
Mapping generation for XML data sources: a general framework

Zoubida Kedad, Xiaohui Xue

Laboratoire PRiSM, Université de Versailles

45 avenue des Etats-Unis, 78035 Versailles, France

{Zoubida.Kedad, Xiaohui.Xue}@prism.uvsq.fr

Abstract

The inter-operability of multiple autonomous and

heterogeneous data sources is an important issue in

many applications such as mediation systems, data-

warehouses, or web-based systems. These systems

provide a view, called a target schema, on the top of

the data sources. Mappings are defined for describing

the way instances of the target schema are derived

from instances of the data sources. The generation of

such mappings is a difficult problem, especially when

the target schema and the source schemas are in XML

format.

In this paper, we propose a framework to

automatically find the mappings for a target schema

given the source schemas and a set of semantic

correspondences. In our framework, the target schema

is decomposed into subtrees. Mappings are first

determined for each subtree, and then combined to

generate the mapping for the whole target schema. The

generated mappings are expressed in a standard

language, such as XQuery or XSLT.

1. Introduction

The inter-operability of several autonomous and

heterogeneous data sources is an important issue in

many applications such as mediation systems, data-

warehouses, or web-based systems. The goal of these

systems is to provide a uniform view on the top of the

data sources.

In these systems, each data source has a schema

(called source schema) that presents its data to the

outside world. The applications using the system

define a target schema that represents their needs.

There are mainly two kinds of links established

between each source schema and the target schema:

semantic correspondences and mappings. The semantic

correspondences between elements of the target

schema and elements of the source schemas express

that these elements represent the same concept. The

definition of the correspondences between two

schemas has been the focus of several works, such as

[5][12]. Beside these correspondences, mappings are

expressions describing the way instances of the target

schema are derived from instances of the sources. The

mappings are defined using the correspondences

existing between the schemas.

The definition of the mappings to transform data

from one representation to another one is known as

data exchange, data translation or data migration [11].

When the mappings are defined between a target

schema and one source schema, the definition of the

mappings consists mainly in restructuring the data

from one presentation to another. A mapping defined

between a target schema and several source schemas is

more complex: mapping definition must not only

transform the source data from one structure to another

but also combine the elements of different sources.

The definition of these complex mappings for

multiple source schemas is a complicated process

which requires a deep understanding of the data

sources and their semantics. The complexity of this

process increases when the number of data sources is

high. In this case, the amount of knowledge required to

manually write the mappings makes this task very

difficult for a human designer. If the target schema and

the source schemas are in XML format, the definition

of the mappings becomes more complex because of the

hierarchical nature of the data. In this paper, we

propose a framework for the automatic generation of

mappings between a target schema and a set of source

schemas given a set of correspondences.

The paper is organized as follows. Section 2

presents the related works. In section 3, we describe

some basic assumptions. Section 4 gives an overview

of our framework. Sections 5 to 8 describe the

components of the framework: the identification of the

relevant schemas (section 5), the decomposition of the

target schema (section 6), the determination of partial

mappings (section 7), and the generation of the target

mappings from the partial mappings (section 8). Some

concluding remarks are given in section 9.

 This work is supported by the French Ministry of Research through the ACI Grid program.

Proceedings of the 2005 International Workshop on Challenges in Web Information Retrieval and Integration (WIRI’05)
0-7695-2414-1/05 $20.00 © 2005 IEEE

2. Related works

The mappings between a target schema and one or

several source schemas are expressions describing the

way instances of the target schema are derived from

instances of the data sources. These mappings are used

for rewriting user queries expressed on the target

schema in terms of the source schemas.

Several approaches [2][8][9][10][14] have been

proposed to generate mappings when the target and the

source schemas are expressed using the relational

model. The approach presented in [9][10][14]

generates a set of mappings from one source schema

using a set of pre-defined value correspondences

which specify how a target attribute is generated from

one or more source attributes. The approach presented

in [2][8] generates a set of mappings from a set of

source schemas using linguistic correspondences

between target attributes and source attributes

expressing that these elements represent the same

concept.

In the case of XML sources, the complexity of

mapping generation increases: we must not only find

instances for each node of the tree representing the

target schema, but also preserve its tree structure.

An approach is proposed in [11] for generating

mappings from one source schema to a target schema

when these schemas are in XML format. In [16], a

query rewriting algorithm which uses these mappings

is proposed for integrating data sources.

Other approaches have been proposed [3][15][17]

to generate mappings from several source schemas.

These approaches comprise two steps: (i) the definition

of rules to restructure each source schema according to

the structure of the target schema; (ii) and the

generation of mappings from these restructured

schemas. In these approaches, source schemas must be

restructurable with respect to the target schema in

order to derive mappings from them.

