may be carried out without
sacrificing this property.

The above example is a paradigm for generally representing join-based decompositions
within our framework, and the reader should have no problem extending it to an arbitrary
join dependency. Such decompositions are, however, only one way of decomposing a schema;
horizontal decompositions in the spirit of Smith [46] are also possible. It is possible to develop
the theory of joins in both the vertical and horizontal direction much further, but that would
take us beyond the scope of this paper. Some results of that nature were announced in [29],
and will be much more fully developed in a forthcoming paper.

We now turn to a formalization of the specific form of restrictor which underlies decompo-
sitions of the above form.

2.2.2 Type restrictions All of the views in the previous example are tuple based with the
additional property that the restrictors depend only upon the types of the tuple entries. Such
views are called type restrictions, and are sufficiently important to deserve special attention.

Let n be a nonnegative natural number. A simple n-type over T is an n-tuple of the form
(τ1, τ2, .., τn), with each τi ∈ T \ {τ⊥}. This string is taken to be an abbreviation for the well-
formed formula τ1(v1)∧..∧τn(vn) with exactly {v1, .., vn} free. A compound n-type over T is a
(possibly empty) set S = {s1, s2, .., sk} of simple n-types. This set S is an abbreviation for
the disjunction of its elements; that is,

∨k
i=1 si. It is easy to see that any logical combination of

simple n-types (but without quantifiers) is logically equivalent to a compound n-type. Indeed,
let Ψ be such a logical combination. Without loss of generality, we may assume it to be in
disjunctive normal form, that is, a disjunction of conjunctions of literals, with each literal either
a simple n-type or its negation [15, Cor. 15C]. However, each negated simple n-type ¬(τ1, .., τn)
is logically equivalent to the simple n-type (τ̄1, .., τ̄n), and each conjunction

∧m
i=1(τi1, .., τin) may

be replaced with (
∧m
i=1 τi1, ..,

∧m
i=1 τin).
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An ideal ⊆-view Γ = (V, γ) with the property that Rstr(γ, R) is a compound Ar(R)-type
for each R ∈ Rel(D) is called a type restriction. Because we shall not consider other varieties of
restrictions in this work, we shall henceforth refer to type restrictions as simply restrictions.

2.2.3 Examples of restrictions All of the views in 2.2.1 are restrictions. In 2.1.13, each
of the views Γ1, Γ2, and Γ3 is a restriction. The view Γ13 of 2.1.13 is a join of restrictions which
is not itself a restriction, so that the class of restrictions is not closed under join. This is the
case even for complemented views, as in 2.1.13 Γ13 has Γ2 as its complement. In 2.1.14, exactly
the same situation occurs. We do, however, have the following result.

2.2.4 Proposition Let Γ1 = (V1, γ1) and Γ2 = (V2, γ2) be restrictions. Then the view
Γ3 = (V3, γ3) defined by Rstr(γ3, R) = Rstr(γ1, R)∧Rstr(γ2, R) for each R ∈ Rel(D) is itself a

restriction, and Γ̃3
[⊆]

= Γ̃1
[⊆]

∩ Γ̃2
[⊆]

, in the sense of 1.3.7.

Proof: If Rstr(γ1, R) = {s11.., s1m} and Rstr(γ2, R) = {s21, .., s2n}, then
Rstr(γ1, R)∧Rstr(γ2, R) = {s1i∧s2j | 1 ≤ i ≤ m and 1 ≤ j ≤ n}, which is a type restric-
tion. Furthermore, if M ∈ LDB(V1, µ) ∩ LDB(V2, µ), then (γ1 ◦ γ2

′)(M) = M . Thus Γ3 as
defined above is indeed a meet of Γ1 and Γ2. 2

We can overcome the problem of lack of closure under joins by enforcing some further condi-
tions on the nature of Con(D). Recall from 2.1.16 that under the assumption of ∩-closure, all
ideal views are tuple based. By enforcing a few additional properties, we can assure that these
tuple-based views are in fact projections.

2.2.5 Model invariance conditions A constant symbol c ∈ K is inessential if there is a
type τc ∈ T such that A |= ((c = v1) ⇔ τc(v1)). In other words, τc is constrained to have only
one element in any model, and c identifies that value. We say that T is essentially constant
free if every c ∈ K is inessential. In other words, T cannot have any constant symbols other
than those which are already identifiable as the unique element of an atomic type. The type
algebras underlying the examples of 2.1.13, 2.1.14, and 2.2.1 are essentially constant free.

An automorphism α of D(µ) is any bijection on that set which preserves type, in the precise
sense that if τ ∈ T and x ∈ D(µ), then x ∈ Domµ(τ) if and only if α(x) ∈ Domµ(τ). If α is such
an automorphism and t = (t1, .., tn) is an n-tuple of elements of D(µ), α(t) denotes the n-tuple
(α(t1), .., α(tn)). If M ∈ LDB(D, µ), α(M) denotes the structure obtained by simultaneously
substituting α(x) for each occurrence of x in M , for each x in D(µ). This includes the relations
and constant symbols of T . We also write α(µ) to denote the type assignment obtained by the
substitution. We say that T is invariant under automorphisms if α(µ) = µ, and we say that
D is closed under automorphisms if for any M ∈ LDB(D, µ) and any automorphism α of D(µ),
α(M) ∈ LDB(D, µ) as well.

