Managing Knowledge about Information System Evolution

Matthias Jarke, Thomas Rose

University of Passau, PO Box 2540
D-8390 Passau, W Germany

Abstract. This paper describes the design and 1mtial prototype
implementation of a knowledge base management system
(KBMS) for controlling database software development and
maintenance The KBMS employs a version of the conceptual
modelling language CML to represent knowledge about the
tool-aided development process of an information system from
requirements analysis to conceptual design to implementation,
together with the relationship of these system components to the
real-world environment in which the information system 1s
intended to function A decision-centered documentation
methodology facilitates communication across time and among
multiple developers (and possibly users), thus enabling
1mproved maintenance support

1 INTRODUCTION

ESPRIT project DAIDA [JV87] investigates a new strategy for
KBMS development 1n the context of information systems
environments Strongly based on knowledge about a particular
domain of application, this strategy derives specialized
knowledge representations and tools from a formalized
requirements analysis Simular to the coupling approach to
integrating knowledge and data bases, portions of these
representations are then realized in database programs, unhke n
the coupling approach, however, the database structures and
programs may change whenever the higher-level knowledge
representation changes

Managing the relationships between requirements analyses,
specifications, designs, and implementations 1n a knowledge
base requires strong evolution support to be effective In the
growing literature on databases for software engin€ering
environments [BERN87], several different approaches have
been reported to provide this kind of support Early software
database efforts placed the emphasis on a consistent and
semantically supported modelling of software objects A good
example 1s the object-oriented IRIS data model [LLK86] which
offers scphisticated facilities for modelling objects together with
a hard-wired set of operators, these operators define a software
engineering methodology but are not themselves IRIS objects

Permussion to copy without fee all or part of this matenal 1s granted provided that
the copies are not made or distributed for direct commercial advantage, the ACM
copynight notice and the title of the publication and 1ts date appear, and notice 1s
given that copying 1s by permission of the Association for Computing Machinery
To copy otherwise, or to republish, requires a fee and/or specific permission

© 1988 ACM 0-89791-268-3/88/0006/0303 $1 50

303

In contrast, recent work 1n the software engineering community
emphasizes the need for a direct and explicit representation of
the software process itself modelling not only the relationships
among design objects but also the intended and the actual
behaviour of the designers Several current models and
systems, including DAMOKLES [ABRAS86], already consider
special kinds of process relationships (such as versions) The
CACTIS semantic database model offers functionally derived
attributes as an additional tool for evolution [HK87] Some
Al-based software engineering environments define whole
classes of transformation strategies whose application, when
documented 1n a software database, leads to typed
dependencies among software objects [SKW85], 1if sufficiently
powerful, the corresponding type structures can also describe
complete transformation methodologies In a more special
environment, a complete set of evolution rules 1s described for
the object-oniented database systems ORION in [BKKK87]

In summary, two trends can be observed here the use of
structurally or behaviourally object-oriented representation
mechanisms, and the explicit representation of transformational
operations as objects DAIDA tries to take both of these
approaches one step further to support consistent maintenance
(error corrections, enhancements, and’extensions), reusability,
and configuration of multi-layered software descriptions In
contrast to the systems mentioned above, the CML knowledge
representation language [CML87] underlying the DAIDA
KBMS allows an arbitrary instantiation hierarchy of metaclasses
to be defined not only for objects but also for their attributes
(which are themselves considered objects), this yields a lot of
flexibility in adapting the descriptions of objects and
transformations to different environments by creating language
dialects Additionally, we view transformations as performed
design decisions This means that a clear distinction 1s made
between the task (or decision class) to be solved, the execution
of this task 1n a particular situation (the decision instance), and
the description of the tools that could be used, or are actually
used to support the execution Moreover, the concept of design
decision suggests future extensions that would include the
representation of goals and group decision processes (e g,
argumentation structures, project management) in the
knowledge base

Acknowledgments This work was supported in part by the
Commussion of the European Communittes under Esprit contract 892
(DAIDA) which includes BIM, Belgium, BP Research Center, UK, Cretan
Computer Research Center, Greece, GFI, Pans, France, SCS Technische
Automation und Systeme, Hamburg, FRG, Unmiversity of Frankfurt, FRG,
Universtty of Passau, FRG The CML language was developed by a team
under the direction of John Mylopoulos, Alex Borgida, and Yannis
Vasstliou John Gallagher guided a first part.al implementation while
Manfred Jeusfeld has sigmificantly contnbuted to ConceptBase 1tself
Members of the Frankfurt group around Joachim Schmidt helped with the
discussion of possible mapping strategies

Developing an efficient and usable knowledge base management
System f()[' Lh@ abovg concents 18 a difficult task Therefore. the

cepts 18 a difficult task Therefore, the
DAIDA team decided to exploit the additional power game:i by
concentrating on a particular subdomain of software
engineering, namely the development and maintenance of
database-intensive information systems Within this framework,
the DAIDA architecture, summarized mn figure 1-1, 1s based on
the following concepts and observations

(1) Lafe-cycle orented levels of representation:
DAIDA wviews an information system as a multi-layered
description of requirements analyses, designs, and
implementations [BORG88] The layers are represented 1n
similar but distinct languages the conceptual modelling
language CML [CML87], evolved from the requirements
modelling language RML [{GBM86], for requirements analysis,

a purely declarative version of the language Taxis [MBW80],
called TaxisDL ITDLR71. for concentual decion and nredicativa

specification, and the database programming language DBPL
[ECKHB85], a successor to Pascal/R [SCHM77], for
implementation design and programmung

