
Managing Knowledge about Information System Evolution

Matthias Jarke, Thomas Rose

Umverslty of Passau, P 0 Box 2540
D-8390 Passau, W Germany

Abstract. Thus paper describes the desrgn and mlhal prototype
implementation of a knowledge base management system
(KBMS) for controllmg database software development and
maintenance The KBMS employs a version of the conceptual
modellmg language CML to represent knowledge about the
tool-nded development process of an mformahon system from
requvements analysis to conceptual design to implementahon,
together w& the relationship of these system components to the
real-world environment m which the mformation system 1s
mtended to function A decision-centered documentation
methodology faclhtates commumcation across time and among
multiple developers (and possibly users), thus enabling
improved mamtenance support

1 INTRODUCTION

ESPRIT project DAIDA [JV87] investigates a new strategy for
KBMS development m the context of information systems
envu-onments Strongly based on knowledge about a part~ular
domain of apphcatlon, this strategy derives spectallzed
knowledge representations and tools from a formalized
requirements analysis Slrmlar to the coupling approach to
mtegratmg knowledge and data bases, portions of these
representahons are then reahzed m database programs, unbke m
the couplmg approach, however, the database structures and
programs may change whenever the higher-level knowledge
representation changes

Managing the relatlonshlps between requirements analyses,
spectilcatlons, designs, and Implementations m a knowledge
base reqmres strong evolutron support to be effective In the
growmg hterature on databases for software engmdermg
environments [BERN87], several different approaches have
been reported to provide this kind of support Early software
database efforts placed the emphasis on a consistent and
semantically supported modellmg of software ob/ecrs A good
example is the ObJect-onented IRIS data model [LK861 which
offers sophtsticated faclhties for modellmg objects together with
a hard-wired set of operators, these operators define a software
engmeermg methodology but a~. not themselves IRIS ObJects

In contrast, recent work m the software engmeermg commumty
emphasizes the need for a duect and exphcclt representation of
the softwareprocess itself modellmg not only the relationships
among design ObJects but also the intended and the actual
behavlour of the designers Several current models and
systems, mcludmg DAMOKLES [ABRA86], already consider
special kmds of process relationships (such as versions) The
CACTIS semantic database model offers functionally derived
atmbutes as an additional tool for evolution [HK87] Some
AI-based software engmeermg environments define whole
classes of transformation strategies whose apphcauon, when
documented m a software database, leads to typed
dependencies among software ObJeCtS [SKWSS], if sufflclently
powerful, the correspondmg type structures can also descnbe
complete transformation methodologres In a more special
environment, a complete set of evolution rules is described for
the ObJect-onented database systems ORION m [BKKK87]

In summary, two trends can be observed here the use of
structurally or behavlourally object-onented representation
mechanisms, and the exphclt representahon of transformational
operations as objects DAIDA mes to take both of these
approaches one step further to support consistent mamtenance
(error corrections, enhancements, and’extenslons), Eljsab&y,
and configuration of multi-layered software descnptlons In
contrast to the systems mentioned above, the CML knowledge
representation language [CML87] underlying the DAIDA
KBMS alows an arb~trary mstanahon herarchy of metaclusses
to be defined not only for ObJecta but also for their atmbutes
(which ate themselves conslde.red ObJectsi), this yields a lot of
flexlblllty in adaptmg the descnptlons of ObJects and
transformations to &fferent enwonments by creating language
dialects Atitionally, we view transformations as performed
design decrslons This means that a clear &stmctlon 1s made
between the task (or decision cl& to be solved, the execution
of this task m a part~ular sltuahon (the declslon mstunce), and
the descnphon of the tools that could be used, or are actually
used to support the execution Moreover, the concept of design
decision suggests future extensions that would include the
representation of goals and group declslon processes (e g ,
argumentation structures, project management) m the
knowledge base

Pernussmn to copy wthout fee all or part of tlus materml IS granted prowded that
the copws are not made or dlstrlbuted for chrect commercml advantage, the ACM
copyrIght notIce and the htle of the pubhcatlon and Its date appear, and notIce IS
gwen that copymg IS by permwon of the Assoclatlon for Computmg Maclunery
To copy otherwae, or to repubhsh, reqmres a fee and/or specdic pernuwon

0 1988 ACM 0-89791-268-3/88/0/0303 $1 50

Acknowledgments This work was supported In part by the
Comnusslon of the European Commumues under Esprit contract 892
(DAIDA) winch mcludes BIM, Belgmm, BP Research Center, UK, Cretan
Computer Research Center, Greece, GFI, Pans, France, SCS Techmsche
Automation und Systeme, Hamburg, FRG, Umverslty of Frankfurt, FRG,
Umverslty of Passau, FRG The CML language was developed by a team
under the &recuon of John Mylopoulos, Alex BorgIda, and Yanms
Vassdlou John Gallagher gmded a first pati,al lmplementahon wMe
Manfred Jeusfeld has slgmficantly contnbuted to ConceptBase Itself
Members of the Frankfurt group around Joachlm Schnudt helped with the
&scusslon of possible mapping strategies

303

Developmg an efficient and usable knowledge base management
system for the above concepts 1s a difficult task Therefore, the
DAIDA team decided to exploit the ad&tional power gamed by
concentrating On a particular subdomam of software
engineering, namely the development and maintenance of
database-mtennve information systems Wlthm this framework,
the DAIDA architecture, summanzed m figure l-l, 1s based on
the followmg concepts and observations