2.2.6 Lemma If T is essentially constant free, then T is invariant under automorphisms
and D is closed under automorphisms.

Proof: Note first that for any M ∈ LDB(D, µ), α(M) ∈ LDB(D, α(µ)), since applying α just
amounts to a renaming. But if T is essentially constant free, µ = α(µ). Hence LDB(D, µ) =
LDB(D, α(µ)), and so D is closed under automorphisms. 2
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It is important to note that D is arbitrary in the above, and may actually be an ideal view
of the schema to be decomposed.

2.2.7 Local column independence We say that D has local column independence if for
any M ∈ LDB(D, µ) and any R ∈ Rel(D), if s = (s1, .., sAr(R)), t = (t1, .., tAr(R)) ∈ RM with
BaseType(si, µ) = BaseType(ti, µ) for 1 ≤ i ≤ Ar(R), then we have for any i and j that si = sj
if and only if ti = tj.

In the traditional theory of dependencies of a single relation, a data dependency is call typed
if the same variable cannot occur in more than one column of a given relation [19]. Clearly,
if D has only one relation and is constrained by typed dependencies, then it will have local
column independence. The schemata in each of 2.1.13, 2.1.14, and 2.2.1 have local column
independence.

2.2.8 The least model property We say that D has the least model property if for any
R ∈ Rel(D), any M ∈ LDB(D, µ), and any t ∈ RM , there is a least database Mt ∈ LDB(D, µ)
with t ∈ RMt. Observe that if D is ∩-closed, then it must have the least model property, since
the intersection of all models containing t must then be Mt. In particular, if it is constrained
by universal Horn sentences, it will have the least model property.

We are now in a position to establish the main decomposition theorem for restrictions.

2.2.9 Decomposition theorem for restrictions Suppose that T is invariant under au-
tomorphisms, and D has local column independence and the least model property. Then every
ideal ⊆-view of D is a restriction, and the restrictions form a finite decomposition framework.

Proof: Let R ∈ Rel(D), let M ∈ LDB(D, µ), let Γ = (V, γ) be an ideal ⊆-view of of D,
and let s = (s1, .., sAr(R)), t = (t1, .., tAr(R)) ∈ RM with BaseType(si, µ) = BaseType(ti, µ) for
1 ≤ i ≤ Ar(R). Let α denote the automorphism which sends si 7→ ti and ti 7→ si, 1 ≤ i ≤ Ar(R),
and leaves all other elements of D(µ) fixed. Since D has local column independence, α is well
defined. Let Ms ∈ LDB(D, µ) denote the least model with s ∈ RMs, and define Mt similarly.
Assume that t ∈ Rγ′(M); we will show that s ∈ Rγ′(M) as well. Now t = α(s) ∈ Rα(Ms), and so
Mt ⊆ α(Ms). But α2 is the identity, so α(Mt) ⊆ α2(Ms) = Ms. But also Ms ⊆ α(Mt) since
s ∈ α(Mt) and Ms is the least model containing s. Hence α(Mt) = Ms. Since V is closed under
automorphisms (by 2.2.6), we must have that Ms ∈ LDB(V, µ), whence γ ′(Ms) = Ms, and so
s ∈ Rγ′(M).

The finiteness of the set of all restrictions follows immediately from the finiteness of T, so
in particular the set of all complemented restrictive views is finite. 2

2.2.10 Corollary Let D be a single-relation schema constrained by typed total data depen-
dencies. Then D has a unique ultimate decomposition into a finite number of restrictions.
2
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2.3 Projective Relational Decomposition

The formulation of the decomposition in 5.1 of R[ABCD] into its AB, BC, and CD components
may seem somewhat contrived, in that “subsumed” tuples must be present to make things work.
For example, if the tuple (a, b, c, d) is present in the instance of R, then it really should not
be necessary to include tuples such as (a, b, ν, ν), (ν, b, c, ν) or (ν, ν, c, d), since (a, b, c, d) in a
sense carries more information. However, in the ⊆-based order framework, these subsumed
tuples are essential for the construction of the “projections” which are the components of the
decomposition. To avoid this redundancy, we must build into the extant framework a formalism
asserting that tuples such as (a, b, ν, ν) are subsumed by tuples such as (a, b, c, d), and then define
a new order relation based upon such subsumption. In this section, we show how this may be
done by augmenting the type algebra to include explicitly identified nulls. We then establish
that this new augmented framework is isomorphic, in a strong sense, to a restrictive framework
as developed in 2.2.

2.3.1 Augmentation of the type algebra Let T = (T,K,A) be a type algebra. The as-
sociated null-augmented algebra of T , denoted Aug(T ) = (Aug(T),Aug(K),Aug(A)), is defined
as follows.

