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Abstract. Whatever programming paradigm for data processing we choose, data
has the tendency to live on the other side or to eventually end up there. The ma-
jor paradigms for data processing are Cobol, object, relational and XML; each
paradigm offers many facets and many versions; each paradigm provides specific
forms of data models (object models, relational schemas, XML schemas, etc.).
Each data-processing application depends on a horde of interrelated data models
and artifacts that are derived from data models (such as data-access layers). Such
conglomerations of data models are challenging due to paradigmatic impedance
mismatches, performance requirements, loose-coupling requirements, and others.
This ubiquitous problem calls for a good understanding of techniques for map-
pings between data models, actual data, and operations on data. This tutorial lists
and discusses mapping scenarios, mapping techniques, impedance mismatches
and research challenges regarding mappings.
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1 Introduction

We steal the beginning of our tutorial from elsewhere: “Once upon a time it was pos-
sible for every new programmer to quickly learn how to write readable programs to
Create, Read, Update and Delete business information. These so-called CRUD appli-
cations, along with reporting, were pervasive throughout business and essentially de-
fined IT or MIS as it was called in those days.” [92] (Dave Thomas: “The Impedance
Imperative Tuples + Objects + Infosets = Too Much Stuff!”).

Instead, today we face the following diversity:

– Cobol applications with keyed files are still developed and they make sense.
– Relational databases have fully matured and they are unarguably omnipresent.
– OO databases innovate, perhaps at a slow pace, but they must be taken seriously.
– The XML hype is over. XML types and XML documents are everywhere now.
– All these paradigms have triggered a myriad of query languages and 4GL tools.
– Much current CRUD development is done with OO languages with various APIs.

This tutorial is about the challenges implied by such diversity in data modeling and
data processing. Either there are respectable, perhaps fundamental reasons for all this
diversity, or it is just plain IT reality. No matter what, we need to map amongst these
paradigms, and everyone is trying to do that anyhow. According to a designated online
resource1, there are roughly 60 established products for X/O mapping, also known as
XML data binding, i.e., XML schemas or DTDs are mapped to object models. We
reckon that practice is ahead of foundations in this area, but this surely implies ad-
hoc approaches with unnecessary limits and complexities. We need basic and applied
research on inter- and intra-paradigm mappings.

What is a mapping anyway?

We should make more precise what we mean by ‘mapping’. We have to disappoint those
readers looking for a detailed or even formal definition. Instead we offer the following
explanation and the illustration in Fig. 1.

1 http://www.rpbourret.com/xml/XMLDataBinding.htm
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– Mapping is essentially about the transformation of values between data models.2
– The data models typically involve different paradigms (Cobol, OO, relational, XML).
– Fig. 1 opts for a type-based mapping (described at the type level).
– By contrast, instance-based mappings directly define value transformations.
– Other mappings may implicitly define data models for source and target.
– CRUD operations may need transcription from the source to the target or vice versa.
– There may be more levels than those in the figure, e.g., the level of protocols.

Road-map for the tutorial

– Sec. 2 presents diverse illustrative mapping examples.
– Sec. 3 is an attempt to collect (some) mapping concepts.
– Sec. 4 reveals impedance mismatches for inter-paradigmatic mappings.
– Sec. 5 calls to arms regarding engineering and research challenges.
– Sec. 6 concludes the article.
– The appendix collects a good number of exercises.

2 Mapping examples

We will walk through a few data-processing scenarios that involve mappings. We strive
for diversity so that we show the ubiquitousness of the mapping notion in program-
ming and software development. As we go, we hint at established techniques, typical
requirements and recurring problems.

2.1 From concrete to abstract syntax

Language processing, including compiler construction, involves mappings in abun-
dance. Most notably, a parser needs to map concrete syntax to reasonable parse trees
or proper ASTs (i.e., abstract syntax trees). In fact, a non-trivial, well-organized lan-
guage processor may involve several abstract syntaxes related to different components
in front- and middle-ends. Yet other mappings in language processors can be concerned
with immediate representations such as PDG and SSA [28,20]. We will discuss some
forms of mapping concrete syntax to parse trees or ASTs.