(1) Life-cycle ortented levels of representation:
DAIDA views an information system as a multi-layered
descrlptlon of requirements analyses, designs, and
lmplementahons [BORG881 The layers are. represented m
similar but distinct languages the conceptual modellmg
language CML lCML871, evolved from the requirements
modellmg language RML [GBM86], for requirements analysis,
a purely declarative version of the language Taxis [MBWSO],
called TaxlsDL P’DL87], for conceptual design and predlcatlve
specification, and the database programmmg language DBPL
[ECKH85], a successor to Pascal/R [SCHM77], for
implementa0on design and programmmg

For example, m a proJect meehng organization scenano
[BORG88, JJR87], a world model represented m CML would
give a general account of meetmgs as an activity m a ~-eal world
with time, a system model, also described by Ch4L (system)
obJeets and actwmes, would be embedded in the worl ! model 111
several funcuonal parts correspondmg to various user views
The combmed world and system model 1s mapped to a TaxtsDL
conceptual desqya which would mtegrate these views into user
interaction scripts as well as data obJect and transactlon
speclflcations organized m generallzatlon hierarchies, for
example, hlerarchles of documents generated dunng a meeting
In a last step, thus semanhc data and transaction model 1s
mapped to efficient and modular database programs m DBPL

(2) Extensible set of Interrelated transformation
asslstants: The literature has developed a nch set of
transformation rules for refining and lmplementlng
speaflcations For example, the CIP [BAUE85], Z [SPIV87],
and REFINE [SKWSS] proJects propose user-guided formal
transformation strategies, whereas the Programmer’s Apprentice
[WATE85] mews a program as a puzzle of adapted chchees
which must be mamtamed in a consistent state in case of
changes, using dependency-directed backtracking strategies
Most of these tools have been successful only for
programmmg-m-the-small, whereas mfonn:hon systems are
often quite large Therefore, DAIDA provides a flexible “open”
environment which can support a range of development
situations from (almost) manual to (almost) automatic,
dependmg on the currently available set of transC--n%on tools
To achieve this, transformation tools are embeddec’ m a fauly
large number of small “expert systems” called as:ls+‘ Its which
commumcate via the common knowledge base to br described
below, due to the multi-layered structure of DA rDA language
assutanrs for each level must interact with mzppw6 ms~~fmis
between the levels As a consequence & rest acting the
appllcatlon domam of DAIDA to data-intensive niformabor
systems, the special representations, theoret,, 11 results, and
methods of database design research can be e . \ ,I e

(3) Formahzation c#f mformatlon sys” .W require-
&hts* Most formal software development met1)dologles start
with a formal soeclficatio of system functionality Formahzmg
the requlremeits analysis wh&h leads to ‘hese ipeclflcafioni,
has been tradltlonally considered very dlfflcult or even
lmposslble Again, the concentration on dats-lntenslve
mformatlon systems unproves the situation Database schemata
naturally represent a system model of the relevant world
domam, therefore, the analysis underlymg the development of
the nnhal database schema can be reused as a startmg point for
the requirements analysis of new appllcatlons However, a

system
DCSlgPer

hzm DBPL 43y “i
F&g J-1: DAIDA arch~teetme

knowledge representation language more powerful than
tra&tional data definition languages, even for semantic data
models, 1s required to descnbe the relahonshlp of the system
model (as m the database schema) to the world model, and the
development of thus relahonshlp over time The conceptual
modellmg language CML [Cm871 offers an ObJect-onented
model with generahzed mstarmatlon hierarchies and embedded
tnne calculus to support this task

(4) Decision-based documentation knowledge base:
Representmg multiple layers of system descnptlon as well as
ther relationship to a descnphon of the underlymg real world
can offer powerful development and maintenance support for
mformatlon systems but requires itself a knowledge base
management system for mamtammg the &fferent descnptions
consistent over time Rather than Just modellmg (versions of)
development olyects, the DAIDA global KBMS (GKBMS)
views the software development and mamtenance process as a
history of tool-supported dec~or~~ These declslons axe due&y
represented, they can be planned for, reasoned about, and
selectively backtracked m case of errors or requirements
changes Ex ante, the GKBMS can be seen as an mtegrahve tool
server which helps users m seleetmg tasks and tools within a
large development proJect, ex post, It plays the role of a
documentahon service m which development ObJects are related
to the decisions and tools that created or changed them (1 e ,
Justify therr current status) Many recent ideas from design
database research apply to the nnplementatlon of such a system,
applying the DAIDA phdosophy to the GKBMS (viewed as a
data-intensive mformahon system about the history of “software
worlds”), a dialect of CML 1s chosen as the knowledge
representation language

This paper presents a frurly broad overview of a fiit GKBMS
prototype, a number of special questions are treated in more
detail elsewhere In section 2, the decision-centered approach
and support requirements of the GKBMS are illustrated by a
simple example Section 3 presents a bottom-up descnphon of
the design and prototype implementation, followmg a
conceptual model base management approach Sectlon 4
summarizes the system status and mentions some open
questions

304

2 GKBMS REQUIREMENTS OVERVIEW

2.1 A Support Scenario

In this subsection, we explore a simple scenano using some of
the decisions mvolved m mapping a TaxlsDL generalization
hierarchy of data classes, and the corresponchng hierarchy of
transactions, to a set of relations, views, mtegnty constramts,
and database transactions m DBPL The example 1s mtenhonally
stmphfied smce our goal 1s not to &scuss the complex problem
of mapping semantic data models, rather, we want to show the
knowledge structures and tools needed for a GKBMS

