KM3: a DSL for Metamodel Specification

Frédéric Jouault and Jean Bézivin

ATLAS team, INRIA and LINA

(frederic.jouault, jean.bezivin)@univ-nantes.fr

Abstract. We consider in this paper that a DSL (Domain Specific Lan-
guage) may be defined by a set of models. A typical DSL is the ATLAS
Transformation Language (ATL). An ATL program transforms a source
model (conforming to a source metamodel) into a target model (con-
forming to a target metamodel). Being itself a model, the transformation
program conforms to the ATL metamodel. The notion of metamodel is
thus used to define the source DSL, the target DSL and the transfor-
mation DSL itself. As a consequence we can see that agility to define
metamodels and precision of these definitions is of paramount impor-
tance in any model engineering activity. In order to fullfill the goals of
agility and precision in the definition of our metamodels, we have been
using a notation called KM3 (Kernel MetaMetaModel). KM3 may itself
be considered as a DSL for describing metamodels. This paper presents
the rationale for using KM3, some examples of its use and a precise
definition of the language.

1 Introduction

Model engineering is strongly related to language engineering. Considering the
important number of problem domains, there is a need for an equally important
number of specialized languages. We have been using a language named KM3
(Kernel MetaMetaModel) to help defining these special purpose languages. This
paper presents the rationale, semantics and other particularities of this language.

KMS3 has its roots in the complex and evolving relations between modeling
and visual languages. UML is a general purpose visual modeling language, but
not every modeling language is a general purpose visual language. The OMG has
proposed a language called MOF 2.0 [I] for the definition of its various meta-
models (SPEM, UML, CWM, etc.). The problem was that there was no practical
support environment for this language. As a replacement, the solution found was
to use UML CASE tools for this purpose. The price to pay for this was an align-
ment of MOF with a subset of UML (mainly class diagrams). Since this time, the
alignment has been more or less maintained through the various versions of UML
and MOF. In other words, UML may be considered by certain as a multi-purpose
language allowing defining software object-oriented terminal models and allow-
ing also defining MOF metamodels. But this is not without drawbacks. When
we need to build a metamodel (e.g. as source or target of a transformation),
we have first to start building a UML class diagram, with certain properties.

The result is serialized in a first XMI file corresponding to the terminal model.
It is then transformed into another XMI file corresponding to the metamodel.
This conversion from a UML model to a MOF metamodel is called a promotion
and implemented by some widely available tools like UML2MOF available in the
NetBeans MDR [2] suite or also by an ATL [3] model transformation program.

We have experimented for some time with this approach. When the number of
involved metamodels is limited (i.e. when one mainly deals with OMG fixed and
stable metamodels), there are no major problems. But when we need multiple
and evolving metamodels, we have found this approach to be very cumbersome.
The only alternative has been to define KM3, a specialized textual language for
specifying metamodels, including MOF metamodels. After experimenting with
this language for two years, we are completely convinced of the practicality of the
approach. Public libraries of more than one hundred metamodels expressed in
KM3 are now available [4]. ATL, a QVT-like [5] model transformation language,
uses KM3 natively to facilitate the handling of metamodels. Many other projects
are also based on this format.

What remained to do is to establish a precise semantics for KM3. This is
one of the objectives of the present work. Of course we have also to understand
clearly the purpose and rationale of metamodel writing languages. In order to do
so, we first need to define precisely what a metamodel exactly is. The definitions
provided in this paper apply to the OMG MDA framework, but they are more
general and may also correspond to several other technical spaces as defined in
[6].

This paper is organized as follows. Section [2] provides the basic definitions
related to models and DSLs. Section [3| provides an overview of KM3 including
some current applications. Section [4] comes back on a more formal conceptual
definition of KM3. A related work description is provided in section [5| before the
conclusion.

2 Definitions

We consider models as the unifying concept in IT engineering. Models come in
various flavors. A UML model, a Java program, an XML or RDF document, a
database relational table, an entity-association schema are all examples of mod-
els. We call all of these A-models where)\ identifies a technical space [6] associated
with a given precise metametamodel. A simple representation of terminal model,
metamodel and metametamodel is given in Figure

We may consider two main definitions of a model corresponding to its in-
ternal organization and its potential utilization. We choose to focus here on the
organization of models. The study of model utilization and of its relations with
model organization is out of the scope of this work. Then we give a definition of
DSL and analyze the relations between DSLs and models.

2.1 Model Organization Definition

From an organization point of view, we propose the following definitions:

Model

\Ter‘minaIModeI \ \ MetaModel \ \ MetaMetaModel \

Fig. 1. General organization of a metamodeling stack

Definition 1. A directed multigraph G = (Ng, Eq, ['¢) consists of a finite set
of nodes Ng, a finite set of edges Eq, and a function I'¢ : Eq — Ng X Ng
mapping edges to their source and target nodes.

Definition 2. A model M = (G,w, p) is a triple where:

— G = (Ng, Eg,Ig) is a directed multigraph,

— w is itself a model (called the reference model of M) associated to a graph
G, = (Nwa E., Fw);

— u: NgUEg — N, is a function associating elements (nodes and edges) of
G to nodes of G,.

Remarks. The relation between a model and its reference model is called con-
formance and is noted conformsTo or abbreviated in ¢2 throughout this paper.
Elements of w are called metaelements. p is neither injective (several model
elements may be associated to the same metaelement) nor surjective (not all
metaelements need to be associated to a model element).

conformsTo

Fig. 2. Definition of model and reference model

Figure [2] illustrates definition [2} The definition of model given above allows
for an indefinite number of upper modeling layers. For practical purpose, we
need to stop at some level. We observe that only three levels are used in several
technical spaces:

— In XML: documents, schemas and the schemas of XML Schema for XML,
— In EBNF': programs, grammars and the grammar of EBNF.