Concrete syntax as mapping source Consider the following ANTLR3 grammar for
the concrete syntax of arithmetic expressions.4 The actual encoding represents operator
priorities by ‘grammatical layers’ — as it is common for top-down parsing. That is,
expression forms are grouped per operator priority using an auxiliary nonterminal for
all groups — except the top-most one:5

2 The term ‘data model’ is ambiguous as it may refer to both the general data model of a
paradigm such as the ‘relational model’; it may also refer to domain-/application-specific
data models such as a particular ‘relational schema’ or ‘object model’; http://en.
wikipedia.org/wiki/Data model. In this tutorial, we favor the latter meaning.

3 ANTLR web site: http://www.antlr.org/
4 Source: http://www.bearcave.com/software/antlr/antlr examples.html
5 We will start code fragments with a comment that identifies the used programming language.
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// ANTLR grammar
expr : mul expr (addOP mul expr)∗ ;
mul expr : sign expr (mulOP sign expr)∗ ;
sign expr : (MINUS)? primary expr ;
primary expr : IDENT

| constant
| ( LPAREN! expr RPAREN! ) ;

Option: untyped, canonical mapping ANTLR offers the option to construct parse
trees in a canonical manner using a language-independent format (which is a sort of
universal representation type). The problem with such a generic approach is that no
abstraction is carried out (in the sense of ASTs), and no typing discipline for parse trees
is enforced. So we are seeking different mapping options.

Option: mapping in ‘all detail’ The attribute grammar paradigm [55,81] can be used
for a mode of parse-tree construction that improves on the above-mentioned problems.
All parser generator tools like ANTLR (and Yacc, PRECC, BTYACC, etc.) support this
technique (with more or less strong typing). ANTLR presupposes type declarations for
the intended parse-tree format. The actual mapping has to be described in the parser
specification: semantic actions synthesize parse-tree fragments.

The following ANTLR snippet is a refinement of the last context-free production in
the earlier grammar for expressions. The added semantic actions build a binary expres-
sion from two operands and an operator.

// ANTLR production with in−lined C++ code
expr returns [binaryNode a expr]
{ exprNode m1 = NULL;

exprNode m2 = NULL;
opNode op = NULL;

}
: m1 = mul expr { a expr = m1; }

( op = addOP m2 = mul expr
{ a expr = new binaryNode( op, a expr, m2 ); } )∗

;

We omit the declarations for the referenced C++ classes: exprNode (the abstract base
class for expressions), binaryNode, opNode. A problem with this approach is that it is
‘a lot of work’. First, the abstract syntax has to be worked out in all tedious details, even
though it may be ‘intentionally’ similar to the concrete syntax. Second, the mapping has
to be ‘coded’ in all detail, again without leveraging any similarities between concrete
and abstract syntax. Furthermore, we end up with a poor separation of concerns in so
far that the original context-free productions get invaded by declarations and semantic
actions for parse-tree construction.

Option: generative mapping One can improve on these problems by means of gen-
erative programming [23], namely a grammar-oriented form of it; cf. [50,57,9,40] for
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related work. (We need meta-grammarware according to [54].) We briefly summarize
an approach actually offered by an existing technology: GDK (the Grammar Deploy-
ment Kit [57]). That is, GDK processes pure grammars (without any semantic actions)
and generates a typed parse-tree format as well as the bloated parser specification that
comprises the tedious mapping. The type declarations for parse-tree formats are also
valuable for consumers of the constructed parse trees. The generated parser specifi-
cation can be processed by a conventional parser generator. Various programming lan-
guages and parser generators are supported. Here is an example of a generated Yacc [49]
production for parenthesized expressions.

// Generated Yacc production with embedded C code
expr in parens
: T QPOPEN

expr
T QPCLOSE
{ $$ = build expr in parens($1, $2, $3); }

;

The function symbol build expr in parens is one of the term constructors that is gener-
ated from the pure grammar. Consumers of the parse trees can use accordingly gener-
ated matching functions. This approach still does not solve the problem of abstraction
in the sense that the constructed parse trees mirror (too) precisely the concrete syntax.