In Fig 2-l (*), the developer has employed a hrerarchrcal text
browser tool to determme unmapped TaxlsDL objects He has
further decided tofocus on the mappmg of entity structures m a
document data model, m particular, invitations and their
generahzatlon, papers This selectlon causes the &splay of a
menu with applrcable akcrslon classes and cools There are
several possible mapping strategies [BGM85, WEDD87],
drscrrbuce would generate one relahon per TaxisDL entity class,
whereas move-down only generates relations for leaves of the
hierarchy and represents the other ones by Views (called
constructors m DBPL)

r..‘,- .&I *I”- .a*Ih*h. .J”*., -I-
Fig 2-2: Graphlcal display of dependencies and code

frames generated by mappmg rules

,
Fig 2-l: Browsing design ObJects and focusing on an ISA

luerarchy of the conceptual design

The graph in fig 2-2 shows dependencies created by the
decision for move-down, relatmg the new objects to exlstmg
ones and to a representation of the applied tool Furthermore,
selection of the InvltattonRel node causes access to, and &splay
of, the correspondmg source code m an editor

InvltattonType contams a set-valued attnbute, a normahzatlon
declston 1s therefore offered m the menu, leading to the
extended dependency graph m fig 2-3 The new selector
expresses the referential mtegnty constraint among the two
relahons, whereas the new constructor allows the reconstruction
of the nntml, unnormahzed invitation relation Addihonally, fig
2-3 demonstrates how automactc and manual execution of
declsrons could interact Observmg that the system contains
only mvitations and no other subclasses of papers, the
developer decides to “make the system more user-fnendly”, by
replacing the artificial paperky attnbute (nntlally required to
map the object-onented TaxisDL model w&h does not have
keys) v&h dare, author This change also implies adaption of
the corresponcimg constructor, selector, and possibly
transaction definitions

(*) The graphical tools shown m the figures h:ve been
implemented m a SUNTM envuonment (see section 3 3) but are
simulated here with a Macmtosh for clanty of exposition

FIN. 2-3. Dependency graph and code frames after
normahzatton and key substmmon

I---- -- --m---m - - m---m - m----m ,

L

* J

Fig 2-4. Code frames and dependency graph after
backtrackmg the declslon on key substitution

305

Unfortunately, the assumpnon that Invrtatlons are the only kmd
of Papers leads to an mconslstency as soon as the mapping of
Minutes, the second subclass of Papers, 1s considered (fig
2-4) Therefore, the declslon to choose associative keys must be
retracted, together with all Its consequent changes, without
redoing all the rest of the design, supporting this connstent,
selective backtrackmg IS the mam purpose of mtroducmg the
exphclt document&on of design declslons and dependencies In
the current example, the mconslstency can be resolved by
selectively backtrackmg to the state before the mtroduction of
assoclatlve keys, m other cases, or if the granulanty of
representahon m the dependency graph 1s msufflclent, atihonal
manual or tool-a&d corrections may become necessary Note,
that the graph m fig 2-4 only hlghhghts the ObJects to be
changed when mtroducmg Mwtes, the actual correctton would
need a more deWed representation -- the GKBMS must have
some kmd of zoomrng faclltty for both design objects and
design declslons

2 2 Decision-Centered Representation

The above example should have illustrated how the interaction
between design ObJeccs and design cools 1s mdated by human
or computerized desrgn decrslons In the followmg, we show
that the semantic representatton of tis mterrelahonshlp m a
knowledge base can serve as the basis for a wide variety of
supportmg roles provided by the GKBMS Spectflcally, the
example illustrated selective exploration of a design status,
system-guided tool SekChOn, declqlon documentation and
selective maintenance (leading, among other things, to
versions) This section presents an informal overview of a
conceptual semanhc model to support these features

The term design ObJect denotes any software ObJect and
document mvolved 111 world/system modelhng, system design
and database programming Figure 2-5 shows the GKBMS
view of design objects As in oblect-onented databases, design
objects are classified by a hierarchy of design object classes
which form a model of the information system To enable a
uniform representahon for all stages in the software life cycle,
the representation must be abstract Thus, tokens of the
GKBMS only represent charactertsttc features of sources
recorded outside the GKB m the DAIDA sub-environments In
the fiit GKBMS prototype, these design oblec I classes are
based on the syntactic structures of the DAIDA languages,
CML, TaxlsDL, and DBPL

The GKBMS represents mformahon system development as a
process of tool-alded execution of design declsrons (fig
2-6) Design declslon classes specify how to transform an
exntmg set of design objects into another set of objects Design
decision lnscances reflect history and ratlonales of the
development

Design decision classes are closely related to design tool
specrfwatlons Design tools assist the user m executmg
design declslons Therefore, each design a!eclslon class IS hnked
to a set of tool specifications A decrslon class may be fully
supported by a tool, or the tool may Just ad manual declslon
execution In the latter case, venfication obhgahons are defined
by the decmon class for those constramts not guaranteed by the
too1

Figure 2-6 Illustrates the selection of apphcable tools for an
active ObJect and the documentaaon of actual dectslons Input
and output mterrelatlonshlps are denoted by FROM and TO
lmks (not shown are predlcatlve spectflcahons of the I/O
relationshrps) Tool assoclattons are represented by BY lmks
The class of a selected ObJeCt 1s matched agamst the input
classes of decision classes, by teshng the other mput objects and
precon&hons of these classes, possible declslons apphcable to
this ObJect are determmed. A tool is now applicable to the mlhal
ObJect If it can execute (1 e , is associated wrth) one of these
declston classes, normally the most specific one For example,
mapping a TaxlsDL enhty class to the correspondmg DBPL
relations and auxiliary structures could be executed
serm-automahcally by a speciahzed mappmg tool, or manually
by an &tor (associated with the most general DBPL mapping
declsron)