We call these levels: M1, M2 and M3. M1 consists of all models that are not
metamodels. M2 consists of all metamodels that are not the metametamodel.
M3 consists of a unique metametamodel for each given technical space. We may
now proceed to giving additional definitions.

Definition 3. A metametamodel is a model that is its own reference model (i.e.
it conforms to itself).

Definition 4. A metamodel is a model such that its reference model is a meta-
metamodel.

Definition 5. A terminal model is a model such that its reference model is a
metamodel.

Figure |3| shows how to adapt the definition of model to this three-level mod-
eling stack. The structure for models defined in this section is compatible with
the OMG view as illustrated in the MDA guide [7].

*

conformsTo|(c2)

ReferenceModel TerminalModel
1

MetaModel MetaMetaModel

context MetaModel inv: context MetaMetaModel inv:
self.conformsTo.oclIsKindOf(MetaMetaModel) self.conformsTo = self

-- A MetaModel conforms to a MetaMetaModel j A Metal conforms to itself j

Fig. 3. Metamodeling stack representation with model definition

2.2 Domain Specific Language

Language engineering is at the hearth of computer science. There are a variety of
categories of languages. We discuss here only a small facet of language engineer-
ing. A distinction is often made between programming languages and modeling
languages. Typical examples are PL/1 and UML. The distinction between these
categories has mainly to do with canonical executability and is currently much
evolving. Another distinction is between General Purpose Languages (GPLs)

and Domain Specific Languages (DSLs). PL/1 and UML are two examples of
GPLs. R [§], SQL [9] or Excel are examples of DSLs. Java and C# are examples
of general purpose programming languages.

We also understand that the distinction between GPLs and DSLs is orthog-
onal to many other language classifications. For example there are indifferently
visual or textual GPLs or DSLs. Similarly DSLs and GPLs may fall under var-
ious categories of being object-oriented, event-oriented, rule-oriented, function-
oriented, etc. There are examples of imperative and declarative GPLs and DSLs
as well.

A DSL is a language designed to be useful for a limited set of tasks, in
contrast to general-purpose languages that are supposed to be useful for much
more generic tasks, crossing multiple application domains. A typical example of
DSL is GraphViz [I0], a language used to define directed graphs, which creates a
visual representation of that graph as a result. Some GPLs have started as DSLs
and have sometimes evolved towards genericity to become GPLs. The reverse
process has not been observed in the history of programming languages.

Like many other languages, DSLs have many common properties [I1]:

— They have usually a concrete syntax
— They may also have an abstract syntax
— They have a semantics, implicitly or explicitly defined

Of course there are several ways to define these syntax and semantics. The
most known are grammar-based systems.

2.3 DSLs and Models

There are strong relations between DSLs and models. We discuss here the pos-
sibility of using model-based solutions for defining the syntax and semantics of
DSLs.

Definition 6. A DSL is a set of coordinated models.

Each model in this set contributes to a part of its definition. A given model
may, for instance, specify one of the following aspects:

— Domain definition metamodel. One of the defining entities of a DSL is
a Domain Definition MetaModel (DDMM). It introduces the basic entities
of the domain and their mutual relations. This base ontology plays a central
role in the definition of the DSL. For example, a DSL for directed graph
manipulation will contain the concepts of nodes and edges, and will state
that an edge may connect a source node to a target node. Such a DDMM
plays the role of the abstract syntax for a DSL.

— Concrete syntaxes. A DSL may have different concrete syntaxes. Each
one is defined by a transformation model mapping the DDMM onto a display
surface metamodel. Examples of display surface metamodels may be SVG
or DOT [10], but also XML. An example of such a transformation for a Petri

net DSL is the mapping from places to circles, from transitions to rectangles
and from arcs to arrows. The display surface metamodel will then have the
concepts of Circle, Rectangle and Arrow.

— Execution semantics. A DSL may have an execution semantics definition.
This semantics definition is also defined by a transformation model mapping
the DDMM onto another DSL having itself an execution semantics or even
to a GPL. The firing rules of a Petri net may for example be mapped into a
Java code model.

— Other operations on DSLs. In addition to canonical execution, there are
plenty of other possible operations on programs based on a given DSL. Each
may be defined by a similar mapping represented by a transformation model.
For example if one wishes to query DSL programs, a standard mapping of
the DDMM onto Prolog may be useful. The study of these other operations
on DSLs is an open research subject.

3 KM3 Overview

3.1 Description

The purpose of KM3 is to give a relatively simple solution to define the Domain
Definition MetaModel of a DSL. KM3 is therefore a Domain Specific Language
to define metamodels:

— Domain definition metamodel. The DDMM of KM3 is a metameta-
model, to which other DDMMs conform. This DDMM may be defined in
KM3 (see appendix [A.1), just like EBNF (a notation to define grammars)
may be described in EBNF using only a few lines. It uses concepts like Class,
Attribute, and Reference. It is structurally close to eMOF 2.0 [I] and Ecore
[12).

— Concrete syntax. A default textual concrete syntax has been defined for
KM3 (see appendix) This allows straightforward definitions of meta-
models with any text editor.

— Semantics. The semantics of KM3 enables the specification of metamodels
and models according to the definitions given in section[2] A precise concep-
tual definition of KM3 is presented in section |4} Mappings to and from MOF
1.4 [13] and Ecore have notably been defined in ATL, making KM3 usable
with tools like Eclipse EMF [12] and Netbeans MDR.

As a metametamodel, KM3 is simpler than MOF 1.4, MOF 2.0 [I] and Ecore.
It contains only 14 classes whereas, for instance, Ecore has 18 classes and MOF
1.4 has 28 classes. Only the core concepts of these other metametamodels are
available in KM3.