Option: simplify concrete into abstract syntax There exist declarative mapping ap-
proaches such that the abstract syntax and the mapping from concrete to abstract syntax
can be controlled more explicitly without switching to the other extreme of defining
the mapping in all detail — as it was the case for the attribute-grammar approach, un-
fortunately. We will discuss a particularly advanced approach that is supported by the
compiler generator Eli [35]. That is, Eli provides designated tool support, Maptool [51],
for concrete-to-abstract syntax mappings.

Consider the following context-free syntax using Eli’s grammar notation:6

// Eli ’s grammar notation
Program ::= Statement + .
Statement ::= Computation ’;’ .
Computation ::= Expr/LetExpr/WhereExpr .
LetExpr ::= ’ let ’ Definitions ’ in ’ Expr .
WhereExpr ::= Expr ’where’ Definitions .
Definitions ::= Definition // ’,’ .
Definition ::= Identifier ’=’ Expr .
Expr ::= Expr ’+’ Term / Expr ’−’ Term / Term .
Term ::= Term ’∗’ Factor / Term ’/’ Factor / Factor .
Factor ::= ’−’ Factor / Primary .
Primary ::= Integer / Identifier / ’(’ Computation’)’ .

6 Eli uses an EBNF-like notation. That is, ‘+’ is for repetition (i.e., lists), and ‘/’ is for alternatives
(elsewhere denoted as ‘|’). There is notation for separator lists: ‘e//c’, where e is the phrase
to be repeated and c is the character for separation.
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As in the earlier example, there are several layers of expressions: Computation, Expr,
Term, Factor, Primary. These layers are biased towards parsing concrete syntax while
only adding irrelevant complexity to subsequent phases. Hence, we would prefer to
unite these layers in the abstract syntax. This is accomplished by the following fragment
of a Maptool mapping specification:

// Eli ’s Maptool notation
MAPSYM
Expr ::= Computation Term Factor Primary .

That is, the various nonterminals on the right-hand side of the MAPSYM declaration
are placed in an equivalence class, which effectively implies an abstract syntax as if
Expr were defined by a flat list of alternatives. This simplification enables more concise
language processing code. For instance, expression evaluation does not need to handle
all the concrete syntactical variations implied by the different nonterminals.

Option: refine abstract into concrete syntax Rather than simplifying the concrete
syntax such that a suitable abstract syntax is derived, we can also start from a simple
abstract syntax and refine it into the existing concrete syntax — thereby defining a
mapping. Let us design an abstract syntax that is as abstract and suggestive as it could
be for the purpose of, say, name analysis. (In compiler construction, name analysis
tends to refer to the concept of resolving (or better: establishing) the links between
using (referring) occurrences and defining (declaring) occurrences.)

// Eli ’s ( abstract ) grammar notation
Program LISTOF Statement
BoundExpr ::= Definitions Expr
Definitions LISTOF Definition
Definition ::= IdDef ’=’ Expr
Primary ::= IdUse
IdDef ::= Identifier
IdUse ::= Identifier

It happens that several of the nonterminals in the abstract syntax correspond to non-
terminals in the concrete syntax. Hence, they are automatically mapped by ‘name co-
incidence’. However, there are major idioms for completing name coincidence into a
concrete-to-abstract syntax mapping, which we will discuss in the sequel.

The abstract sort BoundExpr does not have an immediate counterpart in the con-
crete syntax. We use it as a general form of a binding group (say definitions). In fact,
BoundExpr is meant as an abstraction for let and where expressions. This intent can be
expressed by the following bits of mapping specification:

// Eli ’s Maptool notation
MAPSYM
BoundExpr ::= LetExpr WhereExpr .
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MAPRULE
LetExpr ::= ’ let ’ Definitions ’ in ’ Expr <$1$2> .
WhereExpr ::= Expr ’where’ Definitions <$2$1> .