For example, 1n a project meeting organization scenario
[BORGSS, JJR87], a world model represented n CML would
give a general account of meetings as an activity in a real world
with time, a system model, also described by CML (system)
objects and activities, would be embedded in the worl ! model m
several functional parts corresponding to various user views

The combmed world and system model 1s mapped to a TaxisDL
conceptual design which would integrate these views nto user
nteraction scripts as well as data object and transaction
specifications orgamized in generalization hierarchies, for
example, hierarchies of documents generated during a meeting

In a last step, this semantic data and transaction model 1s
mapped to efficient and modular database programs m DBPL

(2) Extensible set of nterrelated transformation
assistants: The literature has developed a nch set of
transformation rules for refimng and implementing
specifications For example, the CIP [BAUESS], Z [SPIV87],
and REFINE {SKW85] projects propose user-guided formal
transformation strategies, whereas the Programmer’s Apprentice
[WATES5] views a program as a puzzle of adapted clichées
which must be maintained in a consistent state 1n case of
changes, using dependency-directed backtracking strategies
Most of these tools have been succes<ful only for
programmung-in-the-small, whereas imformation systems are
often quite large Therefore, DAIDA provides a flexible “"open”
environment which can support a range of development
situations from (almost) manual to (almost) automatic,
depending on the currently available set of trans®--1r ation tools
To achieve this, transformation tools are embedded 1 a fairly
large number of small "expert systems” called assist. 1ts which
commumicate via the common knowledge base to b« described
below, due to the multi-layered structure of DATDA language
assistants for each level must interact with wapping assistants
between the levels As a consequence of rest icting the
application domain of DAIDA to data-intensive informattor
systems, the special representations, theoret 1l rcsults, and
methods of database design researchcanbee. .. ¢

(3) Formalization «f information sys® .ns require-
ments* Most formal software development met] »dologies start
with a formal specificatio of system functionality Formalizing
the requirements analysis which leads to these specifications,
has been traditionally considered very difficult or even
mnpossible Again, the concentration on ata-intensive
iformation systems improves the situation Database schemata
naturally represent a system model of the relevant world
domain, therefore, the analysis underlying the development of
the imtial database schema can be reused as a starting point for
the requirements analysis of new applications However, a

304

I — GKBMS
Spocification
Amsant
System ML me:d m
Analyst Knowledge
Mappumg
......
Dengn
At Deage
Proces
System Knowledge
Desga
Designer promes
......
. X Deagn
{ Azt Tool
D DO J;ﬂ e | Bt
Programmer Programs
—
Fig 1-1: DAIDA architecture

knowledge representation language more powerful than
traditional data defimtion languages, even for semantic data
models, 1s required to descrnibe the relationship of the system
model (as 1n the database schema) to the world model, and the
development of this relationship over time The conceptual
modelling language CML [CML87] offers an object-oriented
model with generalized instantiation hierarchies and embedded
time calculus to support this task

(4) Decision-based documentation knowledge base:
Representing multiple layers of system description as well as
therr relationship to a description of the underlying real world
can offer powerful development and mamtenance support for
information systems but requires itself a knowledge base
management system for maintaiming the different descriptions
consistent over ttme Rather than just modeliing (versions of)
development objects, the DAIDA global KBMS (GKBMS)
views the software development and maintenance process as a
history of tool-supported decisions These decisions are directly
represented, they can be planned for, reasoned about, and
selectively backtracked in case of errors or requirements
changes Ex ante, the GKBMS can be seen as an mtegrative tool
server which helps users 1n selecting tasks and tools within a
large development project, ex post, 1t plays the role of a
documentation service 1 which development objects are related
to the decisions and tools that created or changed them (1 e,
Justify their current status) Many recent ideas from design
database research apply to the implementation of such a system,
applying the DAIDA philosophy to the GKBMS (viewed as a
data-intensive iformation system about the history of "software
worlds"), a dialect of CML 1s chosen as the knowledge
representation language

This paper presents a fairly broad overview of a first GKBMS
prototype, a number of special questions are treated 1n more
detail elsewhere In section 2, the decision-centered approach
and support requirements of the GKBMS are 1llustrated by a
stmple example Section 3 presents a bottom-up description of
the design and prototype implementation, following a
conceptual model base management approach Section 4
summarizes the system status and mentions some open
questions

2 GKBMS REQUIREMENTS OVERVIEW

2.1 A Support Scenario

In this subsection, we explore a simple scenario using some of
the decisions involved 1in mapping a TaxisDL generalization
hierarchy of data classes, and the corresponding hierarchy of
transactions, to a set of relations, views, mtegrity constraints,
and database transactions in DBPL The example 1s intentionally
simplified since our goal 1s not to discuss the complex problem
of mapping semantic data models, rather, we want to show the
knowledge structures and tools needed for a GKBMS

In Fig 2-1 (*), the developer has employed a hierarchical text
browser tool to determine unmapped TaxisDL objects He has
further decided to focus on the mapping of entity structures 1n a
document data model, 1n particular, invitations and thewr
generalization, papers This selection causes the display of a
menu with applicable decision classes and tools There are
several possible mapping strategies [BGM85, WEDDZ&7],
distribute would generate one relation per TaxisDL entity class,
whereas move-down only generates relations for leaves of the
hierarchy and represents the other ones by views (called
constructors m DBPL)

i v R

‘ m

“ |

l) en v 1

AL dixp lav

.
B L |

»
i uri
. }'a Y e % . v E S M0 TPl mun Nng
- - T
desipaon 218 R v+ il
Tl desgn reas Al w
unr apped obye 18 <« Iy
1L ¢ awcd .
¥ A
T vt s \ 4
Mo ~ . CC LR N
Vajers N N
Larsx W 'asses)
LA AL B b
% —