Figure[]describes an XML metamodel in the standard visual notation of class
diagrams. This XML metamodel corresponds to the following KM3 description:
package XML {

abstract class Node {
attribute name : String;

Node

+children | +name:String
+value:String

{ordered} T

Element [atribute]

—)

Text |

Fig. 4. Visual presentation of an XML metamodel

attribute value : String;
reference parent[0—1] : Element oppositeOf children;

}

class Attribute extends Node {}
class Text extends Node {}

class Element extends Node {
reference children[x] ordered container : Node oppositeOf parent;

class Root extends Element {}

}

package PrimitiveTypes {
datatype Boolean;
datatype Integer;
datatype String;

}

3.2 Applications

KM3 has been defined as an answer to frequent requests of users that were defin-
ing model transformations in the ATL language. In principle source and target
metamodels for QVT-like transformations should be written in XMI. When the
transformation is based on standard metamodels like UML metamodels, the XMI
serialization of these metamodels may be found on the OMG site and there is
no need for any additional formalism.

The practice of model transformation, with a growing community of ATL
users, has however obliged to amend this opinion. During the development of
these transformations, it became clear that very often the standard metamodels
were not sufficient and that many of the transformations needed specific meta-
models. Furthermore, the definition of these metamodels is often an iterative
process involving a progressive elaboration.

In order to illustrate this, we provide below some examples of transformations
written in ATL. The complete code and documentation of these transformations
may be found in the open source library of transformation available on [14] and
[15].

— Ant2Maven and Make2Ant are partial transformations between well known
software engineering build tools (Make, Ant and Maven).

— BibTeX2DocBook is a transformation of a BibTeXML model to a DocBook
composed document.

— The JavaSource2Table example computes a static call graph of a Java pro-
gram and presents it in a tabular style. From there, one may use the XHTML
or the Excel metamodels to project to other display surfaces, by transfor-
mation chaining.

— The KM32DOT allows drawing graphical presentations of metamodels. DOT
is an automatic graph layout program from GraphViz [I0]. The aim of this
transformation is to generate a visualization, in the form of a class diagram,
of any KM3 metamodel by automatic layout

— The UMLActivityDiagram2MSProject example describes a transformation
from a loop free UML activity diagram (describing some tasks series) to
MS Project. The transformation is based on a simplified subset of the UML
State Machine metamodel. This transformation produces a project defined
in conformance to a limited subset of the MSProject metamodel.

The following table (Figure [5)) gives another sample from the same model
transformation library, where the numbers of classes in the source and target
metamodels are provided. Without describing in detail all these transformations,
it becomes clear that most source and target metamodels have to be defined and
even in the case they are standard (like the UML activity diagram), they often
correspond to a small subset of the standard metamodel.

i e || U

BibTeXML to Docbook 21 &
Class to Relational & 4
Java source to Table 3 3
KM3 to DOT 16 26
KM3 to Problem 16 2
PathExp to Petritlet 5 7
Table to Microsoft Excel 3 15
UML to Amble 10+ 10 14
UML to Java 1l B
UML Activity Diugmm to MS & 3
Project

UMLECT to SV& 26 38
HELT to XiQuery 13 18

Fig. 5. A sample of transformations from the ATL library

As a consequence, the definition of source and target metamodels in a trans-
formation is an important part of the design of this transformation. We need
a notation that will allow easy and precise definition and modification of these
metamodels. Even if this seems counter intuitive, users have been asking for
textual languages instead of visual languages for performing this task.

The KM3 language has been very useful in supporting rapid and precise def-
inition of metamodels for various situations. When studying the interoperability
between several tools (like Bugzilla, Make, MS Project, or Mantis), the data
models of these tools are usually captured in a metamodel, and the bridges may
be designed as transformations, directly using these metamodels.

We have previously mentioned the initial library of ATL transformations.
What is also interesting is that a significant library of the corresponding meta-
models has also grown in the same time and may be found at [I6]. There are
many issues that can be studied on the basis of this initial library. The first one
is related to reusability of these metamodels. More important questions may be
raised on the various relations that may hold between these metamodels and
also to the metadata about them.

4 Conceptual Definition of KM3

Definition 7. A KM3-model is a model defined using KM3 as a metameta-
model.

This section only deals with KM3-models. Therefore, we use model to mean
KM3-model. We present here a formal specification of KM3 based on first order
logic. Only metamodels, not terminal models, may conform to KM3. However,
KM3 semantics also impacts terminal models by constraining them according
to their reference models. Two main predicates are used to define KM3-models,
including the KM3 metametamodel itself. For a model M (see definition , we
define:

— Node(z,y). This predicate states that a node x € N¢ is associated to a node
y € N, by the function p.

— Edge(x,y, z). This predicate states that an edge between node z € Ng and
node y € Ng is associated to a node z € N, by the function p. In KMS3,
multiple edges between two given nodes may only exist if their associated
metaelements are distinct. Therefore, the triple (z,y, z) uniquely identifies
an edge.

Formulas are used to express constraints on KM3-models. We start by defining
a simplified version of KM3 called Simple KM3 with only classes and references.
Then we introduce additional concepts: opposite references and inheritance.

4.1 Definition of SimpleKM3

SimpleKM3 is a simplified version of KM3 using only classes and references.
A visual representation of SimpleKMS3 is given in Figure [f] Figure [7] gives the
formal definition of SimpleKM3. There are only two classes: class (line 1) and
reference (line 2). There are two references: features (line 3) and type (line 4).
The features reference connects a class to its references (lines 5 and 6). The type
reference connects a reference to its type (lines 7 and 8).