That is, the nonterminals LetExpr and WhereExpr are placed in an equivalence class with
BoundExpr. The productions for LetExpr and WhereExpr are associated with directions
for AST construction. (The phrases <$1$2> and <$2$1> express the subtrees of the
AST in terms of indexes of the subtrees of the concrete parse tree.)

The abstract sorts IdDef and IdUse partition the nonterminal Identifier from the
concrete syntax. The distinct nonterminals are used for defining vs. using occurrences
of Identifier . The nonterminal Definition is defined in both grammars, while the ab-
stract syntax points out that the occurring identifier is actually a defining occurrence.
This mapping leads to a useful abstract syntax design because it enables a language-
independent name analysis. That is, the name analysis can identify the defining vs.
using role of an identifier solely by means of the nonterminal symbols IdDef and IdUse.
Without this distinction, the name analysis would need to have intimate knowledge
about grammar productions and positions in which identifiers occur in this or that role.

2.2 Data binding in user interfaces

Interactive applications require mappings of the kind that application data is bound to
user-interface elements.7 In the small, an archetypal example would be about associat-
ing a field, such as the first name of an employee object, to the text property of a text
box in a form. The term (GUI) ‘data binding’ is nowadays used for this problem, but the
overall issue is not tied to modern platforms such as Java and .NET. For instance, forms-
based Cobol applications have dealt with the same problem for ages: application data
must be mapped to user-interface elements of screens (or forms), user-input validation
has to be carried out, and a protocol for change notification must be provided.

Option: point-to-point programmatic mapping Let us consider an example of GUI
data binding. In Fig. 2, on the left-hand side, we see the class structure of an employee
object; on the right-hand side, we see a GUI form for operating on an employee object.
Let us also assume controls for the various fields and buttons:

// C# 1.0 code (using System.Windows.Forms)
public class myForm : Form
{

private TextBox txtFirstName;
private TextBox txtLastName;
private TextBox txtHireDate;
private TextBox txtSalary;
private CheckBox chkIsActive;
private Button btnLoadNewValues;
private Button btnSave;

7 A comment on terminology: ‘data binding’ is often implicitly taken to mean ‘binding data to
a GUI’. For an unambiguous terminology, we say ‘GUI data binding’.
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Source: http://www.15seconds.com/issue/040908.htm

Fig. 2. Data to be bound in a GUI

// to be cont’d
}

Our application data is stored in a field like this:

private Employee oEmployee = null;

A simple approach (‘brute force’) to data binding commences as follows, the binding
(or mapping) code boils down to two explicit move routines; one to fill the form with
application data (i.e., the content of the employee field); another to save the content of
the form. In both directions, we define a kind of point-to-point mapping:

// Exception−handling code omitted
private void DataToForm()
{

this . txtFirstName.Text = oEmployee.firstName;
this . txtLastName.Text = oEmployee.lastName;
this . txtSalary .Text = oEmployee.salary.ToString();
this . txtHireDate.Text = oEmployee.hireDate.ToShortDateString();
this .chkIsActive.Checked = oEmployee.isActive;

}

private void FormToData()
{

oEmployee.firstName = txtFirstName.Text;
oEmployee.lastName = txtLastName.Text;
oEmployee.salary = Convert.ToDecimal(txtSalary.Text);
oEmployee.hireDate = Convert.ToDateTime(txtHireDate.Text);
oEmployee.isActive = chkIsActive.Checked;

}
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This coding style is well in line with common practice. There is one striking weakness
of this approach: we end up coding the mapping twice. Another weakness is that we
code conversions allover the place and thereby bypass static type checking; cf. the use
of Convert.ToDecimal.