Fig 2-1: Browsing design objects and focusing on an IsA

hierarchy of the conceptual design

The graph 1 fig 2-2 shows dependencies created by the
decision for move-down, relating the new objects to existing
ones and to a representation of the applied tool Furthermore,
selection of the InvitationRel node causes access to, and display
of, the corresponding source code 1n an editor

InvitationType contains a set-valued attribute, a normahizanon
decision 15 therefore offered i the menu, leading to the
extended dependency graph i fig 2-3 The new selector
expresses the referential integrity constraint among the two
relations, whereas the new constructor allows the reconstruction
of the mitial, unnormalized mvitation relation Additionally, fig

2-3 demonstrates how automatic and manual execution of
decisions could interact Observing that the system contains
only invitations and no other subclasses of papers, the
developer decides to "make the system more user-friendly”, by
replacing the artificial paperkey attribute (imitrally required to
map the object-oriented TaxisDL model which does not have
keys) with date, author This change also imples adaption of
the corresponding constructor, selector, and possibly
transactton defmitions

(*) The graphical tools shown 1n the figures heve been
implemented 1n a SUN™ environment (see section 3 3) but are
simulated here with a Macintosh for clarity of exposition

305

N
"

L CASSTpus
S

i
1
S

L]
NOIYC Aassin
INaPux s
3 PROVE=<1n s

Hn'e
§ (0 = an
v
mun | wapn (DY)
P ks Sa1opue
du= D
=|-“ :’II\I!‘\II [y oy Rewirom | rame !

1 am <
e SO O mizati mis e

M I Naw e
mee Kk ALrss yx
el e s fupe
t\ND ™

wrr iz 1n
Tapln

[

I orvwnrs puw »
KA ON W oe ke N A

O Ty !

+

[

VR »
[T O T T T T N ;™ L {

. 4

) v
D I T ey SRy TP PP R ERY

L
Fig 2-2:

Graphical display of dependencies and code
frames generated by mapping rules

LY »

Fig. 2-3- Dependency graph and code frames after
normalization and key substitution

- ———— - ————— = e —— »

i gl I .

InvRece: =RECO]
paperkey Surrogate
recever” O
™n

P mnRalspe «

RI A ON v, erter

O s s Sype

Racan & e = ¥
R AlON ¥ Pre eFe e
OF sk «ox

L

Fig 2-4° Code frames and dependency graph after

backtracking the decision on key substitution

Unfortunately, the assumption that Invizations are the only kind
of Papers leads to an inconsistency as soon as the mapping of
Minutes, the second subclass of Papers, 1s considered (fig

2-4) Therefore, the decision to choose associative keys must be
retracted, together with all its consequent changes, without
redoing all the rest of the design, supporting this consistent,
selective backtracking 1s the main purpose of mtroducing the
explicit documentation of design decisions and dependencies In
the current example, the inconsistency can be resolved by
selectively backtracking to the state before the introduction of
associative keys, in other cases, or if the granulanty of
representation 1n the dependency graph 1s insufficient, additional
manual or tool-aided corrections may become necessary Note,
that the graph 1 fig 2-4 only highlights the objects to be
changed when introducing Minutes, the actual correction would
need a more detailed representation -- the GKBMS must have
some kind of zooming facility for both design objects and
design decisions

2 2 Decision-Centered Representation

The above example should have illustrated how the interaction
between design objects and design tools 1s mediated by human
or computerized design decisions In the following, we show
that the semantic representation of this interrelationship n a
knowledge base can serve as the basis for a wide variety of
supporting roles provided by the GKBMS Specifically, the
example 1illustrated selective exploration of a design status,
system-guided tool selection, decision documentation and
selective maintenance (leading, among other things, to
versions) This section presents an informal overview of a
conceptual semantic model to support these features

The term design object denotes any software object and
document mvolved 1n world/system modelling, system design
and database programming Figure 2-5 shows the GKBMS
view of design objects As in object-onented databases, design
objects are classified by a hierarchy of design object classes
which form a model of the information system To enable a
uniform representation for all stages 1n the software life cycle,
the representation must be abstract Thus, tokens of the
GKBMS only represent characteristic features of sources
recorded outside the GKB 1n the DAIDA sub-environments In
the first GKBMS prototype, these design object classes are
based on the syntactic structures of the DAIDA languages,
CML, TaxisDL, and DBPL

Design
Objects

h for de .- L.l

design object instances

» * +
. * .
. + *
* [.
. 1]
+ .
* 1]
+ [y 0'
|==
s = O

external world of sources, software engineers and design tools

Fig 2-5¢ Levels of design object knowledge base

306

The GKBMS represents information system development as a
process of tool-aided execution of design decisions (fig
2-6) Design decision classes specify how to transform an
existing set of design objects into another set of objects Design
decision instances reflect history and rationales of the
development

Design decision classes are closely related to design tool
specifications Design tools assist the user n executing
design decisions Therefore, each design decision class 1s linked
to a set of tool specifications A decision class may be fully
supported by a tool, or the tool may just aid manual decision
execution In the latter case, verification obligations are defined
by ihe decision class for those constraints not guaranteed by the
10O

Figure 2-6 1llustrates the selection of applicable tools for an
active object and the documentation of actual decisions Input
and output interrelationships are denoted by FROM and TO
links (not shown are predicative specifications of the I/O
relationships) Tool associations are represented by BY links