+features

Class Reference
+type

Fig. 6. Class diagram representation of Simple KM3

1. Node(class, class) 5. Edge(class, features, features)
2. Node(reference, class) 6. Edge(features, reference, type)
3. Node(features, reference) 7. Edge(reference, type, features)
4. Node(type, reference) 8. Edge(type, class, type)

Fig. 7. Formal definition of SimpleKM3

We define a new predicate IsKindO f(x,y), which is for now equivalent to

predicate Node(z,y):

VaylsKindO f(xz,y) < Node(x,y) (1)

It will be redefined in section when we introduce class inheritance in Sim-
pleKMS3. We still use the Node(zx,y) predicate to define nodes but use this new
predicate in formulas that are also valid for subclasses. This is the case for for-

mulas and @

A SimpleKM3-model (i.e. model, metamodel or metametamodel) is valid if

the following formulas are verified:

Metaelement uniqueness. y, as a function, can only associate a single
metaelement to a given model node.

VezyzNode(z,y) N Node(z,z) -y =z (2)

There is no similar formula for edges because there may be several edges of
different types between two given nodes.

Node metaelelements are classes. Any node that is used as a metaele-
ment of another node must have node class as its metaelement.

VaxyNode(x,y) — Node(y, class) (3)

Edge metaelements are references. An edge can only exists between
nodes and must have node reference as its type.

VayzEdge(x,y, z) — (JziNode(x,) A (SyeNode(y, yt)) (4)
ANode(z, reference)

Edge target. An edge typed by reference z can only target a node typed
y; if the type of z is y;.

VayzEdge(x,y, z) — 3y [sKindOf(y,y:) A Edge(z,y:, type)) (5)

— Edge source. An edge typed by reference z can only have a node typed
as source if z is a feature of x;.

VeyzEdge(z,y, z) — (FrlsKindOf(x, x:) N Edge(xy, z, features)) (6)
— Reference type uniqueness. A reference has a unique type.
VayzEdge(z,y, type) A Edge(z, z,type) — y = z (7)
We must specify this constraint in Simple KM3 because it does not have the
concept of multiplicity.
4.2 Adding Opposite References

Opposite references work in pairs. They are especially convenient to enable bidi-
rectional navigation. For instance, in our first version of Simple KMS3, although
we can get the features of a class, we cannot get the class owning a given ref-
erence. Figure 8] defines the opposite reference belonging to and targeting the
reference class.

9. Node(opposite, reference) 11. Edge(opposite, reference, type)
10. Edge(reference, opposite, features)

Fig. 8. Addition of opposite reference to Simple KM

A SimpleKM3-model (i.e. model, metamodel or metametamodel) with oppo-
site is valid if the following formulas are verified:

— Opposite uniqueness. A reference has at most one opposite.
VayzEdge(x,y, opposite) A Edge(x, z, opposite) — y = z (8)
— References work in pairs.
VayEdge(x,y, opposite) — Edge(y, z, opposite) (9)
— Opposite references have opposite extremities.
VayzEdge(z,y, opposite) A Edge(z, x, features) — Edge(y, z,type) (10)
We can now extend SimpleKM3 with an owner reference opposite to the
features reference as shown on Figure [0] The resulting definition of SimpleKM3

corresponds to the class diagram given in Figure[I0] It is now possible to navigate
from reference to class.

12. Node(owner, reference) 15. Edge(owner, features, opposite)
13. Edge(reference, owner, features) 16. Edge(features, owner, opposite)
14. Edge(owner, class, type)

Fig. 9. Addition of some opposite references to Simple KM3

+owner +features

Class Reference +opposite
+type

Fig. 10. Class diagram representation of SimpleKM3 with opposites

4.3 Adding Inheritance

In KM3, inheritance allows reuse of references defined in supertypes. Overriding
of inherited features is not allowed. Figure introduces the supertypes refer-
ence from class to class. Figure [12] gives the class diagram of SimpleKM3 with
inheritance. In order to be able to use inherited references or to define edges
targeting subclasses of a reference type, we redefine IsKindO f(z) (see formula
1)) accordingly:

VaylsKindOf(x,y) < Node(z,y) V (3zNode(z, z) A ConformsTo(z,y)) (11)

This new definition makes use of the ConformsTo(z,y) predicate, recursively
defined as follows:

VayConformsTo(z,y) < (x =y)V (12)
(3zEdge(z, z, supertypes) A Con formsTo(z,y))

Circular inheritance is forbiden. The Con formsTo(z,y) predicate could not be
defined otherwise. With this new definitions, formulas @ and remain valid.

17. Node(supertypes, reference) 19. Edge(supertypes, class, type)
18. Edge(class, supertypes, features)

Fig. 11. Addition of inheritance to SimpleKM3

4.4 Other KM3 Concepts

We defined the formal semantics of the remaining KM3 concepts as well: pack-
ages, class abstractness, data types, attributes, enumerations, reference contain-
ment, multiplicity, etc. However, they do not fit in this paper because of space

+owner +features

+supertypes Class Reference +opposite
+type

Fig. 12. Class diagram representation of Simple KM3 with opposites and inher-
itance

limitation. A complete specification of KM3 in Prolog is available in appendix
This program uses the same predicates we defined in this section plus the
Prop(z,y, z) predicate where x € Ng, y € N, is an attribute, and z is a value.
We do not further detail this predicate, which is used as a shortcut to avoid
representing primitive values as nodes explicitly. The set of constraints imple-
mented in the program is illustrative of the characterization of KM3. We do not
claim completness here.

5 Related Work

Other modeling frameworks offer capabilities similar to those of KM3:

— OMG MOF. MOF is a standard metametamodel from OMG, of which
there exist several versions (e.g. MOF 1.4 [13] and MOF 2.0 [1]). All of them
are more complex than KM3 (i.e. they contain more classes, see section.
None has a formal semantics. Their standard concrete syntax is XMI, which
is based on XML and is, as such, more verbose than KM3. As noted in
section we have defined ATL transformations from MOF 1.4 to KM3
and from KM3 to MOF 1.4.

— HUTN. Human Usable Textual Notation [I7] (HUTN) is a standard by
OMG to give a default textual notation to each metamodel. Because it is an
automatic mapping from MOF to EBNF| it is more verbose than KMa3.