Option: point-to-point mapping declarations We can improve on this brute-force
approach by exploiting the designated data-binding interface of GUI controls. That is,
we can actually inform each and every control about the associated application data:

private void MyBind()
{

txtFirstName.DataBindings.Add(”Text”, oEmployee, ”firstName”);
txtLastName.DataBindings.Add(”Text”, oEmployee, ”lastName”);
txtSalary .DataBindings.Add(”Text”, oEmployee, ”salary”);
Binding bindHireDateText = new Binding(”Text”, oEmployee, ”hireDate”);
bindHireDateText.Format +=

new ConvertEventHandler(DateTimeToShortDateString);
txtHireDate.DataBindings.Add(bindHireDateText);
chkIsActive.DataBindings.Add(”Checked”, oEmployee, ”isActive”);

}

As a result, the mapping is specified only once, and the amount of conversion code is
restricted to cases in which defaults are not sensible; cf. DateTimeToShortDateString.
Unfortunately, we have to pay a considerable price for the improvement of conciseness.
The mapping description is largely string-based:

– ”Text” vs. this .txtFirstName.Text,
– ”firstName” vs. oEmployee.firstName.

Hence, one dimension of subsequent improvement is to provide static typing for such
mappings, but we will first consider a more operational issue. The trouble is that the
form is filled only initially when the binding is issued, but subsequent changes of the
application data are not passed on to the form. Updating only works one way: changes
in the form are mapped back to the bound setters, but not vice versa.

Two-way updates More generally, a mapping approach might need to maintain some
degree of bi-directional tracking between source and target. In this example of GUI
data binding, change propagation can be arranged as follows. The data bindings of
Windows.Forms can be made to listen to changes in the application data. The relevant
idiom is that a setter on application data should trigger a change event:

public class Employee
{

// The private field for application data
private string firstName;

// An event for changes on firstName

10
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Fig. 3. GUI states with different trees (adopted from [2])

public event EventHandler firstNameChanged;

// The firstName property ; note the setter
public string firstName
{

get { return firstName; }
set {

firstName = value;
firstNameChanged(this, new EventArgs());

}}

// ... likewise for other data ...
}

Change tracking is name-based: the name of a bound property + ‘Changed’ is the name
of the event (if defined by the programmer) observed by the GUI data binding frame-
work so as to learn about state changes; cf. the couple firstName and firstNameChanged
in the code snippet. Various GUI frameworks leverage similar idioms. It is also common
to leverage design patterns that help modeling some aspects of update protocols and
consistency checking; e.g., the observer design pattern [33], the model-view-controller
architecture [59], and friends.

Typed and canonical and customizable and live mapping Regarding the remaining
typing weakness, we would like to contrast Windows.Forms with a strongly typed ap-
proach that uses the modern functional language Clean [2,1]. At the same time, this
approach also illustrates a callback-based technique for two-way change tracking. So
the bound GUI is always in sync with the data layer.

The ambition of the Clean-based approach is to allow for editing data in a highly
systematic manner. To this end, a generic programming approach (in the sense of in-
duction on type structure) is employed. The generated GUI controls are called GECs —
Graphical Editor Components. The overall assumption is that a reasonable GEC for a
specific value v can be constructed just by observing the structure of v’s type. In Fig. 3,
the GECs for two values are shown. The left GEC represents a binary, node-labeled tree
of the form Node Leaf 1 Leaf. When the user changes the upper Leaf to Node, through
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the pull-down menu, the GEC evolves as shown on the right-hand side of the figure.
Any GEC is constructed via the following Clean function mkGEC.

−− A generic Clean function ( looks like Haskell , almost)
generic mkGEC t :: [GECAttribute] −− Control appearance

t −− The initial value
(CallBackFunction t ps) −− Call back for changes
(PSt ps) −− Program state

−> (GEC t (PSt ps),PSt ps) −− Constructed GEC + state

The type of the function hints at the status of the mapping to be canonical and cus-
tomizable and live. The canonical mapping status is implied by the fact that mkGEC is
a generic (polytypic) function with the type parameter t . The customization capability
is modeled by the first argument that anticipates a list of attributes that control the ap-
pearance of the GEC. The live status of a GEC is implied by the fact that its creation
must define an initial value (cf. second argument) and a CallBackFunction to be invoked
when the edited value is changed (no matter whether the change is caused by editing
or by programmatic access). The constructed GEC also provides read and write access
to the bound value. (The rest of the function’s signature deals with the fact that GEC
construction and GEC usage involves state transformation. In Haskell terms, we would
expect some use of the IO or state monad.)