(a) To K we add one new constant symbol ντ for each τ ∈ Atoms(T ). ντ is called the null
constant of type τ . Formally, Aug(K) = K ∪Kν, where Kν = {ντ | τ ∈ T \ {τ⊥}}.

(b) To T we add one new atomic type ιτ for each τ ∈ Atoms(T ). We call ιτ the atomic
null type for τ . The only value of type ιτ is identified by the null constant ντ ; thus
Aug(A) |= (ιτ (x)⇔ (x = ντ )). These new types are disjoint from all existing types; i.e.,
they are atoms in the null-augmented algebra. Of course, new nonatomic types will be
constructed also; Aug(T) is the Boolean algebra of types generated by the atomic types
in Atoms(T ) ∪ {ιτ | τ ∈ Atoms(T )}.

(c) The set Aug(A) consists of the axioms of A, together with the additional axioms nec-
essary to make the conditions of (a) and (b) hold, including the necessary definitions of
new nonatomic types.

For any type τ ∈ Atoms(T ), we define τ̂ = τ ∨ ιτ . This definition is extended to each
τ ∈ T by setting τ̂ =

∨
{ω̂ | ω ∈ Atoms(T ) and ω ≤ τ}. The type τ̂ is called the null

completion of τ . The set {τ̂ | τ ∈ T \ {τ⊥}} is denoted by NullAugTypes(T ). We also define
τ̌ =

∨
{ιω | ω ∈ Atoms(T ) and ω ≤ τ}. The type τ̌ is called the nullification of τ . The set

{τ̌ | τ ∈ T \ {τ⊥}} is called the set of null types, and is denoted NullTypes(T ). For consistency
in defining formulas by rules, we admit ι̌τ as a synonym for ιτ .

We continue to use the symbol τ> to denote the greatest type of T ; the symbol τ̂> will be
used to denote the greatest type of Aug(T ).

2.3.2 Convention From now on, D will denote a relational database schema taken over
the type algebra Aug(T ). We also assume henceforth that µ is a type assignment for Aug(T ).

2.3.3 The semantics of nulls Nulls possess a very special semantics, which we use to
define a new partial order � on LDB(D, µ). Informally, � starts with an ordering on domain
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elements which states that the null ντ corresponding to given atomic type τ is less than any
domain value of type τ , and extends this notion up through tuples to models. Formally, let
a = (a1, a2, .., an) and b = (b1, b2, .., bn) be n-tuples of elements from D(µ). We say that b
subsumes a, and write a � b just in case for each i, 1 ≤ i ≤ n, exactly one of the following two
conditions holds.

(i) ai = bi;

(ii) For some τ ∈ Atoms(T ), ai = ντ and bi ∈ Domµ(τ̂ ).

For n-ary relations P,Q ⊆ D(µ)n, we write P � Q just in case for each p ∈ P there is a q ∈ Q
with p � q. For M,N ∈ LDB(D, µ), M � N denotes that RM � RN for each R ∈ Rel(D).
We say that D is compatible for � if � is a partial order on LDB(D, µ) and if it admits a least
model under this ordering. It is immediate that � is a preorder (i.e., reflexive and transitive)
on LDB(D, µ), but for it to be a partial order, we must have that M � N �M implies M = N ,
which will be the case if and only if no relation in RM contains any distinct tuples which are
related under �. In other words, no tuple is allowed in RM if it is subsumed by another tuple
in that relation.

While we give no specific semantics to our nulls beyond that implied by the underlying
model theory, they are most closely related to the no information nulls of Zaniolo [50], and
may be interpreted in that fashion if desired. Indeed, the ordering � then becomes subsumption
in the sense of Zaniolo. Note that the one difference is that our nulls, by their very nature,
give information about type, while those of Zaniolo do not. However, in a traditional typed
domain framework, this makes no essential difference, since in that context the type of a null
is completely determined by the column in which it appears.

Our interpretation does differ slightly from that of Chan and Mendelzon [12], in which the
the nulls are “missing values”, and are represented by the equivalent of unbound variables.
With such an approach, it is somewhat more involved to say exactly what a decomposition
is, since the decomposition and the base schema are not quite logically equivalent. While we
feel that the issues surrounding incomplete information are important, we show here that they
are not essential to a theory of decomposition. Nonetheless, the idea of using nulls in the
base schema, and of projecting only tuples with enough “non-nullness”, is central to both our
approach and to that of Chan and Mendelzon.

More generally, certain interpretations of null values have proven an invaluable tool in
the representation of special kinds of incomplete information databases. Among the major
contributors to such research efforts have been Biskup [9], Imieliński and Lipski [35], and
Levene and Loizou [38]. A comprehensive survey and investigation of these approaches and
others may be found in the dissertation of Grahne [23]. It is extremely important to note that
our use of null values does not imply the existence of any incomplete information. As pointed
out in 1.1.7, in an incomplete information context, a database is not a single structure, but
rather a set of structures. Tuples of the form (a, b, ν) are then used as abbreviations for an
entire set of tuples, one for each admissible value of ν. In our approach, on the other hand, a
database is a single structure, and ν is just another data value, identified with a special type
class. While we do not preclude the existence of a theory of equivalence between our context
and one of incomplete information, we make no claim of such.