In this paper, we are interested in generating

mappings for a target schema from a set of source

schemas and given a set of correspondences. The

target schema and the source schemas are in XML

format. The generated mappings are defined in a

standard language, such as XQuery or XSLT and they

satisfy the constraints defined in the target schema.

TS

Library

Author +

Id

Name

Address

Book *

ISBN

Title

Chapter +

Number[scope:book]

Title

Abstract ?

S2
Library

Book +
ISBN
Author +

Id
Name

Publisher
pubName
pubAdress

Chapters
Chapter +

Number[scope:book]
Title

S1
Library

Author +
Id
Name

Book +
ISBN
Title
Chapter +

Number
Abstract

Address +
AuthorId
Address

TS

Library

Author +

Id

Name

Address

Book *

ISBN

Title

Chapter +

Number[scope:book]

Title

Abstract ?

TS

Library

Author +

Id

Name

Address

Book *

ISBN

Title

Chapter +

Number[scope:book]

Title

Abstract ?

S2
Library

Book +
ISBN
Author +

Id
Name

Publisher
pubName
pubAdress

Chapters
Chapter +

Number[scope:book]
Title

S1
Library

Author +
Id
Name

Book +
ISBN
Title
Chapter +

Number
Abstract

Address +
AuthorId
Address

Figure 1. Target and source schemas

3. Preliminaries

In this section, we present some basic assumptions

and definitions used in our framework. We consider a

simplified version of XML Schema. Each schema is

represented by a tree. Figure 1 shows two source

schemas (S1 and S2) and a target schema (TS)

representing information about books in a library. To

avoid confusions, in the rest of the paper, each node in

a source will be suffixed with the name of its schema:

the node AuthorIds1 will refer to the node AuthorId in

S1 while the node Authors2 will refer to the node

Author in S2.

Every node in the tree may be either a text node

(e.g. AuthorIds1), that is, a node containing only text,

or an internal node (e.g. Authors1), that is, a node used

only to contain other nodes. The leaf nodes of the tree

are always text nodes.

The cardinality of every node is characterized by

the two values minOccur and maxOccur, representing

respectively the minimum and maximum number of

instances for this node in the tree with respect to its

parent. A node may be monovalued (maxOccurs=1), or

multivalued (maxOccurs>1). It may also be optional

(minOccurs=0) or mandatory (minOccurs>0). In the

example of figure 1, the symbol ‘+’ for a node means

that this node is multivalued and mandatory (e.g.

Books2); the symbol ‘*’ means that the node is

Proceedings of the 2005 International Workshop on Challenges in Web Information Retrieval and Integration (WIRI’05)
0-7695-2414-1/05 $20.00 © 2005 IEEE

semantic
correspondences

source
schema 1

semantic
correspondences

source
schema 1

source
schemas

semantic
correspondences

target
schema

XQueryXQueryXQuery

XQueryXQuery
XSLT…

partial
mappings

abstract
mappings

relevant
schemas

new semantic
correspondences

partial
mappings

partial
mappings

target
subtree

target
subtree

target
subtree

Relevant schema
identification

partial mapping
determination

partial mapping
determination

partial mapping
determination

target schema
decomposition

XQuery
translation

XSLT
translation

target mapping
generation

semantic
correspondences

source
schema 1

semantic
correspondences

source
schema 1

source
schemas

semantic
correspondences

target
schema

XQueryXQueryXQuery

XQueryXQuery
XSLT…

partial
mappings

abstract
mappings

relevant
schemas

new semantic
correspondences

partial
mappings

partial
mappings

target
subtree

target
subtree

target
subtree

Relevant schema
identification

partial mapping
determination

partial mapping
determination

partial mapping
determination

target schema
decomposition

XQuery
translation

XSLT
translation

target mapping
generation

Figure 2. The general framework for mapping generation

multivalued and optional (e.g. Bookts); the symbol ‘?’

means that the node is monovalued and optional (e.g.

Abstractts). A node without a symbol is monovalued

and mandatory (e.g. Ids1).

Every multivalued node n may have a key, which is

either defined in the whole schema or only in a subtree

of the schema. In the first case, its scope is the root of

the schema and the key is said to be absolute. In the

second case, its scope is an ascendant of n, different

from the root, and the key is said to be relative. In the

example of figure 1, the nodes written in bold

represent keys. If the name of the key node is followed

by a bracket, this means that the key is a relative key,

and its scope is the node between brackets, otherwise it

is an absolute key. For example, Numbers2 is a relative

key for Chapters2 and its scope is Books2, while ISBNs1

is an absolute key. A schema may also contain

references, represented by a set of text nodes

referencing another set of text nodes defined as a key.

In our example, each arrow represents a reference. For

example, AuthorIds1 is defined as a reference on Ids1.