2.3 XML data binding

The term ‘XML data binding’ [70,15] refers to the problem of providing an object
model that is meant to represent an XML schema (an XSD description) in the object
world (or vice versa). This is a modern mapping scenario in which either an XML
schema or an object model is given, and the counterpart (i.e., the object model or the
XML schema) is to be derived. In the subsequent illustrations, we are going to use an
XML schema sample for widgets (rectangle, squares, circles), as they may occur in a
drawing application:8

<!−− XML schema −−>
<xs:element name=”Widgets”>
<xs:complexType>
<xs:choice minOccurs=”0” maxOccurs=”unbounded”>
<xs:element name=”Rectangle” type=”Rectangle”/>
<xs:element name=”Square” type=”Square”/>
<xs:element name=”Circle” type=”Circle”/>

</xs:choice>
</xs:complexType>

</xs:element>

8 This example explores the XSD variation on the ingenious ‘shapes example’ — an OO benchmark that has been designed

by Jim Weirich and deeply explored by him and Chris Rathman. See the code collections http://onestepback.

org/articles/poly/ and http://www.angelfire.com/tx4/cus/shapes/.
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<xs:complexType name=”Rectangle”>
<xs:sequence>
<xs:element name=”XPos” type=”xs:int”/>
<xs:element name=”YPos” type=”xs:int”/>
<xs:element name=”Width” type=”xs:int”/>
<xs:element name=”Height” type=”xs:int”/>

</xs:sequence>
</xs:complexType>

<!−− ... Square elided ... −−>
<!−− ... Circle elided ... −−>

While this a perfectly reasonable XML schema, we may encounter challenges when
mapping this schema to objects. There exist many different XML-data binding tech-
nologies; each technology defines its own canonical mapping (and one may argue at
times which one is better).

Schema-derived classes The following class has been generated by the .NET 2.0 tech-
nology xsd.exe. The fields of class Rectangle resemble the structure of the correspond-
ing complex type definition. The XSD simple type xs: int is mapped to the VB.NET
type Integer.

’ VB.NET 8.0 code
’ Note: all generated custom attributes omitted
Partial Public Class Rectangle
Private xPosField As Integer
Private yPosField As Integer
Private widthField As Integer
Private heightField As Integer
Public Property XPos() As Integer
Get
Return Me.xPosField

End Get
Set
Me.xPosField = value

End Set
End Property
’ ... other properties elided ...

End Class

Adaptation of mapping results xsd.exe’s XML-to-object mapping is fully canonical;
there are no means of influencing the mapping. However, one may adapt the mapping
result, as we will discuss. Suppose we want to process collections of shapes by exploit-
ing subtype polymorphism such that the executed functionality (e.g., for drawing) is
specific to the kind of shape. So we want the classes Rectangle, Square and Circle to
engage in a subtype hierarchy rooted by a new class, say Shape:

13



’ A base class for all shapes
Public MustInherit Class Shape ’ Abstract class

Public MustOverride Sub draw() ’ Abstract method
End Class

How can we make it so that Rectangle etc. inherit from Shape and implement draw?
A naive and problematic approach would be to manually adapt the generated classes.
Adapting generated code is almost universally a bad idea for obvious reasons. It turns
out that we can employ linguistic means to adapt the mapping result. That is, we can
use VB.NET 8.0’s partial classes, which admit compile-time extension of classes. In
particular, we can resolve the aforementioned problem without touching the generated
code at all. We provide another slice of the (partial) class Rectangle; the idea is that
both ‘slices’ are merged by the compiler.

Partial Public Class Rectangle
Inherits Shape
Public Overrides Sub draw()

WriteLine(”Drawing a rectangle.”)
End Sub

End Class

Dead ends in mapping Here is the generated code for Widgets:

’ The class that corresponds to the Widgets element declaration
Partial Public Class Widgets
Private itemsField() As Object
Public Property Items() As Object()

’ ... trivial implementation elided ...
End Property
’ ... rest of class elided ...