The class of a selected object 1s matched agamst the mnput
classes of decision classes, by testing the other input objects and
preconditions of these classes, possible decisions applicable to
this object are determined. A tool 1s now applicable to the mitial
object 1f 1t can execute (1 €, 15 associated with) one of these
deciston classes, normally the most specific one For example,
mapping a TaxisDL entity class to the corresponding DBPL
relations and auxilary structures could be executed
semi-automatically by a specialized mapping tool, or manually
by an edutor (associated with the most general DBPL mapping
decision)

At the level of GKBMS instances, each performed design
decision 1s associated with a set of design objects and tools By
convention, hinks labeled with small letters are instances of
those denoted by capitals Due to this instantiation principle, all
hinks among GKBMS instances must be mterpreted as specified
at the level of classes and tool specifications For mstance, each
design object 15 associated with a set of design objects and a
decision reflecting its development In turn, each design
decision and tool application 1s justified by a set of design
objects (1 ¢, status of systern development)

) (oot

Design
Objects

) (o

=3
S o=
* ¥
" 4} Specification of int,
A E among design Objzz[l:ay
S dectsions and tools
+ L
o o
by J
.]
"
.
»
.
N relationships among
, design objects based
4 on engineening
N process dependencies
’

Decision nstance created after selection and tool-
aided execution of an applicable decision class

As shown n figure 2-6, the GKBMS consists of three levels of
representation

* A conceptual process model at 1ts top layer reflects
mformation system development and maintenance as a
process of tool-supported decisions, this layer also provides
concepts (1e metaclasses) to express knowledge about
design objects, tools and their interrelationships

+ Atits mddle layer, the GKBMS comprises knowledge about
design objects, decisions and tools, 1n contrast to recent
proposals (cf section 1), this development knowledge 1s
extensible to capture additionally evolved knowledge about
languages, design decisions and tools In its first prototype,
the GKBMS provides a prehminary set of rather general
design decision classes such as mapping / refinement This
kernel knowledge will then be extended based on 1improved
tool assistants and expenience gained during the DAIDA
project In parallel, sophisticated design object classes will
be determined to cover the requirements of decision classes
and tool specifications As a starting point, design object
classes follow an abstract syntax of apphed languages

« At the bottom layer, the GKBMS provides documentanion
service, 1 e recording of executed decisions, apphied tools
and involved design objects as GKBMS instances, which
are themselves abstractions of objects external to the
GKBMS

This approach differs 1n at least two ways from typical software
databases or object-oriented systems First, the GKBMS
representation starts at a higher !evel of abstraction, its
lowest-level instances (the actual software documents, human
decisions, and tools) are outside the system On the other hand,
adding the highest metalevel allows for extensibility at the
language level Taken together, these properties should make st
relatively easy to integrate heterogencous sub-environment
under the same GKBMS

A second point 1s that, 1n contrast to typical object-oniented
style, methods/tools are not directly associated with object
classes but only indirectly via the mediating concept of decision
class This should, among other things, make 1t easier to
enforce methodology 1n design processes since a methodology
can be viewed as a global decision class

3 GKBMS IMPLEMENTATION DESIGN

It appears reasonable to base the implementation of an extensible
knowledge representation language such as CML on an
extensible KBMS architecture In this architecture, the three
kinds of knowledge identified 1n the last section (object,
decision, and tool knowledge), and the specific tools sketched
m section 2 1 are embedded in a conceptual model base
management system, ConceptBase ConceptBase which
reorgamzes and extends an earlier CML support system
[GALLS85} implements CML based on the definitions 1n
[CML87], augmented with features to describe system
behaviours, complex object configurations, and display
faciities This section describes ConceptBase and relates its
features to the GKBMS requirements and tools

3.1 ConceptBase Kernel System

ConceptBase 1s organized in three levels according to three
different interpretations of CML language objects [CML87], see
figure 3-1 The lowest level, the proposition processor,
represents the knowledge base as a semantic network with ime
and a logic-based assertion language This level 15 useful not
only for the formal defimtion of semantics but also as a basis for
graphical, hypertext-style presentation (cf fig 2-1 to 2-4)

307

At the second level, the object processor understands the
knowledge base as a deductive relational database, 1n this way,
large sets of simularly structured objects can be managed more
efficiently The highest level, the conceptual model processor,
offers complex object manipulation and presentation We now
discuss each of the levels 1n turn

A CML proposition 1s a quadruple
p=<x1lyt>
where

p 1s the idennfier of the proposition,

x 15 the name of the source proposition,

! 15 the label of the proposition,

y 1s the name of the destination proposition and
t 18 the ime associated with p

One can interpret such a proposition as a directed link 1 a
network the node x has a link labelled / to node y at time ¢ and
this Iink has the name p Note that nodes are also represented by
propositions For example, p can appear as the source
component of another proposition p”

Axioms of CML restrict the set of well-formed networks and
help define their semantics They reflect the existence of
propositions with predefined interpretation Classification
allows grouping of propositions to classes which are again
proposittons This 15 done by inserting instanceof inks from the
propositions (so-called instances) to their class
Specialization 15 done analogously by isa propositions If
two propositions cl,c2 are connected by a directed path of isa
links then every instance of ¢/ must be an mstance of c2
Aggregation employs attribute propositions for composing
simple objects to complex ones Deduction (rule
propositions) allows the definition of Horn clauses which assert
a proposition 1n their conclusion Thus, there are exphicit
propositions, inhented propositions (through specialization) and
deduced propositions Constraints (constraint propositions)
place restrictions on the 1nstances of a class They are connected
to the class by constraint propositions which point to objects
representing first-order logic expressions Certain axioms define
how these expressions have to be applied to the instances of a
class Behaviours (behaviour propositions) are much like
methods of classes in SMALLTALK [GR83] They associate
operations such as create or display to the instances of a class by
appropriate behaviour hinks