We suppose that a set of correspondences is

provided between each source and the target schema.

Each correspondence relates a source node n with a

node in the target schema n’ and states that the two

nodes represent the same concept. This

correspondence is denoted n n’. In figure 1, dotted

lines between pairs of nodes in different schemas

represent correspondences (e.g. Ids1 Idts).

If two source nodes n1 and n2 and a target node n

are such that n1 n and n2 n, then we consider that a

correspondence is also valid between n1 and n2; it is

denoted n1 n2. We also consider correspondences

between two sets of text nodes. Given two sets of

nodes s1 and s2, there is a correspondence between s1

and s2 if (i) both s1 and s2 contain the same number of

nodes; (ii) for each node n1 in s1 there is exactly one

node n2 in s2 such that n1 n2 and vice versa. The

correspondence between the two sets s1 and s2 is

denoted s1 s2 (e.g. {AuthorIds1, Addresss1} {Idts,

Addressts}; {Ids1, Names1} {Ids2, Names2}).

4. The general framework

This section presents our framework for the

automatic generation of XML mappings (figure 2).

The inputs or our framework are a target schema, a

set of source schemas and a set of semantic

correspondences between elements of the target

schema and elements of the source schemas. They are

show on the top of figure 2. The outputs are a set of

mappings representing different ways to derive the

instances of the target schema from the instances of the

source schemas. These mappings are expressed in

XQuery or XSLT and they are shown on the left side

of figure 2. The framework has the following

components.

Proceedings of the 2005 International Workshop on Challenges in Web Information Retrieval and Integration (WIRI’05)
0-7695-2414-1/05 $20.00 © 2005 IEEE

S2 (Relevant schema)
Library

Book +
ISBN
Author +

Id
Name

Chapter +
Number[scope:book]
Title

S2
Library

Book +
ISBN
Author +

Id
Name

Publisher
pubName
pubAdress

Chapters
Chapter +

Number[scope:book]
Title

TS

Library

Author +

Id

Name

Address

Book *

ISBN

Title

Chapter +

Number[scope:book]

Title

Abstract ?

S2 (Relevant schema)
Library

Book +
ISBN
Author +

Id
Name

Chapter +
Number[scope:book]
Title

S2 (Relevant schema)
Library

Book +
ISBN
Author +

Id
Name

Chapter +
Number[scope:book]
Title

S2
Library

Book +
ISBN
Author +

Id
Name

Publisher
pubName
pubAdress

Chapters
Chapter +

Number[scope:book]
Title

TS

Library

Author +

Id

Name

Address

Book *

ISBN

Title

Chapter +

Number[scope:book]

Title

Abstract ?

TS

Library

Author +

Id

Name

Address

Book *

ISBN

Title

Chapter +

Number[scope:book]

Title

Abstract ?

Figure 3. Relevant Schemas

Relevant schema identification. The goal of

relevant schema identification is to determine for

a given source schema, the portion that is relevant

with respect to the target schema. The output of

this component is a schema (called relevant

schema) that represents the relevant portion of

the source; this component also produces a set of

semantic correspondences representing the

matching elements between the target schema and

the relevant schema. The identification of the

relevant schema is performed because some

source schemas may have only a small portion

that is relevant with respect to the target schema,

and each time this information is needed, the

whole schema must be browsed. The

identification of the relevant schema allows

getting smaller sized representations.

Target schema decomposition. The goal of this

component is to decompose the target schema

into a set of subtrees (called target subtrees).

Due to the semi-structured nature of XML

documents, it is extremely difficult to directly

define the mappings for the whole target schema.

We will therefore search for a way to derive

instances of each target subtree, and then define

the mapping for the whole schema.

Partial mapping determination. Given a target

subtree, this component produces as output a set

of partial mappings, each of them representing a

way to derive instances of the target subtree from

instances of the source schemas. The partial

mapping determination is performed

independently from the other target subtrees.

Every partial mapping satisfies the constraints

defined in the associated target subtree.

Target mapping generation. This component

derives the mappings for the whole target schema

by assembling the partial mappings of the

different target subtrees. The output of this

component is a set of target mappings, each one

representing a different semantic. All the target

mappings satisfy the cardinality constraints and

the hierarchical relations existing between the

target subtrees. The generated mappings are

abstract queries, independent of the external

query language.

XQuery and XSLT translations. The goal of

these two components is to translate the abstract

mappings into respectively XQuery and XSLT

for using them in different contexts.

In the remaining of the paper we will give a

description for each component of the framework.

5. Relevant schema identification

The goal of relevant schema identification is to

determine and to extract for each source schema, the

portion that is relevant with respect to the target

schema; its output is a relevant schema.