— Eclipse EMF Ecore. Ecore [12] is a metametamodel close to MOF 2.0
but with a standard textual notation: emfatic. One difference with KM3
is that emfatic provides EMF-specific constructs (e.g. to customize Java
code generation). One of our experiments has shown that such additional
information may be embedded into KM3 comments. Another difference is
that Ecore has no formal semantics. As noted in section [3.1} we have defined
ATL transformations from Ecore to KM3 and from KM3 to Ecore.

— Typed graphs. Typed Attributed Graphs [I8] are the conceptual frame-
work on which graph transformation is based. They have a precise formal
semantics. In opposition to KM3 and the definitions given in section [2], there
is no explicit metametamodel: type graphs are not themselves typed.

— sNets. sNets [I9] are one of our past experiments. We have learnt much
from them and KM3 is based on this knowledge. One difference with KM3
is that there is an explicit representation of p in the sNet metametamodel.

However this may lead to using hypergraphs to provide a complete general
solution, with possible strong constraints on implementation overhead.

6 Conclusions

In this paper we have proposed a metamodel definition language. We have seen
other possibilities of DSLs for performing such tasks like XMI or Emfatic. Each
DSL has some specificities, some advantages and drawbacks. For Emfatic for
example, the projection to Java is an important feature; for XMI, the possibil-
ity to take into account terminal models as well as metamodels is an essential
property.

The KM3 language is intended to be a lightweight textual metamodel def-
inition language allowing easy creation and modification of metamodels. The
metamodels expressed in KM3 have good readibility properties. The formalism
is sufficiently rich to support essential information. Additional information can
be expressed as metadata pragmas not described here. Metamodels expressed in
KM3 may be easily converted to/from other notations like Emfatic or XMI.

Among the properties of KM3 is the possibility to use it for the definition of
non-MOF based models. KM3 has also been designed to cross technical spaces.

The contribution of this paper is a clean semantics for a metamodel definition
language. To the best of our knowledge, such a definition has not been proposed
for such a language. As a side effect of this work, we have been able to give
a precise and original definition of a model, in the context of multiple techni-
cal spaces. All the tools currently available in the ATLAS Model Management
Platform [I5] are completely based on this operational definition.

7 Acknowledgements

This work has been partially supported by ModelWare, IST European project
511731. We thank Ivan Kurtev and all the members of the ATLAS team for
their support to this work.

References

1. OMG: Meta Object Facility (MOF) 2.0 Core Specification, OMG Document
ptc/03-10-04, http://www.omg.org/docs/ptc/03-10-04.pdf. (2003)

2. netBeans.org: Netbeans Meta Data Repository (MDR), http://mdr.netbeans.
org/. (2006)

3. Jouault, F., Kurtev, I.: Transforming models with ATL. In: Satellite Events at the
MoDELS 2005 Conference. Volume 3844 of Lecture Notes in Computer Science.,
Springer-Verlag (2006) 128-138

4. ATLAS team: ATLAS MegaModel Management (AM3) Home page, http://www.
eclipse.org/gmt/am3/. (2006)

5. OMG: MOF QVT Final Adopted Specification, OMG Document ptc/2005-11-01,
http://www.omg.org/docs/ptc/05-11-01.pdfl (2005)

http://www.omg.org/docs/ptc/03-10-04.pdf
http://mdr.netbeans.org/
http://mdr.netbeans.org/
http://www.eclipse.org/gmt/am3/
http://www.eclipse.org/gmt/am3/
http://www.omg.org/docs/ptc/05-11-01.pdf

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Bézivin, J., Kurtev, I.: Model-based technology integration with the technical
space concept. In: Proceedings of the Metainformatics Symposium, Springer-Verlag
(2005)

Object and Reference Model Subcommittee (ORMSC) of the OMG Architecture
Board: A Proposal for an MDA Foundation Model, white paper OMG-ORMSC/05-
08-01, http://www.omg.org/cgi-bin/doc?ormsc/05-08-01. (2005)

Bates, D., et al.: R Language Definition, http://stat.ethz.ch/R-manual/
R-patched/doc/manual/R-lang.html. (2006)

. McJones, P.R., ed.: The 1995 SQL Reunion: People, Project, and Politics, May

29, 1995. Volume SRC1997-018. (1997)

Gansner, E.R., North, S.C.: An open graph visualization system and its applica-
tions to software engineering. Software — Practice and Experience 30(11) (2000)
1203-1233

Harel, D., Rumpe, B.: Meaningful modeling: What’s the semantics of ”semantics”?
Computer 37(10) (2004) 64-72

Budinsky, F., Steinberg, D., Ellersick, R., Merks, E., Brodsky, S.A., Grose, T.J.:
Eclipse Modeling Framework. Addison Wesley (2003)

OMG: Meta Object Facility (MOF) Specification, version 1.4, OMG Doc-
ument formal/2002-04-03, http://www.omg.org/technology/documents/formal/
mof .htm. (2002)

Eclipse Foundation: Generative Model Transformer (GMT) Home page, http:
//www.eclipse.org/gmt/. (2006)

ATLAS team: ATLAS Transformation Language (ATL) Home page, http://www.
eclipse.org/gmt/atl/. (2006)

ATLAS team: Atlantic Metamodel Zoo, http://www.eclipse.org/gmt/am3/zoos/
atlanticZoo/. (2006)

OMG: Human-Usable Textual Notation, v1.0, OMG Document formal/04-08-01,
http://www.omg.org/technology/documents/formal/hutn.htm. (2004)

Ehrig, H., Prange, U., Taentzer, G.: Fundamental theory for typed attributed
graph transformation. In: Graph Transformations: Second International Confer-
ence, ICGT 2004. Volume 3256 of Lecture Notes in Computer Science., Springer-
Verlag (2004) 161-177

Bézivin, J.: sNets: A first generation model engineering platform. In: Satellite
Events at the MoDELS 2005 Conference. Volume 3844 of Lecture Notes in Com-
puter Science., Springer-Verlag (2006) 169-181

Appendix A

A.