Thus, the interpretation of each proposition depends on the
class(es) 1t belengs to For example, there 15 a predefined class

IsA_1 = <SimpleClass, 1sa, SimpleClass, Always>
whose instances, € g

p37 = <Invitanion, 1sa, Paper, Always>,
relate specialized simple classes to their generalizations If we
want to know how to interpret p37 we have to look for a
proposition like

p37a = <p37, instanceof, IsA_1, t37a>,

where ¢37a1s the time mterval during which we want Invitation
to be a specialization of Paper, presumably Always

The Proposition Processor enables the manipulation of
propositions according to the axioms of CML The interface of
the proposition processor 1s defined by the behaviour links but
mainly consists of the two operations retrieve_proposition(p)
and create_proposition(p) which allow the insertion of new
propositions and the querymng of the propositions in the
Proposition Base subject to the content of the CML Axiom
Base Several physical representations (e g Prolog
workspaces, external databases) of propositions can be
managed by .1e proposition base In its imterface 1t exports
operations for retrieving and creating stored propositions (as
opposed to the proposition processor as a whole which deals
with stored, inherited and deduced proposiions) The CML
axiom base maintains the semantics of the six predefined links
listed above by interpreting the rule and constraint propositions
attached to them Thus, the axioms of CML are represented by
propositions themselves, enabling very flexible modification
and extension of the language Simularly, the tme components,
and the relationships (e g during, before) between them, are
again viewed as propositions

The next layer of ConceptBase, the Object Processor,
groups propositions around a common source the object
wdentifier Consider, for example, a class TDL_EnuityClass
called Invitation, which relates invitations to persons by an
attribute sender The Object Transformer transforms this
class 1nto a set of propositions as shown in Fig 3-2 Links
without label stand for instanceof propositions The time
components of the propositions are not shown 1n the figure, the
following propositions show a possible configuration of two of
them

Global Knowledge Base Management System

™

)

Design Tool
Base

A

(Usage Environment

Design Object | Design Decision
Base Base

Conceptual Model Base Managemen. System

Conceptual Model P, A
4 o
Model Model Display
Configuration and Interaction
9 J\ —
\ ——
™5 -
Object Processor
= ™
external tool

Object
Transformer
Inference
Engines

Proposition Processor

{ oML
Axiom Base j
$ x J /\ @

external data

Consistency
Checker(s)

,
Y

Prolog
workspace

NN
SUE, W SN,

{ Proposition
Base

Fig 3-1 Overall architecture of ConceptBase with GKBMS

308

Pl = <Invitation, instanceof CLASS versionl7>
PI’= <P1, instanceof, InstanceOf omega 21-Sep-1987+>

where

InstanceOf omega = <PROPOSITION, instanceof, CLASS, Always>

The time component of PI, versionl7, stands for the time
mterval during which version 17 of the design 1s regarded as
valid [CML 87] On the other hand, PI’ asserts that PI 1s
known since 21-Sep-1987, 1 e, the programmer told the KB
about PI on September 21, 1987

@ PROPOSITION

TDL_EntityClass .r .
CLASS
attribute
Tnvitaton @ O
/ sencder

A

@ Persn

Fig. 3-2: Propositional representation of Invization

After transformation, the object processor passes the generated
propositions to the proposition processor After executing a
decision, the knowledge base must be 1n an consistent state
(satisfying all the axioms of CML and the constraints imposed
on certamn objects 1 the knowledge base) This 1s verified by a
Consistency Checker [GALLS86)] which utilizes mformation
of the proposition processor (especially of the CML Axiom
Base) Since a whole set of operations 1s passed to the
proposition processor, set-oriented optimization of the
consistency check 1s being studied

The Inference Engines support various proof strategies for
question-answerng on the KB (in the current implementation,
the Prolog prover with some enhancements concerning negation
1s the only such proof strategy) Quenes are built using (open or
closed) first-order logic expression over CML objects Since the
same assertion language 1s used 1n rules (see rule propositions
above), the inference engines are also capable of evaluating
rules The inference engines may enhance their performance by
lemma generation, this capability 1s, € g, used in creating
dependency graph objects of the GKBMS Several time calcult
may be supported by different inference engines, currently, the
models of [ALLE83] and [KS86] are supported

Finally, the Conceptual Model Processor uses the object
processor to combine tools for the manipulation of models
which consist of all objects relevant to an application of
ConceptBase, e g, the GKBMS Models constitute highly
complex muli-level object structures which are mantamned in
hierachies Dafferent models may share some objects or
(sub-)models Configuring a model for a specific application
means the activation of the corresponding nodes in the lattice,
1e making their objects accessible for the proposition
processor This work 1s done by the Model Configuration
module which corresponds to a complex object database, to
date, only a simple main memory versior: of this component has
been mmplemented The ModelDisplay and Interaction
module provides tools for displayng, browsing and editing of
(complex) objects as well as configurations of objects