For a given source schema, the relevant schema is

generated along with a set of semantic

correspondences that relate elements of the relevant

schema with elements of the target schema. If we

consider the source S2 of figure 1, its relevant schema

is shown in figure 3. This figure also shows the

correspondences between the relevant schema and the

target schema. These correspondences are derived

using the correspondences initially provided between

elements of the considered source schema and

elements of the target schema.

For identifying the relevant portion of a source

schema, we must firstly identify the nodes in this

schema that are useful for generating mappings. We

call these nodes relevant nodes. There are four types of

relevant nodes:

Obviously, all the nodes which are involved in a

correspondence with a node in the target schema

are relevant nodes (e.g. ISBNs2).

Proceedings of the 2005 International Workshop on Challenges in Web Information Retrieval and Integration (WIRI’05)
0-7695-2414-1/05 $20.00 © 2005 IEEE

All the multivalued nodes having a descendent

which is a relevant node are also relevant nodes

(e.g. Authors2). They are useful for keeping the

semantics of the source schema. For example, if

we do not keep the node Authors2 in the relevant

schema, we cannot find the corresponding

instance of Names2 for every instance of Ids2.

Each node defined as a key of a relevant node or

defined as a reference on a relevant node is also a

relevant node;

The root of the source schema is a relevant node

if there is at least one relevant node in this

schema. This root guarantees that the extracted

relevant schema is a tree (e.g. Librarys2).

The relevant schema for a given source schema

contains all the relevant nodes. If two relevant nodes n

and n’ are such that n is an ascendant of n’ and if there

is no relevant node which is a descendent of n’ and an

ascendant of n, then there will be an edge from n to n’

in the relevant schema. The relevant schema

corresponding to the source S2 of figure 1 is given in

figure 3. In S2, Chapterss2 is not a relevant node.

There is therefore an edge from Books2 to Chapters2 in

the corresponding relevant schema. In the source

schema S1, all the nodes are relevant. S1 and the

corresponding relevant schema are therefore identical.

The correspondences between the relevant schema

and the target schema are produced from the

correspondences between the source schema and the

target schema by replacing every source node by its

corresponding node in the relevant schema.

The algorithm for identifying a relevant schema

takes as input a source schema and the set of its

correspondences with the target schema. The

generation is done through an in-width exploration of

the source schema from the leaves to the root.

The relevant schema identification module allows

reducing the size of the source representation that will

be processed by the other modules without losing

semantics. In our framework, this step is optional. For

a given source schema, we can use either the relevant

schema or the initial source schema. For simplicity, we

will refer to the description of a source as source

schema in both cases.

6. Target schema decomposition

This component decomposes the target schema into

subtrees, called target subtrees. Given a target

schema, each target subtree t is such that:

the root r of the subtree is either a multivalued

node or the root of the target schema;

all the other nodes in t that are descendents of r

and are monovalued;

for any pair of nodes n1 and n2 in t, if there is an

edge from n1 to n2 in the target schema, then this

edge is also in t;

there is at least one text node in t.

(a) source parts (b) target subtrees (c) joins

S1
Library

Author +
Id
Name

Book +
ISBN
Title
Chapter +

Number
Abstract

Address +
AuthorId
Address

sp1

sp2

sp4

sp6

S2
Library

Book +
ISBN
Author +

Id
Name

Chapter +
Number[scope:book]
Title

sp3

sp5

sp7

TS

Library

Author +

Id

Name

Address

Book *

ISBN

Title

Chapter +

Number[scope:book]

Title

Abstract ?

t3
t2

t1

S1
Library

Author +
Id
Name

Book +
ISBN
Title
Chapter +

Number
Abstract

Address +
AuthorId
Address

sp1

sp2

sp4
sp6j2

Ids1=Authors1

j1 Ids1 = Ids2

j3 Authors1 = Ids2

j4 ISBNs1 = ISBNs2

j5
ISBNs1 = ISBNs2 and

Numbers1 = Numbers2

S2
Library

Book +
ISBN
Author +

Id
Name

Chapter +
Number[scope:book]
Title

sp3

sp5

sp7

(a) source parts (b) target subtrees (c) joins

S1
Library

Author +
Id
Name

Book +
ISBN
Title
Chapter +

Number
Abstract

Address +
AuthorId
Address

sp1

sp2

sp4

sp6

S2
Library

Book +
ISBN
Author +

Id
Name

Chapter +
Number[scope:book]
Title

sp3

sp5

sp7

TS

Library

Author +

Id

Name

Address

Book *

ISBN

Title

Chapter +

Number[scope:book]

Title

Abstract ?

t3
t2

t1

S1
Library

Author +
Id
Name

Book +
ISBN
Title
Chapter +

Number
Abstract

Address +
AuthorId
Address

sp1

sp2

sp4

sp6

S2
Library

Book +
ISBN
Author +

Id
Name

Chapter +
Number[scope:book]
Title

sp3

sp5

sp7

TS

Library

Author +

Id

Name

Address

Book *

ISBN

Title

Chapter +

Number[scope:book]