1 KM3 Definition of KM3

package KM3 {

abstract class ModelElement {

attribute name : String;
reference "package" : Package oppositeOf contents;

}

class Classifier extends ModelElement {}
class DataType extends Classifier {}

class Enumeration extends Classifier {

http://www.omg.org/cgi-bin/doc?ormsc/05-08-01
http://stat.ethz.ch/R-manual/R-patched/doc/manual/R-lang.html
http://stat.ethz.ch/R-manual/R-patched/doc/manual/R-lang.html
http://www.omg.org/technology/documents/formal/mof.htm
http://www.omg.org/technology/documents/formal/mof.htm
http://www.eclipse.org/gmt/
http://www.eclipse.org/gmt/
http://www.eclipse.org/gmt/atl/
http://www.eclipse.org/gmt/atl/
http://www.eclipse.org/gmt/am3/zoos/atlanticZoo/
http://www.eclipse.org/gmt/am3/zoos/atlanticZoo/
http://www.omg.org/technology/documents/formal/hutn.htm

reference literals[*x] ordered container : EnumlLiteral oppositeOf
< enum ;

}

class EnumLiteral extends ModelElement {
reference enum : Enumeration oppositeOf literals;

}

class Class extends Classifier {
attribute isAbstract : Boolean;
reference supertypes[x] : Class;
reference structuralFeatures [*] ordered container
—StructuralFeature oppositeOf owner;

}

class TypedElement extends ModelElement {

attribute lower : Integer;
attribute upper : Integer;
attribute isOrdered : Boolean;
attribute isUnique : Boolean;
reference type : Classifier;

}

class StructuralFeature extends TypedElement {

reference owner : Class oppositeOf structuralFeatures;
reference subsetOf [*] : StructuralFeature oppositeOf derivedFron;
reference derivedFrom[*] : StructuralFeature oppositeOf subsetOf;

}
class Attribute extends StructuralFeature {}
class Reference extends StructuralFeature {

attribute isContainer : Boolean;
reference opposite[0—1] : Reference;

class Package extends ModelElement {

reference contents [*] ordered container : ModelElement oppositeOf "
—package";
reference metamodel : Metamodel oppositeOf contents;

}

class Metamodel extends LocatedElement {
reference contents [*] ordered container : Package oppositeOf
—»metamodel ;
}
}

package PrimitiveTypes {
datatype Boolean;
datatype Integer;
datatype String;

}

A.2 Formal Syntax of KM3

package — package name { classifiers }
classifiers —

classifiers — classifier classifiers
classifier — class

classifier — datatype

classifier — enumeration

class — isabstract class name supertypes { features }
isabstract —

isabstract — abstract

supertypes —

supertypes — extends typelist

typelist — typeref

typelist — typeref, typelist

features —

features — feature features

feature — attribute

feature — reference

attribute — attribute name multiplicity : typeref ;
reference — reference name multiplicity iscontainer : typeref opposite0f name ;
multiplicity — bounds

multiplicity — bounds ordered

bounds —

bounds — [integer - integer]

bounds — [integer - *]

bounds — [*]

iscontainer —

iscontainer — container

datatype — datatype name ;
enumeration — enumeration mame { literals }
literals —

literals — literal literals

literal — literal name

typeref — name

A.3 Prolog Definition of KM3
/* KM3 metametamodel definition */

node (km3, package) .

prop (km3,name, "KM3") .

edge (km3,modelElement,contents) .
edge (modelElement ,km3,me_package) .
edge (km3,package,contents) .

edge (package,km3,me_package) .

edge (km3,classifier,contents).
edge(classifier,km3,me_package) .
edge (km3,dataType,contents) .

edge (dataType,km3,me_package) .
edge (km3,class,contents) .
edge(class,km3,me_package) .

edge (km3, structuralFeature,contents) .
edge (structuralFeature,km3,me_package) .
edge (km3,reference,contents) .
edge(reference,km3,me_package) .
edge (km3,attribute,contents) .
edge(attribute,km3,me_package) .
edge (km3,boolean, contents) .
edge(boolean,km3,me_package) .

edge (km3, integer,contents) .

edge (integer,km3,me_package) .

edge (km3, string,contents) .

edge (string,km3,me_package) .

/* class ModelElement */
node (modelElement,class).

prop(modelElement ,name, "ModelElement") .
prop(modelElement,isAbstract,true).

/* attribute ModelElement.name : String */
node (name,attribute) .

prop(name,name, "name") .
prop(name,lower,1) .

prop(name,upper,1) .
prop(name,isOrdered,false).

prop(name, isUnique,false).

edge (modelElement ,name,features) .

edge (name ,modelElement ,owner) .

edge (name, string,type) .

/* reference ModelElement.package : Package oppositeOf contents */
node (me_package ,reference) .

prop (me_package ,name, "package") .
prop(me_package,isContainer,false).
prop (me_package,lower,0) .

prop (me_package,upper,1) .
prop(me_package,isOrdered,false).
prop(me_package, isUnique,false).

edge (modelElement ,me_package,features).
edge (me_package ,modelElement ,owner) .
edge (me_package,package,type) .

edge (me_package,contents,opposite) .

/* class Package extends ModelElement */
node (package,class) .

prop (package ,name, "Package") .
prop(package,isAbstract,false).

edge (package ,modelElement , supertypes) .

/* reference Package.contents[*] ordered container : ModelElement oppositeOf package */
node(contents,reference) .
prop(contents,name, "contents") .
prop(contents,isContainer,true) .
prop(contents,lower,0).
prop(contents,upper,-1) .
prop(contents,isOrdered,false).
prop(contents,isUnique,false) .

edge (package,contents,features).
edge (contents,package,owner) .
edge(contents,modelElement,type) .
edge (contents,me_package,opposite) .