“ - -

. ConceptBase

i

7T TN

Conceptual Process Model

w W waewon

,
£

s 2w ot 0 e e e soonaonn e sowie st

DesignObyect DesignDecision DesignObyect
4 JUSTIFICATION ;
E“"Rd"“f“ SOURCE
LI | Wi (
PO ;,.‘, { { i ¢
{ Extensible Knowledge Bages | | ;l ,f i
. TDL_MappingDec | | f
A I ;; DBPL Rel | DecNomahize “ NOI‘II]I;:P]ZB:‘IDBH._RCI
- | f — oo
] Ch— ‘ _
| fof [L | .
Documentation ! t f i II 1‘ i
mplementimianons ‘ l - } | ii InvitatiotiRel 2
4 InvitationsPaperIC
DateinvRel ‘\J,_
ConsInvitanon

LN SN 8 LNSNIEICNONNENE SANERNNINN NN G000 B0 8 DN

Fig 3-3: Proposition-level representation of design decisions

3 2 CML Model of Information System Evolution

The GKBMS 1s implemented as a model in ConceptBase This
model realizes knowledge bases of design objects, decisions
and tools As outlined in section 2 2, the GKBMS consists of
three levels of representation Figure 3-3 shows this layered
model of the GKBMS at the proposition processor level For
clanty of graphical presentation, some classes are duplicated,
moreover, assertions and tool specifications are omtted

At the conceptual level, the GKBMS introduces metaclasses to
express design object and design decision classes Formally,
metaclass DesignDecision provides the expressive facilities to
build design decision classes upon mput (FROM) and output
(TO) relationships (cf section 2 2) Attributes of concrete
decision classes must be mstances of these properties For
example, there are two links relating decision class
DecNormalize to object class DBPL _Rel, one being an instance
of FROM, the other one being an mstance of TO (Normalized
DBPL_Rel 15 a specialization of DBPL_Rel) Constraints on
FROM and TO define, for example, the decomposition of
decision classes into PART decisions as a basis for
configuration control (not shown in the figure)

Due to the instantiation principle, the design decision base of the
GKBMS 15 extensible 1n case of new tools or evolved expertise
Constraints at the second level express formal mnput/output
relationships for concrete decision classes Instantiation of a
decision class thus defines a proof obligation that these
constraints are satisfied Since tool specifications provide
guarantees for certain behaviour, only those parts of the
constraints not guaranteed by tool specfications have to be
tested. This can be done 1n a way simular to integrity checking in
transactions (the decision instance defining a, possibly nested,
transaction) For example, 1n fig 3-3, normalizelnvitations
must satisfy that InvitarionRel2 and InvReceivRel are
normalized DBPL relations with correct keys, however, as
illustrated n section 2 1, the key decision may be executed
manually, thus creating a proof obligation (the "proof” may be
either formal or by "signature” of the decision maker)

309

At the lowest level of documentation, the executed decision
NormalizeInvitanons represents a decision on normalization
interrelating the object instances shown in figure 3-3

Conversely, metaclass DesignObject provides facilities to
express the justifying decision of an design object and its source
reference Instances of DesignObject, such as the decision
object class DBPL_Rel, characterize mamly the language
constructs and semantic configurations of objects offered by the
sub-environments (in DAIDA the CML, TaxisDL, and DBPL

objects, cf fig 1-1)
3.3

Due to the uniform representation of each knowledge base 1n
CML, the GKBMS mainly supports three tasks

analyzing the evolunon - analyzing information system
evolution by browsing 1n decisions and their causal ordering,
additionally, arbitrary switching between browsing of
performed decisions, design objects possibly at different
stages of the development process and tool specifications 1s
provided The latter enables a powerful navigation through
development processes and outcomes

decision processing - besides pure backtracking of
decisions, tool specifications enable some kind of revision
support, for mstance, adding an attribute 1n the design could
be processed by the GKBMS by replaying decisions
(GKBMS tests their re-applicability)

* conceptual tool server - based on 1ts functionality as central
repository, the GKBMS serves as a board for tool
communication, tools are enabled to consider results gained
by other tools Additionally, manual modifications are
supported by the analyzing facihties

Decision-Based Tool Support

This section describes three utilities which can be built on the
decision-oriented representation of the development process and
the uniform formalism to present deveiopment processes and
outcomes

3 3.1 Nawigation in Decision Histories

As 1llustrated 1n section 2 1, the GKBMS enables browsing
along and arbitrary switching between several dimensions

* status-oriented, by browsing requirements, designs,
implementations, and their interrelationships,

e process-oriented, by following mapping and refinement
relationships and their causal ordening,

*» temporal, by focusing on system versions and followmng the
history of design ojects and design decisions

Such an exploration typically starts from a focus object or
decision, tool selection for this focus (using the 1dea shown m
fig 2-6) will also display which of the above exploration
directions are applicable to the focus 1n the current state under a
given methodology To support exploration by focusing,
browsing, and zooming with direct manipulation, we have
implemented a number of window-ornented interface tools
which are formally part of ConceptBase’s Model Display and
Interaction module (cf fig 3-1)

+ A text DAG browser (fig 2-1) allows the display and
browsing of a tree-like CML structure at a dynamically
defined depth and width Basically, 1t consists of a
recursively embedded set of windows, each vanable 1n size
and endowed with a scrolling facihty

+ A graphical DAG browser (used in fig 2-1 to 2-4 to
show dependency graphs) offers a graphical representation
of the same kinds of data structur=s as the text browser A
simple standard layout 1s offered but can be changed by the
user 1n a persistent way