At the level of GKBMS mstances, each performed design
decision IS associated with a set of design ObJects and tools By
convention, links labeled with small letters are instances of
those denoted by capttals Due to this mstantiahon prmclple, all
lmks among GKBMS mstances must be mterpreted as specified
at the level of classes and tool specrfications For instance, each
design ObJeCt is associated with a set of design Objects and a
decrston reflectmg its development In turn, each design
decision and tool applic&on is Justified by a set of design
ObJects (1 e , status of system development)

Fig 2-5. Levels of design object knowledge base
Fig 2-7. Declslon instance created after selection and tool-

aded execution of an apphcable declslon class

306

As shown in figure 2-6, the GKBMS consists of three levels of
representatwn

l A conceptual process model at Its top layer reflects
mformatlon system development and maintenance as a
process of tool-supported decisions. this layer also provides
concepts (1 e metaclasses) to express knowledge about
design objects, tools and their mterrelafionshlps

l At its rmddle layer, the GKBMS comprises knowledge about
design ObJects, decisions and tools, in contrast to recent
proposals (cf section l), this development knowledge IS
extensible to capture additionally evolved knowledge about
languages, design decisions and tools In Its first prototype,
the GKBMS provtdes a prehnunary set of rather general
design decision classes such as mapping I refinement This
kernel knowledge ~11 then be extended based on improved
tool assistants and expenence gamed during the DAIDA
project In parallel, sophlsticatcd design object classes ~111
be determined to cover the requirements of declslon classes
and tool specifications As a startmg point, design ObJect
classes follow an abstract syntax of applied languages

l At the bottom layer, the GKBMS provides documencacton
service, 1 e recoidmg of executed-declslons, applied tools
and mvolved design ObJects as GKBMS instances, which
are themselves abstractlons of ObJects external to the
GKBMS

Thus approach differs m at least two ways from typical software
databases or object-orlented systems First, the GKBMS
represesltation starts at a higher level of abstraction, Its
lowest-level mstances (the actual software documents, human
decmons, and tools) are outside the system On the other hand,
addmg the highest metalevel allows for extenslblllty at the
language level Taken together, these propeties should make It
relatively easy to mtegrate heterogeneous sub-environment
under the same GKBMS

A second point is that, m contrast to typical object-onented
style, methods/tools are not directly associated with ObJect
classes but only mdm&ly via the mtiahng concept of decision
class This should, among other things, make it easier to
enforce methodology m design processes smce a methodology
can be viewed as a global decision class

3 GKBMS IMPLEMENTATION DESIGN

It appears reasonable to base the unplementahon of an extensible
knowledge representatton language such as CML on an
extensible KBMS archttecture In this architecture, the three
kmds of knowledge identified m the last section (object,
decision, and tool knowledge), and the specific tools sketched
m section 2 1 are embedded in a conceptual model base
management system, ConceptBase ConceptBase which
reorganizes and extends an earlier CML support system
[GALL851 Implements CML based on the definitions m
[CML87], augmented with features to descnbe system
behavlours, complex object conflguratlons, and display
facrhties This section describes ConceptBase and relates its
features to the GKBMS requirements and tools

3.1 ConceptBase Kernel System

ConceptBase 1s organized m three levels accordmg to three
Wferent mterpretahons of CIVIL language objects [CML87], see
figure 3-l The lowest level, the propostclon processor,
represents the knowledge base as a semanhc network with time
and a logic-based assertlon language This level 1s useful not
only for the formal defimhon of semantics but also as a basis for
graplucal, hypertext-style presentation (cf fig 2- 1 to 2-4)

At the second level, the object processor understands the
knowledge base as a deductive relational database, in this way,
large sets of snn&uly structured obJects can be managed more
efflclently The htghest level, the conceptual model processor,
offers complex object mampulahon and preSentahOn We now
dscuss each of the levels m turn

A CML proposition 1s a quadruple

p = <x, 1, y, c>

where

p IS the rdenttfier of the proposition,
x is the name of the source proposition,
1 is the label of the proposition,
y IS the name of the destmanon proposition and
c is the tune associated with p

One can interpret such a proposition as a dlrected lmk m a
network the node x has a lmk labelled 1 to node y at time c and
this lmk has the name p Note that nodes are also represented by
propositions For example, p can appear as the source
component of another proposition p ’

Axioms of CML resmct the set of well-formed networks and
help define their semantics They reflect the existence of
propositions with predefmed interpretation Classification
allows grouping of proposlttons to classes which are agam
proposihons This IS donr, by msertmg rnstanceof hks from the
proposltlons (so-called znstances) to then class
Speclallzatlon 1s done analogously by rsa propositions If
two proposlhons cl ,c2 are connected by a directed path of Isa
lmks then every instance of cl must be an instance of c2
Aggregation employs attrrbute propositions for composing
simple ObJects to complex ones Deduction (rule
propontions) allows the definition of Horn clauses which assert
a proposltlon m their conclusion Thus, there are exphcrt
proposihons, mhented proposlhons (through speclahzatmn) and
deduced propositions Constraints (construtnt propoutlons)
place resmchons on the instances of a class They are connected
to the class by constramt proposlhons which point to ObJects
representmg first-order 1og1c expressions Certam axioms define
how these expressions have to be apphed to the instances of a
class Behavlours (behavrour propositions) are much like
methods of classes m SMALLTALK [GR83] They associate
operations such as create or aisplay to the lnstan~ of a class by
appropnate behavrour hnks