End Class

The use of normal arrays for collecting widgets is reasonable as long as we observe
de-serialized XML content. However, should we want to add widgets, we may prefer a
more ‘dynamic’ collection type such as List . Also, the widgets are exposed in a rather
untyped manner (cf. Object). We may want to use a strongly typed, generic collection
whose item type is Shape. The partial-class mechanism and other available program-
ming idioms do not help in these cases.

One may argue that the canonical mapping at hand is simply suboptimal and needs
to be improved, no matter what. However, any mapping technology must eventually
adopt some mapping rules and options. There is always a chance that someone ends up
wanting a different rule or another option later. Ideally, there would be a fundamental
way of defending the quality and the completeness of a mapping.

3 Mapping concepts

Let us raise the level of abstraction and focus on concepts. Throughout the section,
we continue discussing examples so that we can illustrate the identified concepts and
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collect more data points. Ideally, we would like to deliver the perfect, comprehensive,
formal and meaningful framework for the categorization and assessment of existing
and new mapping approaches. We are unable to complete such a task at this point in
time. Incidentally, the purpose of this tutorial is to motivate research that may enable
the completion of the envisaged framework.

3.1 Universal representations

Many mapping scenarios regularly call for (or take advantage of) universal representa-
tions. This concept is based on a relationship between types in a given type language
(CLR classes, Haskell data types, etc.) and a universal (fixed) representation type for
that type language (‘the universe’). Here are applications of universal representations:

– Serialization of data (to text or XML) for persistence.
– Serialization for interoperability using XML again.
– Type erasure for foreign-language interfacing.
– Type erasure to escape to a dynamically typed or untyped coding style.

A good example for the last item is the need to escape from strong typing in cases where
a given mapping problem can be more easily addressed using the simple structure of the
universal representation type. We will illustrate this scenario in a Haskell context, but
similar examples could be provided in an OO context (using reflective programming).
We face the following mapping pipeline:

−− Haskell 98 code
myMapping = tree2data −− Step 3: get back into typed world

. trickyMapping −− Step 2: untyped but powerful mapping

. data2tree −− Step 1: get out of typed world

In this pipeline, typed data (i.e., Haskell terms) is first exposed in an untyped tree for-
mat (cf. data2tree); then a ‘tricky’ mapping can be defined without running into the
limitations imposed by the type system; finally the universal representation is mapped
back into strongly typed data. The last step may fail of course.

A good example of a tricky mapping is a data conversion due to type evolution (i.e.,
evolution of the data model). In this case, there are two versions of the same system
of data types which only differ in some details. Strongly typed programming fails to
provide a concise way of mapping version A to version B; the verbose way would be
to exhaustively cover all types and their cases in equations of functions that define a
mapping. Untyped programming makes it easy to generically process the input data
and to focus on the differences between the two versions.

For clarity, these are the types of the functions involved in myMapping:

data2tree :: Data a => a −> Tree String
trickyMapping :: Tree String −> Tree String
tree2data :: Data a => Tree String −> Maybe a

We use n-ary, labeled trees as the universal representation type. Haskell’s standard li-
braries readily provide the following algebraic data type; the type parameter of Tree
denotes the label type, which is String in the example at hand:

15



data Tree a = Node a [Tree a]

3.2 Canonical mappings

The above mappings from and to the universal representation type are canonical map-
pings. These are mappings that can be defined once and for all for a given class of
data models (namely for all arbitrary (algebraic) data types in the example at hand). So
let us define the mappings data2tree and tree2data. We employ Haskell’s ‘Scrap your
boilerplate’ style of generic programming [62,63]. The mapping from data to trees is
concisely defined as follows:

−− Haskell 98 + common extensions
−− Tree−alize data
data2tree :: Data a => a −> Tree String
data2tree x = Node

(showConstr (toConstr x)) −− label
(gmapQ data2tree x) −− subtrees

As the type clarifies, the function data2tree is a generic function: it is polymorphic in
the type to be mapped to the representation type. The definition of the mapping reads
as follows. Using the primitive access function toConstr, we retrieve the constructor
of the datum, which we turn into the string label of the tree using showConstr. Using
the primitive traversal combinator gmapQ, we apply data2tree recursively to all the
immediate subterms of the datum at hand, resulting in a list of untyped subtrees.