+ A relational display shows the properties of objects
tabular form with variabie column width and scrolling (thus
corresponding to the Object Processor level 1n fig 3-1), the
extension to a non-first normal form display of complex
objects 1s underway This display 1s associated with a CML
form editor, to interact with the knowledge base and to
work with CML code frames

« Focusing 1n any of these structures 15 done by mouse
selection, hierarchical menus (cf fig 2-1) with
context-dependent content are used for tool selection as
illustrated 1n section 21 A dialog manager with
improved error handling and recovery facilies 1s under
construction

3 3 2 Version and Configuration Management

A frequent operation on a GKB will be the configuration of a
complete derivation structure and 1ts subsequent projection on
one level, e g, "configure the latest complete DBPL database
program system version”, this nvolves excluding all non-used
versions of design objects, and ensuring consistency and
sufficient completeness of the rematning ones with respect to
specifications and decision class defimtions As the example i
fig 2-3 and 2-4 shows, there is also a need to retain multiple
versions of certain system components, without duplicating ail
the implementation The decision structure described 1n section
3 2 can be explorted for this kind of version and configuration
management.

+ Allowable multi-level configurations of world/system
models, designs, and implementations are those which are
mterrelated by mapping decisions (vertical configuration by
means of equivalences)

+ Allowable one-level (sub) configurations must be consistent,
as documented by refinement decisions inside a (sub)
configuration and mapping decision on coherent higher-level
objects (horizontal configuration by means of component
configuration)

+ Versioning rests upon choice decisions An alternative
version 1s created each time an object 1s refined or mapped

310

alternatively(versioning by decisions to retract), typically,

such a retract decision would start a (nested) sub-transaction
Noticing similarities of these kinds of decisions to the three
dimensions of equivalence, configuration, and version 1n
[KACB86}, a version and configuration management mechamsm
stmilar to the one proposed there 1s being considered Fig 3-4
represents the example of section 2 1 from this viewpoint In
this way, version and configuration management come as a
natural by-product of the decision-based documentation
approach

System Design

e denotes mapping decisions
mm denotes refinement decisions
% denotes akernative implementations (choice decisions)

Objects are denoted as follows

Pa entity class Papers CP constructor ConsPapers
In entity class Invitations IR relation InvReceivRel

M1 entity class Minutes S selector InvitationPaperIC
I relaton InvitationRel CI constructor /Invitation

Fig. 3-4. Decision-based configurations and versions the
second 1implementation, whose mapping
dependency 1s denved via the refinement decision
on keys, 1s based on an assumption which 1s
inconsistent urder the expanded design version with
respect to candidate keys

3 3.3 Reason Mamtenance and Group Support

In the currently begmning second stage of DAIDA, the facihties
described so far will be enhanced with three further “"expert
system"-like components As an enhancement of the navigation
facilities, the predicative specifications of tool and decision
classes together with ConceptBase rules and constraints will be
used to develop a design explanation facility

The representation of decision structures supports the storage of
redundant dependency information as the basis of a reason
maintenance system [DOYL79, DJ88] which can contribute
to the automatic propagation of the consequences of high-level
changes However, since current RMS can handle only fairly
small dependency networks efficiently [DEKL86], we are
studying their combination with the abstraction mechanisms of
the GKBMS

Often, multiple developers contribute to a software system

Therefore, some design database approaches study transaction
concepts adapted to the organization of collaborating groups
[KSUW85] While the GKBMS browsing and explanation
facilities enable information exchange 1n such a group, expheit
mechanisms for conflict handling (beyond consistency
checking) are missing In [HI88], we develop a proposal for
enhancing the above mentioned RMS with mechamisms for
multicriteria choice support, argumentation on derivation
decisions, and explicit group work organization mn an
object-oriented context.

4 CONCLUSIONS

In this paper, we tried to demonstrate the usefulness of a
decision-based conceptual modelling formalism 1n the
management of software development and maintenance
processes The DAIDA architecture in general, and the GKBMS
design 1n particular, address two relevant questions in the
database context From the information systems design
viewpoint, they present a decision-based approach how to
maintain large software systems developed in muluple layers
and languages consistent over time, exploiting special properties
of data-intensive application domains such as reuse of a world
model, data-onented and therefore often algonthmically easy
programming, or selective backtracking of small design
portions These 1deas, some of which have been tried 1n the Al
area before, are embedded here 1n the object-oriented deductive
database context of ConceptBase From the viewpoinr of
general KBMS implementation research, DAIDA proposes a
novel way of realizing KBMS by supporting them with
semi-automatically-developed dedicated information systems
Ths 1dea, which requires a powerful GKBMS to be useful, will
be further elaborated n a forthcoming paper

The GKBMS 15 being implemented 1n a UNIX environment,
using BIM-Prolog which offers interfaces to graphical display
and external DBMS (relational and Entity-Relationship) Based
on experiences with the current prototypes, a large number of
efficiency questions, especially concerning deductive querying
and consistency-checking of complex design objects, are
scruttmized 1n more depth Another area of current mterest 1s the
augmentation of the GKBMS with more rigorous development
strategles, based on algebraic specifications, in dedicated
application contexts such as model-based decision support

REFERENCES

[ABRA87] Abramowicz, K, Diuttrich, K R, Gotthard, W,
Langle, R, Lockemann, P C, Raupp, T, Rehm,
S, Wenner, T (1987) Datenbankunterstutzung
fur Software-Produktionsumgebungen, Proc
Datenbanken in Biiro, Technik und Wissenschaft,
Darmstadt, FRG, 116-131