The notions of compatibility for � for morphisms and views are defined in a manner com-
pletely analogous to that given for the natural ordering ⊆ described in 2.1. Similarly, we adopt
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the notation D̃[�] = (LDB(D̃[�]),�,⊥), γ̃[�], and Γ̃[�] = (Ṽ[�], γ̃[�]), for the underlying �-order
based concepts, in complete analogy with the definitions made in 2.1

2.3.4 Example Let us now recast the decomposition of 2.2.1 into this new framework. The
schema D still has a single relational symbol R of arity four. But now, the type algebra T
need have only four atomic types τA, τB, τC , and τD. The augmentation Aug(T ) will have four
additional atomic types ιτA , ιτB , ιτC , and ιτD , with corresponding null constants ντA , ντB , ντC ,
and ντD , respectively. The null positioning sentence ForbidNulls(−) of 2.2.1 requires a purely
cosmetic adjustment to accommodate the typed nulls of this framework. For S ⊆ {A,B,C,D},
we redefine ForbidNulls(S) as follows.

(∀vA, vB, vC , vD)((R(vA, vB, vC , vD)∧(
∧
i∈S

ιτi(vi)))⇒ false). (fn(S)*)

We mandate that ForbidNulls(S) hold for exactly the same subsets of {A,B,C,D} as identified
in 2.2.1, namely, {A,C} and {B,D}. On the other hand, RequireNulls(−) is discarded entirely;
we instead employ the new parameterized constraint ReplaceNulls(−); for S ⊆ {A,B,C,D} we
define ReplaceNulls(S) as follows.

∧
j 6∈S

((∀vA, vB, vC , vD, xA, xB, xC , xD)((R(vA, vB, vC , vD)∧R(xA, xB, xC , xD)

∧(
∧
i∈S

(τi(vi)∧(vi = xi)))∧τj(vj))⇒ τj(xj))) (rn(S))

The constraint ReplaceNulls(S) states that if a tuple t occurs with nonnulls in each position
identified by S, then it may not have a null in a given position j 6∈ S if there is another tuple
t′ which matches t on all positions identified by S and which has a nonnull in position j. In
other words, nulls can only occur if they are not subsumed. We require that ReplaceNulls(S)
hold for exactly the sets {A,B}, {B,C}, and {C,D}.

Finally, we require that the join dependency (j) from 2.2.1 hold. It need not be changed in
any way. It is the other axioms which state exactly where nulls can and cannot be, and not
the main join dependency, which differentiates this “projective” model from its “restrictive”
counterpart. It is immediate that � is compatible for this schema, as subsumed tuples are
never present in the relation. Note also that, as was the case in 2.2.1, all of the constraints
presented here are universal Horn.

Having developed this example, we now turn to the general representation of such views.

2.3.5 Projections For R ∈ Rel(D), an extended simple R-type over T is triple of the
form (R, (ω1, .., ωAr(R)), (η1, .., ηAr(R))), in which each ωi ∈ NullAugTypes(T ) ∪ {τ⊥}, and each
ηi ∈ {0, 1}. The semantics we wish to obtain are as follows. Given a database M ∈ LDB(D, µ)
and R, we first compute the type restriction corresponding to (ω1, .., ωAr(R)). Then, for each
column i with ηi = 1, we convert all entries in that column to the null constant corresponding
to the base type of that entry; columns for which ηi = 0 are left intact. Note in particular that
if each ηi = 0, then this reduces to the restriction (ω1, .., ωAr(R)). Note also that if any ωi = τ⊥,
then no tuples are projected for the corresponding relation; this is how we achieve an empty
projection.

As this restriction operation does not simply accept or reject tuples, but may additionally
alter them by replacing some entries with the corresponding nulls, it is not possible to represent
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the semantics formally as a restrictor formula, as we did for type restrictions. Formally, the
string (R, (ω1, .., ωAr(R)), (η1, .., ηAr(R))) is taken to be an abbreviation for the well-formed formula
(∃y1, .., yAr(R))(R(y1, .., yAr(R))∧λ1(v1)∧..∧λAr(R)(vAr(R))) with exactly {v1, .., vAr(R)} free, and with
the λi(vi)’s defined to be the following formulas.

λi(vi) =




ωi(yi) if ηi = 0
ωi(yi)∧(

∨
τ∈Atoms(T )

(τ̂ (yi)∧ωi(ντ )∧(vi = ντ ))) if ηi = 1.

The rather complicated looking formula for ηi = 1 computes the null constant corresponding
to the type of yi, provided that yi is of type ωi to begin with. Note that exactly one of the
disjuncts of this formula will be true, since any domain value yi has exactly one atomic type
associated with it (its base type).

Given two extended simple R-types s1 = (R, (ω11, .., ω1Ar(R)), (η11, .., η1Ar(R))), s2 =
(R, (ω21, .., ω2Ar(R)), (η21, .., η2Ar(R))), their common action s1 u s2 is the extended R-type
(R, (ω11 ∧ ω21, .., ω1Ar(R) ∧ ω2Ar(R)), (max{η11, η12}, ..,max{η1Ar(R), η2Ar(R)}).