Title

Abstract ?

t3
t2

t1

S1
Library

Author +
Id
Name

Book +
ISBN
Title
Chapter +

Number
Abstract

Address +
AuthorId
Address

sp1

sp2

sp4
sp6j2

Ids1=Authors1

j1 Ids1 = Ids2

j3 Authors1 = Ids2

j4 ISBNs1 = ISBNs2

j5
ISBNs1 = ISBNs2 and

Numbers1 = Numbers2

S2
Library

Book +
ISBN
Author +

Id
Name

Chapter +
Number[scope:book]
Title

sp3

sp5

sp7

S1
Library

Author +
Id
Name

Book +
ISBN
Title
Chapter +

Number
Abstract

Address +
AuthorId
Address

sp1

sp2

sp4

S1
Library

Author +
Id
Name

Book +
ISBN
Title
Chapter +

Number
Abstract

Address +
AuthorId
Address

sp1

sp2

sp4
sp6j2

Ids1=Authors1

j1 Ids1 = Ids2

j3 Authors1 = Ids2

j4 ISBNs1 = ISBNs2

j5
ISBNs1 = ISBNs2 and

Numbers1 = Numbers2

S2
Library

Book +
ISBN
Author +

Id
Name

Chapter +
Number[scope:book]
Title

sp3

sp5

sp7

S2
Library

Book +
ISBN
Author +

Id
Name

Chapter +
Number[scope:book]
Title

sp3

sp5

sp7

Figure 4. Target subtrees, source parts and join operations

There are three target subtrees for the target schema of

figure 1; they are shown in figure 4 (b): t1 is the

subtree composed of the multivalued node Authorts and

its three monovalued children Idts, Namets and

Addressts; t2 is the subtree composed of Bookts and its

two monovalued children ISBNts and Titlets; and t3 is

the subtree composed of Chapterts, Numberts, Titlets

and Abstractts. The node Libraryts is not in a target

Proceedings of the 2005 International Workshop on Challenges in Web Information Retrieval and Integration (WIRI’05)
0-7695-2414-1/05 $20.00 © 2005 IEEE

subtree since it has no descendent which is a

monovalued text node. We can notice that every node

in t1, t2 or t3 is monovalued, except the root.

There is a hierarchical relation between the different

target subtrees. Given two target subtrees t and t’ in the

same schema such that the root of t’ is the child of one

of the nodes of t, t is the parent of t’ and t’ is a child of

t. For example, considering the target subtrees in figure

4 (b), t2 is the child of t1 and the parent of t3. We also

consider that a target subtree can be optional or

mandatory with respect to its parent subtree. It is

optional (resp. mandatory) if its root is optional (resp.

mandatory). In our example, t1 is mandatory and t2 is

optional.

7. Partial mapping determination

Once the target subtrees have been defined over the

target schema, the partial mappings are determined for

every target subtree. Each partial mapping represents a

way to derive instances of a target subtree from

instances of the source schemas, and it also satisfies

the constraints defined in the target schema. For a

given target subtree, there may be several partial

mappings, corresponding to different ways to derive

instances for the considered subtree.

The partial mappings determination of each target

subtree is performed independently from the others.

The building blocks of this process are shown in figure

5: the source identification process determines the

parts of the source schemas (called source parts) that

are relevant with respect to each target subtree; the

join identification process searches the joins that can

be used to combine these source parts; the partial

mapping determination process derives all the partial

mappings from the source parts and the join operations

between them.

Before defining the notion of parts in a source

schema, we first present an extended definition of

cardinality. In XML Schema, the cardinality of a node

is given with respect to the parent node: a node is

multivalued or monovalued with respect to its parent.

We generalize this definition to any pair of nodes in

the same schema. Given two nodes n and n’ in a

schema, n is multivalued (resp. monovalued) with

respect to n’ if there may be several instances (resp.

only one instance) of n for each instance of n’. If we

consider the path from n to n’, the cardinality of n with

respect to n’ can be derived form the cardinalities

associated to the edges composing the path. In the

example given figure 4, IdS1 is multivalued with

respect to ISBNs1 and ISBNs1 is monovalued with

respect to Numbers1.

Source parts identification. For a given target

subtree, we identify all the source parts that are

relevant, independently from the other target subtrees.

Given a target subtree t, each source part for t, denoted

sp, is a set of text nodes in a source schema S that

satisfies the following conditions:

There is a correspondence between each node in

sp and a single distinct text node in t;

there is at least one node n in sp such that the

other nodes in sp are monovalued with respect to

n;

there is no other set of text nodes c in S such that

sp c and such that c satisfies the two above

conditions.