Thus, the mterpretatlon of each proposltlon depends on the
class(es) It belongs to For example, there 1s a predefined class

ISA-I = tSunpleClass, Isa, QmpleClass, Always,

whose mstances, e g

~37 = chzvuanon, Isa, Paper, Always>,

relate speclahzed simple classes to their generahzahons If we
want to know how to interpret ~37 we have to look for a
proposition hke

p37a = ~~37, tnstanceof, ISA-I, t37a>,

where t37a 1s the time interval dunng which we want Invltatron
to be a specmhzahon of Paper, presumably Always

307

The Proposrtron Processor enables the mampulation of
proposlhons accordmg to the axioms of CML The interface of
the proposrhon processor 1s defined by the behavlour lmks but
mainly consists of the two operations retneveproposinon(p)
and creategroposrtron(p) which allow the insertion of new
propositions and the querying of the proposltlons m the
ProposItIon Base subject to the content of the CML Axiom
Base Several physical representations (e g Prolog
workspaces, external databases) of proposltlons can be
managed by .?e proposltlon base In Its interface it exports
operations for retnevmg and creatmg stored proposlhons (as
opposed to the proposition processor as a whole which deals
with stored, inherited and deduced propositions) The CML
axiom base mamtams the semantics of the six predefmed links
listed above by mterpretmg the rule and construm proposrtions
attached to them Thus, the axioms of CML are represented by
propositions themselves, enabling very flexible modlflcation
and extension of the language Smularly, the trme components,
and the relahonshlps (e g during, before) between them, are
agam viewed as propositions

The next layer of ConceptBase, the Object Processor,
groups propositions around a common source the ObJect
Identifier Consider, for example, a class TDL-EntttyClass
called Inwtatron, which relates mvltatlons to persons by an
attribute sender The ObJect Transformer transforms this
class mto a set of propositions as shown m Fig 3-2 Links
without label stand for mstanceof propositions The time
components of the proposmons are not shown m the figure, the
followmg proposmons show a possible configuration of two of
them

Object Processor

Fig 3-1 Overall architecture of ConceptBase with GKBMS

PI = <fnvrtalron. rnstanceof CLASS versronl7>
PI ‘= <PI (instanceof, InstanceOf~omega 21-Sep-1987+>

InstanceOf-omega = <PROPOSITION, mnstanceof, CLASS, Always>

The time component of PI, versronl7, stands for the time
interval during which version 17 of the design 1s regarded as
valid [CML 871 On the other hand, PI’ asserts that PI IS
known since 2Z-Sep-1987, 1 e , the programmer told the KB
about PI on September 2 1,1987

. PROFOSIIloN

I

Fig. 3-2: Proposlhonal represkntatron of Invrtatton

After transformation, the ObJect processor passes the generated
proposltlons to the proposlhon processor After executmg a
decision, the knowledge base must be m an consistent state
(satisfying all the axioms of CML and the constraints imposed
on certam ObJects m the knowledge base) Thrs 1s venfied by a
Consistency Checker [GALL861 which utilizes mformatlon
of the proposlhon processor (especially of the CML Axiom
Base) Since a whole set of operations is passed to the
proposltlon processor, set-onented opttmlzatlon of the
consistency check 1s bemg stud&

The Inference Engmes support various proof strategies for
question-answermg on the KB (in the current implementation,
the Prolog prover with some enhancements concemmg negation
1s the only such proof strategy) Quenes are bmlt usmg (open or
closed) first-order logic expresslon over c%% ObJects Since the
same assetion language is used m rules (see rule proposlhons
above), the inference engines are also capable of evaluating
rules The inference engines may enhance them performance by
lemma generation, this capablllty is, e g , used m creating
dependency graph ObJects of the GKBMS Several hme calcuh
may be supported by different mference engines, currently, the
models of [ALL.E83] and [KS861 am supported

Finally, the Conceptual Model Processor uses the object
processor to combme tools for the mampulatlon of models
which consist of all ObJects relevant to an application of
ConceptBase, e g , the GKBMS Models constitute highly
complex mull-level ObJect structures which are mamtamed m
hlerachles Different models may share some objects or
(sub-)models Conflgunng a model for a speclflc apphcatlon
means the activation of the comspondmg nodes m the lattice,
1 e making their objects accessible for the proposition
processor This work 1s done by the Model ConfiguratIon
module which corresponds to a complex obJect database, to
date, only a snnple mam memory version of this component has
been implemented The ModelDIsplay and InteractIon
module provides tools for dlsplaymg, browsing and edmng of
(complex) ObJects as well as configurahons of ObJects

308

\
N-BPL-Rel

DBPL_sclcaor

-9 DBPL-Conm

,,,,,,,-..,->_wI m-“....xx ,.“,_x-- -_1_1- +* z

Fig 3-j: Proposlhon-level representation of design declslons

3 2 CML Model of Information System Evolution

The GKBMS 1s implemented as a model m ConceptBase This
model realizes knowledge bases of design oblects, declslons
and tools As outlined m section 2 2, the GKBMS consists of
three levels of representation Figure 3-3 shows thus layered
model of the GKBMS at the proposition processor level For
clanty of graphical presentation, some classes are duplicated,
moreover, asserhons and tool speclficafions are ormtted