An extended compound R-type is just a set S = {s1, .., sm} of extended simple R-types.
As in the case of type restrictions, S is taken to be an abbreviation for the disjunction of its
elements. We extend the notion of common action to extended compound R-types by defining
S u T to be {s u t | s ∈ S and t ∈ T}.

A �-view Γ = (V, γ) is a view of D is defined analogously to a ⊆-view; V and γ must
be compatible with �. For Γ to be an ideal �-view, the ideals must be with respect to the
ordering �. An ideal �-view Γ = (V, γ) with the property that Def(γ, R) is a compound
extended Ar(R)-type for each R ∈ Rel(D) is called a projection. In analogy to 2.2.4, we may
characterize the meet of projective views as follows.

2.3.6 Proposition Let Γ1 = (V1, γ1) and Γ2 = (V2, γ2) be projections. Then the view
Γ3 = (V3, γ3) defined by Def(Γ3, R) = Def(Γ1, R) u Def(Γ2, R) for each R ∈ Rel(D) is itself a

projection, and Γ̃3
[�]

= Γ̃1
[�]

∩ Γ̃2
[�]

, in the sense of 1.3.7.

Proof: The critical point is to note that, by definition, any projection which preserves an
atomic type τ ∈ Atoms(T ) (in some column of some relation) must in fact preserve τ̂ . In other
words, it must preserve the null corresponding to that atomic type as well. Observe also that
the null gives full type information about the domain value from which it arose; each atomic
type has its own distinct null. From this it is clear that the operations of restricting to a given
type and conversion of all elements of that same type to the corresponding nulls commute with
one another. The common action corresponds exactly to this computation, and mirrors the
operation of conjunction of the case of type restrictions. The rest of the argument is exactly as
in 2.2.4. 2

In terms of closure under view joins in the general case, projections suffer from the same
problems as restrictions. To directly formulate a result similar to 2.2.9, we would need to
develop analogs of the notion of a tuple-based view and of the least model property within the
context of the augmented type algebra. Such a development is quite complex. Fortunately, there
is an alternative. We may represent �-compatible schemata and views in an order-preserving
way as ⊆-compatible schemata and views, and then invoke the results of the previous section.
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The cornerstone idea is to replace each �-compatible schema (in which no relation in a model
may contain a tuple which is subsumed by another in that same relation) with the corresponding
one in which all subsumed tuples are present. The result is a ⊆-compatible schema with exactly
the same order properties.

2.3.7 Null-Completion The null completion of a relation X ⊆ D(µ)n is X̂ = {x ∈
D(µ)n | (∃y ∈ X)(x � y)}. The relation X is null complete if X = X̂. In other words, a
relation is null complete if it is closed under subsumption of tuples. The state M ∈ DB(D, µ)
is null complete if RM is null complete for each R ∈ Rel(D). In the case of a �-compatible
schema, null completion converts � to ⊆, as shown by the following lemma.

2.3.8 Order isomorphism lemma Let D be a �-compatible database schema, and let
M,N ∈ DB(D, µ). Then M � N if and only if M̂ ⊆ N̂ .

Proof: Suppose that M � N . Let R ∈ Rel(D), and let x ∈ RM̂ . Then there is some y ∈ RM

such that x � y. Since M � N , there is some z ∈ RN such that y � z. But then x ∈ RN̂ also,

since RN̂ is closed under subsumption. Hence M̂ ⊆ N̂ .

Conversely, suppose that M̂ ⊆ N̂ . If R ∈ Rel(D) and x ∈ RM , then x ∈ RN̂ as well, which
implies that there is a y ∈ RN such that x � y. Hence M � N , as was to be shown. 2

This ordering isomorphism may be lifted to schemata, in the sense that we may convert any
�-compatible schema D to a ⊆-compatible schema D̂ which is isomorphic to D in both the
logical and order-theoretic senses. The following lemma shows how to achieve this.

2.3.9 Schema isomorphism lemma Let D be a �-compatible schema. Then there is a
⊆-compatible schema D̂ with the following properties.

(a) LDB(D̂, µ) = {M̂ |M ∈ LDB(D, µ)}.

(b) There is a database morphism iD : D → D̂ with underlying function M 7→ M̂

which is an isomorphism of relational schemata. Furthermore, the underlying function
iD

′ : LDB(D, µ) → LDB(D̂, µ) defines a ⊥-poset isomorphism (LDB(D, µ),�,⊥) ∼=
(LDB(D̂, µ),⊆,⊥).

(c) The schema D̂ is finitely axiomatizable if and only if D is.

Proof: The idea of the proof is quite simple. By the previous lemma, X̂ and X mutually
define one another. Thus, for any M ∈ LDB(D, µ), M and M̂ implicitly (at the level of
functions) define one another. With the aid of Beth’s theorem, we can lift these to explicit
definitions (at the level of logical interpretations). We then use these explicit definitions to
construct the appropriate view morphisms and axiomatizations. The details of all of this are,
inescapably, somewhat technical. The reader unfamiliar with these aspects of logic may safely
skip the rest of the proof.