Consider the three target subtrees of figure 4 (b); t1

has two source parts in S1: sp1 = {Ids1, Names1}, and

sp2 = {AuthorIds1, AuthorAddresss1}. It has also one

source part in S2: sp3 = {Ids2, Names2}; t2 has two

source parts sp4={ISBNs1, Titles1} and sp5={ISBNs2} in

S1 and S2 respectively; t3 has two source parts

sp6={Numbers1, Abstracts1} and sp7={Numbers2,

Titles2} in S1 and S2 respectively. These source parts

are shown in figure 4 (a).

Join identification. The semantic of the join used

in our framework is the one proposed in most of the

existing algebras [7][13][1][6]. It takes as input two

collections and a predicate, and produces a new

collection consisting of the concatenation of pairs of

nodes satisfying the predicate. Beside the join, our

framework also use set-based operations like Union,

Intersection and Difference (cf. section 8).

target
subtree

relevant
schemas

semantic
orrespondences

partial
mappings

source

identification

join

identification

partial mapping

determination

joins
source
parts

target
subtree

relevant
schemas

semantic
orrespondences

partial
mappings

source

identification

join

identification

partial mapping

determination

joins
source
parts

Figure 5. The building blocks of the partial mappings determination

Proceedings of the 2005 International Workshop on Challenges in Web Information Retrieval and Integration (WIRI’05)
0-7695-2414-1/05 $20.00 © 2005 IEEE

Once the source parts are defined for a given target

subtree, we search for the possible joins between these

sources parts. These joins are identified using the key

definitions. There are two distinct cases: the two

source parts may belong to the same source schema or

to different ones. If the two source parts sp and sp’ are

in the same source schema, a join is possible between

them if there are two sets of text nodes c and c’ in the

schema such that:

c is defined as a key and c’ is defined as a

reference on c;

the intersection between c and sp is not empty

and the intersection between c’ and sp’ is not

empty.

The join between two source parts sp and sp’ with

the join predicate c=c’ is denoted j[c=c’](sp, sp’). For

instance, sp1 and sp2 are in the same schema (figure

4), AuthorIds1 is a reference on Ids1; therefore, there is

a join between these two parts j[Ids1=AuthorIds1](sp1,

sp2).

If the two source parts belong to different schemas,

the joins are defined as follows: consider two source

parts sp and sp’ in different source schemas; given a

set of text nodes c having a non-empty intersection

with sp and another set of text nodes c’ having a non-

empty intersection with sp’, a join is candidate

between sp and sp’ with the predicate c=c’ if the

following conditions hold:

c c’;

either c or c’ is defined as an absolute key in its

schema;

there is a node n in c such that n is monovalued

with respect to all the nodes in sp;

there is a node n’ in c’ such that n’ is monovalued

with respect to all the nodes in sp’.

For example, a join operation j[Ids1=Ids2](sp1, sp3)

is possible between sp1 and sp2 because both Ids1 and

Ids2 are defined as absolute keys.

According to the above rule, we cannot find the join

j[Numbers1=Numbers2](sp6, sp7) because Numbers2 is

defined as a relative key. However, we know that the

combination {Numbers2, ISBNs2} is unique in the

whole schema because the scope of Numbers2 is Books2

and ISBNs2 is its absolute key. Our rule is therefore

extended to consider the combination {Numbers2,

ISBNs2} as an absolute key and use it instead of

Numbers2. In fact, each time a relative key is found in a

schema during the determination of the possible joins,

we search for a combination of two or more keys (with

at least one absolute key in the combination) to be used

in the predicate of the join.

All the join operations identified in our running

example are shown in figure 4 (c). In the figure, every

join operation between two source parts is represented

by an edge between the source parts; the edges are

numbered and labeled with the join predicate.

Partial mappings determination. Each partial

mapping corresponding to a given target subtree

represents a way to derive its instances from the

sources. For each target subtree, the partial mappings

are determined from the corresponding source parts

and the joins between them.

For each target part, the source parts and the join

operations between them are represented by a graph

J(V, E), called join graph. V is the set of source parts

and E is the set of join operations between the source

parts. For example, the join graph of t3 is shown in

figure 6; it contains two source parts sp6 and sp7 and

one join between them.

Number[scope:book]
Title

sp7

Number
Abstract

sp6
j5 ISBNs1 = ISBNs2 and
Numbers1 = Numbers2

pm1

pm2

Number[scope:book]
Title

sp7

Number
Abstract

sp6
j5 ISBNs1 = ISBNs2 and
Numbers1 = Numbers2

pm1

pm2

Figure 6. Join graph and partial mappings for t3

For a given target subtree, several partial mappings

may be determined. Each one preserves the cardinality

constraints defined in the target subtree and represents

a different semantic. Given a target part t and its join

graph J(V, E), a partial mapping, denoted pm, is

defined as a connected sub-graph of J(V, E) such that

for every mandatory text node n in t, there is at least

one node n’ in a source part of pm such that n n’.