/* class Classifier extends ModelElement */
node(classifier,class).
prop(classifier,name,"Classifier").
prop(classifier,isAbstract,true).
edge(classifier,modelElement,supertypes).

/* class DataType extends Classifier */
node (dataType,class) .
prop(dataType,name, "DataType") .
prop(dataType,isAbstract,false).
edge(dataType,classifier,supertypes) .

/* class Class extends Classifier */
node(class,class).
prop(class,name,"Class") .
prop(class,isAbstract,false).
edge(class,classifier,supertypes).

/* attribute Class.isAbstract : Boolean */
node (isAbstract,attribute) .
prop(isAbstract,name,"isAbstract").
prop(isAbstract,lower,1).

prop(isAbstract,upper,1).
prop(isAbstract,isOrdered,false).
prop(isAbstract,isUnique,false).
edge(class,isAbstract,features).
edge(isAbstract,class,owner) .
edge (isAbstract,boolean,type) .

/* reference Class.features[*] ordered container : StructuralFeature oppositeOf owner */
node (features,reference) .
prop(features,name, "structuralFeatures").
prop(features,isContainer,true).
prop(features,lower,0).
prop(features,upper,-1).
prop(features,isOrdered,true).
prop(features,isUnique,true).
edge(class,features,features) .

edge (features,class,owner) .

edge (features,structuralFeature,type).
edge (features,owner,opposite) .

/* reference Class.supertypes[*] : Class */
node (supertypes,reference) .
prop(supertypes,name, "supertypes") .
prop(supertypes,isContainer,false).
prop(supertypes,lower,0) .
prop(supertypes,upper,-1) .
prop(supertypes,isOrdered,false).
prop(supertypes,isUnique,true).
edge(class,supertypes,features) .
edge (supertypes,class,owner) .

edge (supertypes,class,type) .

/* abstract class StructuralFeature extends ModelElement */
node (structuralFeature,class).

prop(structuralFeature,name, "StructuralFeature") .
prop(structuralFeature,isAbstract,true).

edge (structuralFeature,modelElement,supertypes) .

/* attribute StructuralFeature.lower : Integer */
node (lower,attribute) .

prop(lower,name, "lower") .

prop(lower,lower,1).

prop(lower,upper,1).

prop(lower,isOrdered,false).
prop(lower,isUnique,false).

edge (structuralFeature,lower,features).

edge (lower,structuralFeature,owner) .

edge(lower, integer,type) .

/* attribute StructuralFeature.upper : Integer */
node (upper,attribute) .

prop (upper ,name, "upper") .

prop (upper, lower,1).

prop (upper ,upper,1) .

prop (upper,isOrdered,false) .

prop (upper, isUnique,false).

edge (structuralFeature,upper,features).

edge (upper, structuralFeature,owner) .

edge (upper, integer,type) .

/* attribute StructuralFeature.isOrdered : Boolean */
node (isOrdered,attribute) .

prop(isOrdered,name, "isOrdered").
prop(isOrdered,lower,1).

prop(isOrdered,upper,1) .

prop(isOrdered, isOrdered,false) .

prop(isOrdered, isUnique,false).
edge(structuralFeature,isOrdered,features).

edge (isOrdered, structuralFeature,owner) .
edge (isOrdered,boolean,type) .

/* attribute StructuralFeature.isUnique : Boolean */
node (isUnique,attribute).

prop(isUnique,name, "isUnique") .
prop(isUnique,lower,1).

prop(isUnique,upper,1) .
prop(isUnique,isOrdered,false).
prop(isUnique,isUnique,false).

edge (structuralFeature, isUnique,features).

edge (isUnique,structuralFeature,owner) .

edge (isUnique,boolean,type) .

/* reference StructuralFeature.owner : Class oppositeOf features */
node (owner,reference) .

prop (owner,name, "owner") .
prop(owner,isContainer,false).

prop (owner,lower,1).

prop (owner,upper,1) .

prop (owner,isOrdered,false).
prop(owner,isUnique,false).

edge (structuralFeature,owner,features).
edge (owner, structuralFeature,owner) .
edge (owner,class,type) .

edge (owner,features,opposite) .

/* reference StructuralFeature.type : Class */
node (type,reference) .

prop(type,name, "type") .
prop(type,isContainer,false).
prop(type,lower,1).
prop(type,upper,1).
prop(type,isOrdered,false).
prop(type,isUnique,false).
edge(structuralFeature,type,features).
edge(type,structuralFeature,owner) .
edge(type,classifier,type).

/* class Reference extends StructuralFeature */
node (reference,class) .

prop(reference,name, "Reference").
prop(reference,isAbstract,false).
edge(reference,structuralFeature, supertypes) .

/* attribute Reference.isContainer : Boolean */
node (isContainer,attribute).
prop(isContainer,name,"isContainer").
prop(isContainer,lower,1).
prop(isContainer,upper,1).
prop(isContainer,isOrdered,false).
prop(isContainer,isUnique,false).
edge(reference,isContainer,features).
edge(isContainer,reference,owner) .

edge (isContainer,boolean,type) .

/* reference Reference.opposite : Reference */
node (opposite,reference) .

prop (opposite,name, "opposite") .
prop(opposite,isContainer,false).
prop(opposite,lower,0).
prop(opposite,upper,1).
prop(opposite,isOrdered,false).
prop(opposite,isUnique,false).
edge (reference,opposite,features) .
edge (opposite,reference,owner).
edge (opposite,reference,type) .

/* class Attribute extends StructuralFeature */
node(attribute,class).
prop(attribute,name,"Attribute").
prop(attribute,isAbstract,false).
edge(attribute,structuralFeature, supertypes) .