We build a new schema D] with Rel(D]) = Rel(D) ∪ {R̂ | R ∈ Rel(D)}. (Here R̂ is just a
symbol, distinct from R, with Ar(R̂) = Ar(R).) For each R ∈ Rel(D), define the formula ψR

35



with v1, .., vAr(R) free as

(∃x1, .., xAr(R))(R(x1, .., xAr(R))∧(
Ar(R)∧
i=1

((xi = vi)∨
∨

τ∈Atoms(T )
(τ(xi)∧ιτ (vi))))),

and put

Con(D]) = Con(D) ∪ {(∀v1, .., vAr(R))(R̂(v1, .., vAr(R))⇔ ψR) | R ∈ Rel(D)}.

We then have that for any M ∈ LDB(D], µ) and R ∈ Rel(D), the relation R̂M is the null
completion of RM . Now since D is �-compatible, we must have that R̂ implicitly defines R
for each R ∈ Rel(D), in the sense that in any M1,M2 ∈ LDB(D̂, µ), R̂M1 = R̂M2 if and only
if RM1 = RM2 . Thus R̂ implicitly defines R, and so by Beth’s theorem [22, Thm. 6.6.2], it
explicitly defines R via a formula with exactly {v1, .., vAr(R)} free and whose only nonlogical
symbols are R and those of T . We denote this formula by θR.

Now we move the R̂’s to their own schema D̂. Thus, Rel(D̂) = {R̂ | R ∈ Rel(D)}. Define
the interpretation θ of Lang(D) into Lang(D̂) by letting Def(θ, R) = θR for each R ∈ Rel(D).
Similarly, the interpretation ψ of Lang(D̂) into Lang(D) is defined by letting Def(ψ,R) = ψR.
By the above constructions in D], it is clear that θ and ψ are inverse to one another. We
define Con(D̂) to be the set {ϕθ | ϕ ∈ Con(D)}. Here ϕθ denotes the interpretation of ϕ
in θ, as defined in [36] or [15, p. 160]. It amounts to substituting the formula θR for each
occurrence in ϕ of each R ∈ Rel(D), subject to the proper term substitution for the arguments

of R. With this definition, we have mutually inverse isomorphisms D
ψ
−→ D̂

θ
−→ D. Thus,

LDB(D̂, µ) = {M̂ | M ∈ LDB(D, µ)}, as required by (a), and ψ provides iD for (b). Note also
that the constraints of Con(D) and Con(D̂) are in bijective correspondence under this definition.
Particularly, one will have a finite basis if and only if the other does, thus establishing (c).
Finally, the previous lemma guarantees that ψ will be an order isomorphism. 2

2.3.10 Null completed schemata, morphisms, and views Let D be a �-compatible
database schema.

(a) The schema constructed in the previous lemma is called the null completion of D, and is
denoted by D̂. The isomorphism iD : D→ D̂ is called the lifting of D to ⊆, and is denoted
by the symbol iD henceforth.

(b) Given another �-compatible schema E and a �-compatible morphism f : D → E, we
define f̂ : D̂ → Ê to be iE ◦ f ◦ iD

−1.

(c) If Γ = (V, γ) is a �-compatible view of D, we define Γ̂ = (V̂, γ̂).

(d) For each extended simple R-type s = (R, (ω1, .., ωAr(R)), (η1, .., ηAr(R))), define the associated
⊆-restriction ρ̂(s) to be (σ1, .., σAr(R)), where

σi =

{
ωi if ηi = 0
ω̌i if ηi = 1.

For a extended compound R-type S, define ρ̂(S) =
∨
{ρ̂(s) | s ∈ S}.

36



2.3.11 View structure lemma Let Γ = (V, γ) be a �-compatible view of D.

(a) Γ̂, as defined in 2.3.10(c) above, is a ⊆-compatible view of D̂. Furthermore, this as-
sociation is injective; if Υ is another �-compatible view on D, then Υ̂ = Γ̂ implies
Υ = Γ.

(b) The assignment Γ 7→ Γ̂ induces a bijective correspondence between the projections on D

and the restrictions on D̂, and is defined on a relation-by-relation basis by sending the
compound extended R-type S to the restriction ρ̂(S).