At the conceptual level, the GKBMS Introduces metaclasses to
express design ObJect and design declslon classes Formally,
metaclass DesrgnDecrsron provides the expressive faclhties to
build design decision classes upon input (FROM) and output
(TO) relahonshlps (cf section 2 2) Attibutes of concrete
decision classes must be instances of these propertles For
example, there are two lmks relating decision class
DecNormalrze to ObJect class DBPL-Ret, one being an mstance
of FROM, the other one bemg an Instance of TO (Normqlrzed
DBPL-Rel IS a speclahzatlon of DBPL-Rel) Constraints on
PROM and TO define, for example, the decomposltlon of
declslon classes mto PART declslons as a basis for
configuration control (not shown m the figure)

Due to the mstantiahon prmclple, the design declslon base of the
GKBMS 1s extensible m case of new tools or evolved expertise
Constramts at the second level express formal mputioutput
relatlonshlps for concrete decision classes Instantiation of a
decision class thus defines a proof obllgatlon that these
constraints are satisfied Since tool speclfrcatlons provide
guarantees for certain behavlour, only those parts of the
constramts not guaranteed by tool specflcahons have to be
tested. This can be done m a way smular to mtegnty checkmg m
transactions (the decision instance defmmg a, possibly nested,
transaction) For example, m fig 3-3, normallzelnvrtattons
must satisfy that InvttatlonRelZ and InvRecelvRei are
normahzed DBPL relations with correct keys, however, as
Illustrated m section 2 1, the key decision may be executed
manually, thus creatmg a proof obhgahon (the “proof’ may be
either formal or by ‘&nature” of the declslon maker)

At the lowest level of documentation, the executed decision
Normalrzelnvrtatrons represents a declslon on normalizahon
mterrelatmg the object mstances shown m figure 3-3

Conversely, metaclass DesrgnObJect provides facilities to
express the Justiymg decision of an design oblect and its source
reference Instances of DestgnObJect, such as the decision
object class DBPL-Rel, charactenze mamly the language
constructs and semantic configuratmns of ObJects offered by the
sub-environments (m DATDA the CML, TaxlsDL, and DBPL
objects, cf fig 1-l)

3.3 DewIon-Based Tool Support

Due to the uniform representation of each knowledge base m
CML, the GKBMS mamly supports three tasks

analyzwag the evolutron - analyzing information system
evolution by browsmg m declslons and their causal ordermg,
addltlonally, arbitrary swltchmg between browsmg of
performed declslons, design objects possibly at different
stages of the development process and tool specifications is
provided The latter enables a powerful navigation through
development processes and outcomes
decwon processing - besldes pure backtracking of
declslons, tool speclficatlons enable some kind of revlslon
support, for instance, addmg an attnbute m the design could
be processed by the GKBMS by replaying declslons
(GKBMS tests ther re-apphcablhty)
conceptual tool server - based on Its funchonahty as central
repository, the GKBMS serves as a board for tool
commumcahon, tools are enabled to consider results gamed
by other tools Additionally, manual modlflcatlons are
supported by the analyzing faclhties

This section describes three utthhes which can be built on the
decision-onented representation of the development process and
the uniform formahsm to present development processes and
outcomes

309

3 3.1 Navlgatron m Declslon Hlstorles

As rllustrated m section 2 1, the GKBMS enables browsmg
along and arbmary swrtchmg between several dlmenstons

l status-orrented, by browsing requtrements, desrgns,
unplementatrons, and then mterrelanonshrps,

l process-orrented, by followmg mapping and refinement
relauonshtps and therr causal ordenng,

l temporal, by focusmg on system versions and followmg the
hrstory of desrgn oJects and desrgn declstons

Such an exploration typmally starts from a focus obJect or
decslon, tool selectron for this focus (using the Idea shown m
ftg 2-6) will also display whmh of the above explorahon
duectrons are applmable to the focus m the current state under a
grven methodology To support exploratron by focusing,
browsmg, and zoommg with dnect mampulahon, we have
implemented a number of wmdow-onented interface tools
whmh are formally part of ConceptBase’s Model Dmplay and
Interaction module (cf fig 3-l)

l A text DAG browser (fig 2-l) allows the display and
browsmg of a tree-lrke CML structure at a dynammally
defined depth and width Bastcally, rt consists of a
recurswely embedded set of wmdows, each vanable m srze
and endowed with a scrollmg facrhty

l A graphical DAG browser (used m frg 2-1 to 2-4 to
show dependency graphs) offers a graph& representatron
of the same kmds of data structures as the text browser A
simple standard layout 1s offered but can be changed by the
user in a persistent way

l A relational dksplay shows the propertrees of ObJects m
tabular form with vanabie column width and scrolhng (thus
correspondmg to the ObJect Processor level in fig 3-l), the
extension to a non-first normal form display of complex
obJects 1s underway This display 1s associated wrth a CML
form editor, to mteract wrth the knowledge base and to
work with CML code frames

l Focusing m any of these structures 1s done by mouse
selectron. hterarchrcal menus (cf fta 2-l) wtth
context-dependent content are used for too] selectron as
illustrated m section 2 1 A dialog manager wrth
Improved error handlmg and recovery factlrtres IS under
construction