/* datatype Boolean */
node (boolean,dataType) .
prop(boolean,name, "Boolean") .

/* datatype Integer */
node (integer,dataType) .
prop(integer,name, "Integer").

/* datatype String */
node (string,dataType) .
prop(string,name,"String").

/*
Helper predicates
*/

is_boolean(true).
is_boolean(false).
is_string(X) :- is_list(X), member(C,X), integer(C).

structuralFeatures(Class,X) :- edge(Class,X,features).

allStructuralFeatures(Class,X) :- structuralFeatures(Class,X).

allStructuralFeatures(Class,X) :- supertypes(Class,SuperClass),
allStructuralFeatures(SuperClass,X) .

conformsTo(Class1,Class2) :- supertypes(Classi,Class2).
conformsTo(Classl,Class2) :- supertypes(Classl,SuperClass), conformsTo(SuperClass,Class2).

isTypeOf (X, Type) :- node(X,Type).

isKindOf (X, Type) :- isTypeOf (X,Type).
isKindOf (X,Type) :- isTypeOf (X,SomeType), conformsTo(SomeType,Type).

supertypes(Class,X) :- edge(Class,X,supertypes).
allSupertypes(Class,X) :- supertypes(Class,X).
allSupertypes(Class,X) :- supertypes(Class,SuperClass), supertypes(SuperClass,X).

subtypes(Class,X) :- supertypes(X,Class).
allSubtypes(Class,X) :- subtypes(Class,X).
allSubtypes(Class,X) :- subtypes(Class,SubClass), allSubtypes(SubClass,X).

opposite0f (X,Y) :- node(X,reference), node(Y,reference), edge(X,Y,opposite).

lookupElement (Class,ElementName,Element) :- structuralFeatures(Class,Element),
prop (Element ,name,ElementName) .
lookupElementExtended(Class,ElementName,Element) :- allStructuralFeatures(Class,Element),

prop(Element ,name,ElementName) .

className(Class,Name) :- isTypeOf(Class,class), prop(Class,name,Name).
packageName (Package,Name) :- node(Package,package), prop(Package,name,NameAsList),
string_to_list(Name,NameAsList).

/*

Some Well-Formedness Rules for KM3-models

*/

hasErrors :- wfr(M,X,Y,Z), writef(M, [X,Y,Z]).
hasErrors :- wfr(M,X,Y), writef(M, [X,Y]).
hasErrors :- wfr(M,X), writef(M, [X]).

wfr(’The type of node %w should be a class.’,X) :-

node (X,Y), not(node(Y,class)).
wfr(’Node %w is defined twice with different types %w and %w.’,X,Y,Z) :-
node(X,Y), node(X,2), \=(Y,Z).
wfr(’The type of edge %w->%w should be a reference.’,X,Y) :-
edge(X,Y,Z), not(node(Z, reference)).
wfr(’The opposite of reference %w is reference %w, but the reverse is not true.’,X,Y) :-
node(X,reference), edge(X,Y,opposite), not(edge(Y,X,opposite)).
wir(°’The opposite of reference %w is reference %w, but types and owner do not match.’,X,Y) :-
node (X,reference), edge(X,XOwner,owner), edge(X,Y,opposite), not(edge(Y,XOwner,type)).
wfr(’The target of edge %w->%w is not a valid node.’,X,Y) :-
edge(X,Y,_), not(node(Y,_)).
wfr (’The source of edge %w->)w is not a valid node.’,X,Y) :-
edge(X,Y,_), not(node(X,_)).
wfr(’The source of edge Jw->)w does not have a correct type.’,X,Y) :-
edge(X,Y,Reference), edge(Reference,SourceType,owner), not(isKindOf (X,SourceType)).
wfr(’The target of edge Jw->)w does not have a correct type.’,X,Y) :-
edge(X,Y,Reference), edge(Reference,TargetType,type), not(isKindOf (Y,TargetType)).
wfr (’Edge %w->%w does not have an opposite with appropriate type.’,X,Y) :-
edge(X,Y,Z), opposite0f(Z,0), not(edge(Y,X,0)).
wfr(’%w is an instance of abstract type %w, which is forbidden.’,X,Y) :-
node(X,Y), prop(Y,isAbstract,true).
wfr(’Attribute %w is not valid for %w.’,X,Y) :-
prop(Y,X,_), isTypeOf(Y,YType), not(allStructuralFeatures(YType,X)).
wfr (’Property %w of %w should be of type Integer.’,X,Y) :-
prop(Y,X,V), edge(X,T,type), node(T,dataType), prop(T,name,"Integer"), not(integer(V)).
wfr (’Property %w of %w should be of type String.’,X,Y) :-
prop(Y,X,V), edge(X,T,type), node(T,dataType), prop(T,name,"String"), not(is_string(V)).
wfr (’Property %w of %w should be of type Boolean.’,X,Y) :-
prop(Y,X,V), edge(X,T,type), node(T,dataType), prop(T,name,"Boolean"),
not (is_boolean(V)).
wir(’Classifier %w should be in a package.’,X) :-
isKindOf (X, classifier), not(edge(X,_,me_package)).
wfr (’Element %w should have a value for attribute %w.’,X,Y) :-
isTypeOf (X,XType), allStructuralFeatures(XType,Y), node(Y,attribute),
not (prop(Y,lower,0)), not(prop(X,Y,_)).
wfr (’Element %w should have a value for reference %w.’,X,Y) :-
isTypeOf (X,XType), allStructuralFeatures(XType,Y), node(Y,reference),
not (prop(Y,lower,0)), not(edge(X,_,Y)).
wfr(’Element %w is contained in both %w and %w.’,X,Y,Z) :-
edge(X,Y,F1), edge(X,Z,F2), oppositeOf(F1,0F1), oppositeOf(F2,0F2),
prop(0F1,isContainer,true), prop(0F2,isContainer,true), \=(F1,F2).