Proof: (a) is immediate, since γ̂ = iV ◦ γ ◦ i
−1
D

, and by 2.3.9(b), iV and iD are isomorphisms
in both the logical and order-theoretic sense.
(b) Suppose that Γ = (V, γ) is a projection on D, let R ∈ Rel(D), and let Def(γ, R) be
defined by the compound extended R-type S. It is immediate that ρ̂(S) gives Def(γ̂, R), so
that γ̂ is indeed a restriction. To prove the converse, the key is to observe that if Γ1 =
(V1, γ1) is any restriction of D̂, then for each R ∈ Rel(D), Def(γ1, R) has a representation
as a compound extended R-type S with each s ∈ S of the form (ξ1, .., ξAr(R)), with each

ξi ∈ NullTypes(T )∪NullAugTypes(T ). This is because the schemata D̂ and V̂1 are null complete,
and so if any type τ ∈ T is preserved in any column, its associated null types must be as well.
But such a representation is precisely the image of a projection, as defined in 2.3.10(d) above.
Hence the association between projections and restrictions is a bijective one, as required. 2

2.3.12 Decomposition lifting theorem Assume that D is an �-compatible schema, and
let X be a finite set of �-compatible views of D. Let Y = {Γ̂i | Γi ∈ X}. Then {Γ̃[�] | Γ ∈ X}

is a direct decomposition of D̃[�] if and only if {
˜̂
Γ[⊆] | Γ ∈ Y } is a direct decomposition of D̂.

Furthermore, the set X corresponds to a projective decomposition if and only if Y corresponds
to a restrictive decomposition, with the projection-restriction identification given by 2.3.11(b).

Proof: To show that Y is a decomposition whenever X is, it suffices to note that the
association Γ 7→ Γ̂ preserves the order-theoretic properties of the views, in view of 2.3.9(b) and
2.3.11(a). The projective-restrictive association follows immediately from 2.3.11(b). 2

We are finally in a position to assert the projection equivalent of 2.2.9.

2.3.13 Decomposition theorem for projections Assume that D is �-compatible, that
T is closed under automorphisms, and that D̂ has local column independence and the least
model property. Then every ideal �-view of D is a projection, and the projections form a finite
decomposition framework for D.

Proof: Combine 2.2.9 with the above theorem. 2

The major drawback to the above corollary is that some of the properties must be checked in
D̂, and not in D. It is easy to see that D̂ will have local column independence if and only if D

does, so this check may be moved to D. However, the least model property does not translate
so readily. Indeed, even if D has the least model property, its least models may not correspond
to those of D̂. To work directly within D, we would have to formulate a more general notion
of model intersection, based upon � rather than ⊆. Such a formulation is far from simple.
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The conclusion seems to be that, from a mathematical point of view, one is best off working
in the ⊆-compatible framework. The �-compatible framework should be regarded as a “tuple
conserving” implementation trick. From a theoretical point of view, our strong isomorphism
theorems show this to be no compromise at all.

2.4 Horizontal Relational Decomposition

The decomposition of a relation schema into a set of its projections is generally known in the
literature as vertical decomposition [44, Chap. 4], for obvious reasons. Horizontal decomposition,
on the other hand, refers to splitting a relation into two or more relations, each of which is a
subset of the original [44, Chap. 5]. Now the characterization that all components in a direct
decomposition must be (up to isomorphism) ideal views (1.3.10) casts serious doubt that such
a vertical/horizontal distinction can be made on a formal level. This is particularly reinforced
by the example of 2.2.1, in which we show that “vertical” decomposition into independent
components is in fact totally a horizontal restriction, when suitably viewed. Indeed, the use of
this more general framework opens up an entirely new perspective on relational decomposition,
which includes but is not limited to traditional vertical and horizontal decompositions. A
complete presentation of such decompositions is beyond the scope of this paper; preliminary
results were given in [29]. Nonetheless, it is important here to provide a minimal discussion of
the degree to which what is known as horizontal decomposition is recaptured in our framework.
We provide two illustrative examples.

2.4.1 Example In [46], Smith proposed decompositions based upon types of attributes.
While this form of decomposition has subsequently received little attention in the literature,
we feel that it is nonetheless an important one. Let us illustrate the general idea with a simple
example, couched within our formalism.

Consider the schema D consisting of a single binary relation symbol R with the attribute
assignment R[EP ]. The domain E represents employees, and the domain P represents projects,
with R(x, y) meaning that employee x works on project y. Suppose that projects are further
broken down into two categories, classified and unclassified. The constraint is that an employee
may work on any number of unclassified projects, but may work on at most one classified
project. This defines a horizontally embedded functional dependency, in the sense of [46].
What this implies is that the attribute P is really the “disjoint union” of the attribute N ,
denoting unclassified projects, and C, denoting classified projects. To represent this within our
framework, each of these attributes has a type in the underlying type algebra. Denote these
types as τE, τP , τN , τC . The types τE, τN , and τC are atomic with τN ∨ τC = τP . The main
typing constraint for the relation R is

(∀x)(∀y)(R(x, y)⇒ τE(x)∧τP (y)).

The horizontally embedded functional dependency is given by

(∀x)(∀y)(∀z)(R(x, y)∧R(x, z)∧τC(y)∧τC(z)⇒ (y = z))).

As a logical extension of the standard notation for ordinary functional dependencies, we may
denote this horizontally embedded functional dependency by E → P [τC ].
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Let ΓN = (VN , γN) be the ideal view with VN defined to have the additional constraint (to
those of D)

(∀x)(∀y)(R(x, y)⇒ τE(x)∧τN (y)),

which restricts the second column of R to τN . Define the database mapping γN : D→ VN by
the formula Def(γN , S) = (R(v1, v2)∧τN(v2)), which just says that R in VN is the restriction of
R in D to unclassified projects. That is, Rstr(ΓN , R) = τN (v2). Similarly, let ΓC = (VC , γC)
denote the ideal view with VC defined to have the following additional constraints (to D).