3 3 2 Version and Configuratlon Management

A frequent operatron on a GKB ~111 be the configuratron of a
complete denvahon structure and Its subsequent proJectron on
one level, e g , “configure the latest complete DBPL database
program system version”, this involves excludmg all non-used
versrons of design obJects, and ensunng consistency and
suffmlent completeness of the remammg ones wtth respect to
specrftcattons and decrslon class defmrttons As the example m
ftg 2-3 and 2-4 shows, there 1s also a need to retam multiple
versions of certam system components, wrthout duphcatmg all
the lmplementatton The decrsron structure described m sechon
3 2 can be exploited for this kmd of version and configuration
management

l Allowable multi-level confrgurattons of world/system
models, destgns, and rmplementations are those which are
mterrelated by mapping declsrons (verttcal configuratton by
means of equrvalences)

l Allowable one-level (sub) configuratrons must be consrstent,
as documented by refinement decrsrons mstde a (sub)
configuratron and mappmg decision on coherent hrgher-level
obJects (hortzontal configuratton by means of component
configuratton)

l Verslomng rests upon choice decrsrons An altematrve
version 1s created each hme an obJect 1s refuted or mapped

altematrvely(versronrng by dectsrons to retract), typically,
such a retract declsron would start a (nested) sub-transachon

Notrcmg stmtlantres of these krqds of decrsrons to the three
drmensrons of equtvalence, conf:guratton, and version m
[KAC86], a verston and configuratton management mechanism
slmtlar to the one proposed there IS bemg consrdered Ftg 3-4
represents the example of sectron 2 1 from thts vrewpomt In
thts way, version and conftgurahon management come as a
natural by-product of the decrston-based documentation
approach

$ dac&akemhvelmp~~s(Fboleed&lwons)
0bJecl.s are. de-llOtd aS fOflOWS
Pa ennty class Papers CP constnrctor ConsPapcrs
In enhty class Invrtatwns IR relauon InvRecervRel
MI enuty class Mrnrtes S selector InvatahonPaprlC
I relaaon InvrtanonRel CI constructor Invrtarwn

Fig. 3-4. Decrsron-based conftguratrons and versions the
second rmplementatron, whose mapping
dependency 1s denved via the refinement declsmn
on keys, 1s based on an assumptron whrch 1s
mconststent under the expanded desrgn version wtth
respect to camhdate keys

3 3.3 Reason Mamtenance and Group Support

In the currently begmnmg second stage of DAlDA, the facthhes
described so far wrll be enhanced with three further “expert
system”-1rke components As an enhancement of the navrgatron
facilities, the predmatrve specrficatrons of tool and decrsron
classes together with ConceptBase. rules and constramts will be
used to develop a desqn explanatron faclhty

The representatron of decrston structures supports the storage of
redundant dependency mformatron as the basts of a reason
mamtenance system [DOYL79, DJ88] whtch can contnbute
to the automatrc propagatton of the consequences of hrgh-level
changes However, smce current RMS can handle only fairly
small dependency networks effmlently [DEKL86], we are
studying then combmatron with the dbstrachon mechanisms of
the GKBMS

Often, multiple developers conmbute to a software system
Therefore, some design database approaches study transactron
concepts adapted to the organmatron of collaboratmg groups
[KSUWSS] Whrle the GKBMS browsing and explanation
facrhhes enable mformatton exchange m such a group, exphctt
mechanisms for conflmt handlmg (beyond consrstency
checkmg) are mrssmg In [HJ88], we develop a proposal for
enhancing the above menhoned RMS wrth mechamsms for
multmrtterra chotce support, argumentatton on dertvatlon
dectslons, and explmlt group work organtzatlon m an
ObJect-one&d context.

310

4 CONCLUSIONS

In this paper, we med to demonstrate the usefulness of a
decision-based conceptual modellmg formahsm m the
management of software development and maintenance
processes The DAIDA architecture m general, and the GKBMS
design m particular, address two relevant questions m the
database context From the tnformatron systems design
vrewpornt, they present a decision-based approach how to
mamtam large software systems developed m mulhple layers
and languages consistent over time, explcutmg special proper&es
of data-mtenave apphcahon domams such as reuse of a world
model, data-onented and therefore often algonthnucally easy
programmmg, or selective backtracking of small design
potions These ideas, some of which have been med m the AI
area before, are embedded here m the ObJect-onented deductive
database context of ConceptBase From the vlewpolnt of
general KBMS unplementatron research, DAIDA proposes a
novel way of reahzmg KBMS by supportmg them with
semi-automatically-developed dedicated information systems
This Idea, which reqmres a powerful GKBMS to be useful, will
be further elaborated m a forthcommg paper

The GKBMS IS bemg Implemented m a UNIX environment,
usmg BIM-Prolog whch offers interfaces to graphical display
and external DBMS (relational and Entity-Relahonslup) Based
on expenences with the current prototypes, a large number of
efficiency questions, especially concerning deductive querying
and consistency-checkmg of complex design ObJects, are
scrutmized m more depth Another area of current mterest 1s the
augmentahon of the GKBMS with more ngorous development
strategies, based on algebraic speclficatlons, m dedicated
apphcahon contexts such as model-based declslon support

REFERENCES

[ABRA87]

W-=831

[BAUE85]

[BERN871

[BGM85]

[BKKK87]