In the example given in figure 6, there are two

partial mappings for t3: pm1 and pm2; pm1 contains

only the source part sp7; pm2 contains source parts sp6

and sp7 and the join between them. Notice that pm1

does not allow deriving instances for Abstractts; this is

not a problem since Abstractts is defined as an optional

node in the target schema.

A partial mapping is denoted either by the set of

joins contained in the corresponding graph when this

graph contains more than one source part or by the

name of the source part when the graph contains a

single source part. In our example, pm1 and pm2 are

denoted {sp7} and {j5} respectively.

8. Target mappings generation

Once the partial mappings for every target subtree are

determined, the target mappings are generated by

combining the partial mappings of the different target

subtrees. The constraints existing between the target

Proceedings of the 2005 International Workshop on Challenges in Web Information Retrieval and Integration (WIRI’05)
0-7695-2414-1/05 $20.00 © 2005 IEEE

subtrees are preserved by each target mapping. For

example, in the target schema of figure 4 (b), there is a

parent-child relation between t1 and t2. Each target

mapping must preserve this information.

A set of candidate mappings are generated by

combining partial mappings. These candidate

mappings are then checked to see if the parent-child

relations existing between the target subtrees are

preserved. Consider the set of target parts t1, t2, ..., tn

in a target schema TS and their partial mappings, a

candidate mapping cm for TS is a set of partial

mappings such that:

there is at most one partial mapping for each

target subtree;

there is exactly one partial mapping for each

target subtree t such that all the target subtrees

between t (including t) and the root of TS are

mandatory;

for each mandatory target subtree t and its parent

target subtree t’ in TS, if there is a partial

mapping for t in cm then there is also a partial

mapping for t’ and vice versa.

In the graph given in figure 4 (c), several partial

mappings can be determined; consider the following

ones: the two partial mappings pm3 = {sp1} and

pm4 = {j3} for t1; the partial mapping pm5 = {j4} for

t2; and the partial mapping pm2 = {j5} for t3. There

are four candidate mappings cm1 = {pm3}, cm2 =

{pm4}, cm3 = {pm3, pm5, pm2}, cm4 = {pm4, pm5,

pm2}. Notice that the candidate mappings cm1 and

cm2 do not contain a partial mapping for t2 and t3

because t2 is optional. Each candidate mapping that

contains a partial mapping for t2 must also contain a

candidate mapping for t3, because t3 is a mandatory

subtree of t2; this is the case for the mappings cm3 and

cm4. Each candidate mapping that contains a partial

mapping for t3 must also contain a partial mapping for

t2.

For each candidate mapping, parent-child relations

between the target subtrees must be checked. Consider

the candidate mapping cm4 = {pm4, pm5, pm2}; each

instance returned by pm4 contains an instance of sp3

(because pm4 has a join involving sp3), and each

instance returned by pm5 contains an instance of sp5.

The instances of sp5 that correspond to each instance

of sp3 can be found using their hierarchical relation in

S2; we can therefore find which instances of pm4

corresponds to each instance of pm5. We can also

check that the same holds for pm5 and pm2 and

consequently the parent-child relations in the target

schema are preserved by candidate mapping cm4.

On the contrary, cm3 = {pm3, pm5, pm2} does not

preserve the parent-child relation between t1 and t2

since there is no source part in pm3 and pm5 that

allows to derive this information. Consequently, cm3 is

not a valid mapping.

New mappings can be derived by applying set-

based operations like Union, Intersection and

Difference to two or more mappings. For example, if

we apply a union to the mappings cm3={pm3, pm5,

pm2} and cm2={pm4}, the result of the union is a new

mapping which can derive instances of t1 from the

union of pm3 and pm4, instances of t2 from pm5, and

instances of t3 from pm2.

The resulting mappings are abstract queries that are

independent from any query language. The two

modules XQuery translation and XSLT translation

translate these mappings into respectively XQuery and

XSLT. This translation is done by instantiating a query

pattern for every partial mapping.

9. Conclusion

In this paper, we have presented a framework to

automatically generate complex mappings for XML

data transformation and integration. The mappings are

generated for a target schema, given a set of source

schemas and the semantic correspondences between

the target schema and the source schemas.

This work is done within the MediaGRID project

[4], which proposes a mediation framework for a

transparent access to biological data sources. Our

framework is used to generate mappings for a target

schema constructed by domain experts independently

of the sources, and the semantic correspondences with

the source schemas are given.