(∀x)(∀y)(R(x, y)⇒ τE(x)∧τC(y))

(∀x)(∀y)(∀z)(R(x, y)∧R(x, z)⇒ (y = z))

The first says that R has the attribute constraint R[EC], while the second says that R obeys
the functional dependency E → C. Define the database mapping γC : D→ VC by the formula
Def(γC, R) = R(v1, v2)∧τC(v2)), which says that R in VC is the restriction of R in D to classified
projects. It is not difficult to see that {ΓN ,ΓC} forms a complementary pair of views of D, and
defines a decomposition quite different from the traditional projective variety.

2.4.2 Example In [14, 44], a form of horizontal decomposition based upon exceptions is
forwarded. The basic idea may be illustrated within the context of a simple example. Suppose
the schema D has a single binary relation symbol R[AB]. There are no formal dependencies
other than type constraints. However, the functional dependency A → B holds most of the
time, but there are exceptions. The desired decomposition separates those tuples for which
A → B holds from those for which it does not. Specifically, we decompose D into two views
ΓA→B = (VA→B, γA→B) and ΓA66 →B = (VA66 →B, γA66 →B), each also with the single relation symbol
R[AB]. In the view ΓA→B, we project just those tuples (a, b) with the property that if (a, b1)
is another tuple in the instance of R in D, then b = b1. In other words, this view projects
those tuples which have no conflicts regarding the functional dependency A → B. All other
tuples are projected into ΓA66 →B. In the terminology of [14], the schema of the latter view
satisfies the afunctional dependency A 66 → B. The pair {ΓA→B,ΓA66 →B} clearly forms a subdirect
complementary pair, as their union of their databases provides the database of D. However,
such a decomposition can never be direct; the two components are interdependent by their very
nature, and so such decompositions are not recaptured by our theory.

3. Conclusions and Further Directions

We have shown that, under very reasonable conditions which are met by many practical ex-
amples, direct complements of database schemata are unique. This means that “incompatible”
decompositions of a database schema cannot arise, and that any two direct decompositions
have a common refinement. The theory is general; rather than being restricted to a small part
of the relational approach, it is potentially applicable to a very wide variety of database models.

We have also provided selected insights into the application of this theory to the relational
model. Most importantly, we have shown that the theory completely recaptures the notion of
decomposition of a unirelational schema into projections, with reconstruction governed by a
join dependency, reinforcing clearly the critical rôle of null values in this context. When the
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relational schema is further constrained by universal Horn dependencies, we have shown that
the only possible views are of a very special type which may be computed in time linear in the
size of the database.

Our presentation on the application of this model has only scratched the surface, and there
are many further directions which should now be taken. We briefly identify the most important
ones which we are currently pursuing.

A theory of subdirect decompositions and their applications All of the results of this pa-
per are for direct decompositions, in which the components are independent. For the purpose
of decomposing a database schema into components which can be independently maintained
and updated, direct decomposition is the natural form to require. However, subdirect decom-
positions, in which the components are dependent upon one another, play a key rôle in other
database contexts. We are currently developing results in two of these areas.

In addressing the view update problem under the constant-complement strategy [5], de-
manding direct complements is needlessly restrictive. In [30], we have laid the groundwork for
expanding upon the pioneering work of Bancilhon and Spyratos [5], by providing conditions for
unique subdirect complements and further structural constraints which appear desirable for the
constant-complement update strategy. There, rather than moving to a ⊥-poset context (which
does not appear to provide the tools necessary to achieve the desired uniqueness results), we
have focused more closely on properties of general relational models. Specifically, to achieve
a uniqueness results for subdirect complements, we introduce a sort of logical (rather than
set-theoretic) monotonicity.

Another context in which subdirect rather than direct complements arise is that of the
classical theory of acyclicity of relational schemata [18], [7]. In [32], we have provided a gener-
alization of these classical results. The context of this generalization is a framework even more
general than that presented in this paper. Working within the most general context introduced
by Bancilhon and Spyratos ([4], [5]) in which database schemata are just sets and views are
just surjective functions suffices to recover most of the key results. The key is to focus upon
properties of the congruences generated by the views.

A theory of decomposition for incomplete-information databases The application of our
results to data models other than the traditional relational one is also an important direction.
We feel that the most important candidate at this time is the general incomplete information
relational model, identified in 1.1.7. Although relatively little of a practical nature has been
developed for this framework, its mathematical underpinnings are nonetheless very well under-
stood, being just first-order model theory. Perhaps the major problem plaguing this framework
is its extreme generality; it places so few restrictions on what can be represented that most
problems, such as the view update problem, are completely intractable [28] [49]. We believe
that by understanding what kinds of conditions must be imposed for such a schema to be
decomposed, we may begin to see what kind of restrictions should be made to move closer to
computational tractability of updates.
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