ISM861

[BORG881

i-871

Abramowlcz, K , Dlttrich, K R , Gotthard, W ,
Langle, R, Lockemann, PC, Raupp, T, Rehm,
S , Wenner, T (1987) Datenbankunterstutzung
fur Software-Produktlonsumgebungen, Proc
Datenbanken tn Biiro, Technrk und W~ssenschaft,
Darmstadt, FRG, 116-131
Allen, J (1985) Mamtammg knowledge about
temporal mtervals, Comm ACM 26,11,832-843
Bauer, F L et al (1985) The Muntch project UP
Volume 1, Heidelberg, FRG Spnnger-Verlag
Bernstein, P A (1987) Database system support
for software engmeenng, Proc 9th Intl Conf on
Sofmare Engmeertng, Monterey, Ca, 166- I79
Bouzeahoub, M . Gardann, G , Metals, E
(1985)-Database design tools. an ixpert sy&ms
aooroach. Proc 11th Intl Conf Verv LarPe Data
&es, &ckholm, Sweden, Si-95 s ”
BanerJee, J , Kun, W , Kim, H-J, Korth, HF
(1987) Semantics and Implementation of schema
evolution m obJect-onented databases, Proc
ACM-SIGMOD Conf , San Francisco, 3 1 l-322
Br&e, M L, Mylopoulos, J eds (1986) On
Knowledge Base Management Systems,
Spnnger-Verlag, New York
Borglda, A , Jarke, M , Mylopoulos, J , Schmidt,
J W , Vasslliou, Y (1987) The software develop-
ment environment as a knowledge base manage-
ment system In Schmidt, J W , Thanos, C (eds)
Foundatrons of Knowledge Base Management,
Heidelberg Sprmger-Verlag, to appear
Borgida, A , Mylopoulos, J , Vasslllou, Y
(1987) Conceptual Modeling Language An
Informal Descnption, Report, ESPRIT ProJect 107
(LOKI), Crete Research Center, Irakhon, Greece

[DEKL86] de Kleer, J (1986) An assumphon-based TMS,
Art#icral Intellrgence 28,2, 127-163

[DJ88]

[Do=791

[ECKH85]

[GALL 851

[GR83]

[GBM86]

wJ881

[=871

[JJR87]

W37l

[KCB86]

[KS881

Dhar, V , Jarke, M (1988) Dependency-dn-ected
reasoning and learning m large systems mamte-
nance, IEEE Trans Softw Eng 14,2,21 I- 227
Doyle, J (1979) A truth mamtenance system, AI
Memo 52 1, MIT. Cambndrze, Mass
Eckhardt, h, Ehelmann, j ,-Koch, J , Mall, M ,
Schrmdt. J W (1985) Draft reoort on the database
programmmg‘ language D’BPL, Unlversltat
Frankfurt, F R Germany
Gallagher, J (1985) Overall design of CML
support system, Workmg Paper, Espnt proJect 107
(LOKI), SCS Hamburg, FRG
Gallagher, J (1986) Notes on consistency
checkmg m CML, Workmg Paper, Espnt proJect
107 (LOKI), SCS Hamburg, FRG
Goldberg, A , Robson, D (1983) SMALLTALK
80, the language and its Im$em&ta&on, Addison
Wesley. 1983
Green&an, S , Borglda, A, Mylopoulos, J
(1986) A reqmrements modellmg language and Its
logic, m Brodle, M L , Mylopoulos, J (eds) On
Knowledge Base Management Systems, New
York Spnnger-Verlag, 47 l-502
Hahn. U . Jarke. M (1988) A multi-agent model
for gr&p’nego~at~on’supp& To appe& m Proc
IFIP WG 8 4 Working Conf Orgaruzational
Dectston Support Systems, Lake Como, Italy
Hudson,S E , Kmg, R (1987) GbJect-onented
database support for software engmeermg Proc
ACM-SIGMOD Conf , San Francisco, 491-503
Jarke, M , Jeusfeld, M , Rose, T (1987) A global
KBMS for database software evolution design and
development strategy, Report MIP-8722,
Umversitat Passau, FRG
Jarke, M , Venken, R (1987) Database software
development as knowledge base evolution In
ESPRIT ‘87 Achievements and Impact,
Amsterdam North-Holland, 402-414
Katz, R , Chang, E , BhateJa, R (1986) Version
modeling concepts for computer-alded design
databases, Proc SIGMOD Conf, Washington,
D C , 379-356
Kowalslu, R , Sergot, M (1985) A logic-based
calculus of events, to appear m Schmidt, J W
Thanos, C (eds) Foundatrons of Knowledge
Base Management, Sprmger-Verlag

[KSUWSS] Klahold, P , Schlageter, G , Unland, R , Wilkes,

WW 801

[SCHM77]

[SKWSS]

[SPIV87]

[TDLOl

[wATE85]

mD871

W (1985) A trinsactlon model supportmg
complex apphcations m integrated mformation
systems, Proc ACM-SIGMOD, Austm, 388-401
Mylopoulos, J , Bernstem, P , Wong, H (1980)
A language for deslgnmg mterachve data-mtenave
applications, ACM TODS 5,2, 185-207
Schnudt, J W (1977) Some high-level language
constructs for data of type relation, ACM Trans
Database Systems 2, 3,247-261
Srmth, D R , Koti, G B , Westfold, S J (1985)
Research on knowledge-based software engmeer-
mg environments at Kestrel Institute, IEEE Trans
Software Engtneerrng SE-II, 11, 1278-1295
Spivey, J M (1987) An mtroduction to 2 and
formal speclficahons, Oxford Umverslty, UK
Borgida, A, Melrlaen, E , Mylopoulos, J ,
Schmidt, J W (1987) The TAXIS Design
Language (TDL), Report, ESPRIT ProJect 892
(DAIDA), Crete Research Center, Irakhon, Greece
Waters, R C (1885) The Progammer’s
Apprentice a se&n with KBEmacs, IEEE Trans
Software thQlm?ennQ SE-II. 11.12961320
Wkddell, G”E C (f987) Phykcal design and
query compilation for a semantic data model, Ph D
Thesis, University of Toronto, Canada

311