Some questions remain open: choosing the

mappings that most fit the needs of a given user; the

use of quality criteria can be useful for this purpose;

another open problem is how to maintain the generated

mappings consistent in case of changes in the target

schema or the source schemas; the mapping generation

process can also support other meta data and be

improved by adding some data cleaning facilities to

improve the quality of the generated mappings.

References

[1] D. Beech, A. Malhotra, M. Rys, “A formal data model

and algebra for XML”, Communication to the W3C, 1999.

[2] M. Bouzeghoub, B. Farias Lóscio, Z. Kedad, A.-C.

Salgado, “Managing the evolution of mediation queries”.

Proc. of the 11th. Int. Conf. on Cooperative Information

Systems (CoopIS’2003), 2003.

[3] K. T. Claypool, E. A. Rundensteiner, “Sangam: A

Transformation Modeling Framework”, Proc. of Eighth

International Conference on Database Systems for Advanced

Applications (DASFAA’03), Kyoto, 2003.

Proceedings of the 2005 International Workshop on Challenges in Web Information Retrieval and Integration (WIRI’05)
0-7695-2414-1/05 $20.00 © 2005 IEEE

[4] C. Collet, K. Belhajjame, G. Bernot, G. Bruno, C.

Bobineau, B. Finance, F. Jouanot, Z. Kedad, D. Laurent, G.

Vargas-Solar, F. Tahi, T.-T. Vu, X. Xue, “Towards a target

system framework for transparent access to largely

distributed sources”. Proc of the International Conference on

Semantics of a Networked World Semantics for Grid

Databases (IC-SNW’2004), 2004.

[5] R. Dhamankar Y. Lee, A. Doan, A. Y. Halevy, P.

Domingos, “iMAP: Discovering Complex Mappings

between Database Schemas”, Proc. of International

conference ACM SIGMOD, SIGMOD’04, pp. 383-394.

[6] M.-F. Fernandez, J. Siméon, P. Wadler: “An Algebra for

XML Query”, Foundations of Software Technology and

Theoretical Computer Science (FSTTCS’00), 2000.

[7] L. Galanis, E. Viglas, D.-J. DeWitt, J.-F. Naughton, D.

Maier: “Following the Paths of XML Data: An Algebraic

Framework for XML Query Evaluation”, Technical Report,

University of Wisconsin, Madison 2001.

[8] Z. Kedad,; M. Bouzeghoub,: “Discovering View

Expressions from a Multi-Source Information System”. Proc.

of the 4th. Int. Conf. on Cooperative Information Systems

(CoopIS’1999), 1999.

[9] R. J. Miller, L.M. Haas, M.A. Hernández: “Schema

Mapping as Query Discovery”. Proc. of the 26th

International Conference on Very Large Data Bases

(VLDB’00), 2000.

[10] R.J. Miller, M.A. Hernández, L.M. Haas, L.L. Yan, C.

T. Howard Ho, R. Fagin, L. Popa: “The Clio Project:

Managing Heterogeneity”, SIGMOD Record, 2001.

[11] L. Popa, Y. Velegrakis, R.J. Miller, M. A. Hernandez,

R. Fagin: “Translating web data”, Proc. of the 28th

International Conference on Very Large Data Bases

(VLDB’02), 2002.

[12] E. Rahm, P. A. Bernstein, “A survey of approaches to

automatic schema matching”. Proc. of the 27th International

Conference on Very Large Data Bases (VLDB’01), pp 334-

350.

[13] S. D. Viglas, L. Galanis, D. J. DeWitt, D. Maier, J. F.

Naughton: “Putting XML Query Algebras into Context”,

Technical Report, University of Wisconsin, 2002.

[14] L. L. Yan, R. J. Miller, L. M. Haas, R. Fagin: “Data-

Driven Understanding and Refinement of Schema

Mappings”, Proc. Of International conference of ACM

SIGMOD 2001 (SIGMOD’04). 2001.

[15] X. Yang, M. L. Lee, T. W. Ling, “Resolving structural

conflicts in the integration of XML schemas: a semantic

approach”, Proc. of 22nd International Conference on

Conceptual Modeling (ER’03), Chicago, Illinois, 2003.

[16] C. Yu, L. Popa, “Constraint-based XML query

rewriting for data integration”, Proc. of international

conference ACM SIGMOD, SIGMOD’04, Paris, 2004, pp.

371-382.

[17] L. Zamboulis, A. Poulovassilis, “XML data integration

by Graph Restructuring”, Proc. of the 21st Annual British

National Conference on Databases, BNCOD21, Edinburgh,

2004, pp 57-71.

Proceedings of the 2005 International Workshop on Challenges in Web Information Retrieval and Integration (WIRI’05)
0-7695-2414-1/05 $20.00 © 2005 IEEE