Allen, J (1985) Maintaining knowledge about
temporal intervals, Comm ACM 26, 11, 832-843
Bauer, FL etal (1985) The Munich project CIP
Volume I, Heidelberg, FRG Springer-Verlag
Bernstein, P A (1987) Database system support
for software engineering, Proc 9th Intl Conf on
Software Engineering, Monterey, Ca,166-179
Bouzeghoub, M, Gardarin, G, Metais, E
(1985) Database design tools an expert systems
approach, Proc 11th Intl Conf Very Large Data
Bases, Stockholm, Sweden, 82-95

[BKKKS87] Banerjee, J, Kim, W, Kim, H-J, Korth, HF
(1987) Semantics and implementation of schema
evolution 1n object-oriented databases, Proc
ACM-SIGMOD Conf, San Francisco, 311-322
Brodie, M L, Mylopoulos, J eds (1986) On
Knowledge Base Management Systems,
Springer-Verlag, New York

Borgida, A, Jarke, M, Mylopoulos, J , Schmidt,
JW, Vassiliou, Y (1987) The software develop-
ment environment as a knowledge base manage-
ment system In Schmudt, J W, Thanos, C (eds)
Foundations of Knowledge Base Management,
Heidelberg Springer-Verlag, to appear

Borgida, A, Mylopoulos, J, Vassiliou, Y
(1987) Conceptual Modeling Language An
Informal Description, Report, ESPRIT Project 107
(LOKI), Crete Research Center, Irakhon, Greece
de Kleer, J (1986) An assumption-based TMS,
Aruficial Intelligence 28, 2, 127-163

[ALLER3]
[BAUES5]
[BERN37]

[BGM8S5]

[BM86]

[BORG88]

[CML87)

[DEKL36}

311

[DJ88] Dhar, V, Jarke, M (1988) Dependency-directed
reasoning and learning in large systems mainte-
nance, [EEE Trans Softw Eng 14,2,211- 227
Doyle, J (1979) A truth maintenance system, Al
Memo 521, MIT, Cambnidge, Mass

Eckhardt, H, Edelmann, J, Koch, J, Mall, M,
Schmdt, J W (1985) Draft report on the database
programming language DBPL, Universitat
Frankfurt, FR Germany

Gallagher, J (1985) Overall design of CML
support system, Working Paper, Espnit project 107
(LOKI), SCS Hamburg, FRG

Gallagher, J (1986) Notes on consistency
checking in CML, Working Paper, Esprit project
107 (LOKI), SCS Hamburg, FRG

Goldberg, A , Robson, D (1983) SMALLTALK
80, the language and its implementation, Addison
Wesley, 1983

Greenspan, S, Borgida, A, Mylopoulos, J
(1986) A requirements modelling language and 1ts
logic, 1n Brodie, ML, Mylopoulos, J (eds) On
Knowledge Base Management Systems, New
York Springer-Verlag, 471-502

Hahn, U, Jarke, M (1988) A multi-agent model
for group negotiation support To appear in Proc
IFIP WG 84 Working Conf Orgamizational
Decision Support Systems, Lake Como, Italy
Hudson,S E, King, R (1987) Object-oriented
database support for software engineering Proc
ACM-SIGMOD Conf , San Francisco, 491-503
Jarke, M, Jeusfeld, M, Rose, T (1987) A global
KBMS for database software evolution design and
development strategy, Report MIP-8722,
Universitat Passau, FRG

Jarke, M, Venken, R (1987) Database software
development as knowledge base evolution In
ESPRIT ‘87 Achievements and Impact,
Amsterdam North-Holland, 402-414

Katz, R, Chang, E, Bhateja, R (1986) Version
modeling concepts for computer-aided design
databases, Proc SIGMOD Conf, Washington,
DC, 379-3%6

Kowalski, R, Sergot, M (1985) A logic-based
calculus of events, to appear in Schmidt, J W
Thanos, C (eds) Foundanons of Knowledge
Base Management, Springer-Verlag

[KSUWS85] Klahold, P, Schlageter, G, Unland, R, Wilkes,
W (1985) A transaction model supporting
complex applications in integrated information
systems, Proc ACM-SIGMOD, Austin, 388-401
Mylopoulos, J, Bernstein, P, Wong, H (1980)
A language for designing interactive data-intensive
applications, ACM TODS 5, 2, 185-207
[SCHM77] Schmdt, JW (1977) Some high-level language
constructs for data of type relation, ACM Trans
Database Systems 2, 3, 247-261

Smuth, DR, Kotik, G B, Westfold, SJ (1985)
Research on knowledge-based software engineer-
g environments at Kestrel Institute, /EEE Trans
Software Engineering SE-11, 11, 1278-1295
Spivey, JM (1987) An introduction to Z and
formal specifications, Oxford Umiversity, UK
Borgida, A, Meirlaen, E, Mylopoulos, J,
Schmdt, JW (1987) The TAXIS Design
Language (TDL), Report, ESPRIT Project 892
(DAIDA), Crete Research Center, Iraklion, Greece
Waters, RC (1885) The Progammer’s
Apprentice a session with KBEmacs, IEEE Trans
Software Engineering SE-11, 11, 1296-1320
Weddell, GEC (1987) Physical design and
query compilation for a semantic data model, Ph D
Thesis, University of Toronto, Canada

[DOYL79]
[ECKHS5]

[GALL 85]

[GALLS6)

[GR83]

[GBMS86]

[HI88]

(HK87]

[IJR87]

[ver

(KCB86]

[KS88]

[MBW 80]

[SKW85]

[SPIV87]
[TDL87]

[WATES5]

[WEDD87]