Here is also the inverse mapping — trees to data:

−− De−tree−alize tree
tree2data :: Data a => Tree String −> Maybe a
tree2data (Node l ts) = result
where result = do

con <− readConstr resultType l
fromConstrL tree2data con ts

resultType = (dataTypeOf (fromJust result))

The application of readConstr maps the string label into an actual constructor of the
type to be populated. To this end, we use reflective information about the data type
in question; cf. dataTypeOf. We construct a datum from the constructor by applying
tree2data recursively on subtrees. The builder primitive fromConstrL takes a function to
recursively build subterms, it also takes a constructor from which to build a term, and it
takes the list of subterms in the universal representation.

3.3 Mapping customization

The idea is that a canonical mapping is defined by a sort of generic procedure. Hence,
we face an extreme form of a non-canonical mapping when the mapping is defined ‘in
all detail’. For instance, recall the point-to-point mappings in GUI data binding. How-
ever, we may also leave the grounds of canonical mappings due to customization. That
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is, a canonical default may exist, while the mapping setup is prepared to accommodate
‘special cases’.

Let us look into object de-/serialization as a scenario that typically involves cus-
tomization. A serialized default representation is available for each and every object
type; the default can be overridden though by the OO programmer on a per-object-type
basis. The following VB.NET fragment illustrates plain OO serialization; an object of
type BinaryNode is serialized to an XML file (using a SOAP formatter):

’ VB.NET 7.0 code
Dim myExp = New BinaryNode(””)
’ ... further object instantiation omitted ...
Dim s = File.Open(”foo.xml”, ...)
Dim f = New SoapFormatter
f . Serialize (s,myExp)
s.Close()

This direction corresponds to the data2tree function given above, except that we seri-
alize (or tree-alize) to XML this time. An OO class is made fit for (de-)serialization by
attaching a custom-attribute Serializable to the class:

<Serializable()> Public Class BinaryNode
’ ... elided ...
End Class

The Serializable attribute tells the serialization library that it is ‘allowed’ to leverage re-
flective programming to carry out the mapping from objects to XML (and vice versa) in
a canonical fashion. Customization of the canonical default is enabled by the following
provisions. One can implement a designated ISerializable interface, and in particular, a
GetObjectData method to override the generic reflection-based behavior for the serial-
ization of the object’s content:

Sub GetObjectData(ByVal info As SerializationInfo,
ByVal context As StreamingContext)

Implements ISerializable.GetObjectData
’ Identify data for serialization
info .AddValue(”field1” , field1 );
info .AddValue(”field2” , field2 );

End Sub

3.4 Type- vs. instance-based

A type-based mapping is defined as a relationship between the two involved data mod-
els, while it is assumed that this type correspondence (more or less) directly implies
the actual value transformation for the two data models. By contrast, an instance-based
mapping expresses value transformations directly. Type-based mappings are less ex-
pressive because they are also more abstract and canonical. In return, they make it
easier to provide updateability (i.e., pushing back target-side value modifications to the
source) and composability (i.e., performing target queries directly on the source).
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A clear-cut example of a type-based mapping is canonical XML data binding where
any given XML schema is mapped to a corresponding object model based on fixed rules
that only refer to type patterns in XML schemas and object models; cf. Sec. 2.3. For
instance, a specific mapping for XML-data binding could involve the following type-
based mapping rule:

Any global element declaration without attribute declarations, with a sequence
group for its content model such that the children of the sequence are local
element declarations with distinct element names and nominally specified (as
opposed to anonymous) content types is mapped to an object type with the
global element name as class name (after name mapping), with fields for the
local element declarations such that the local element names serve as field
names (after name mapping) and the content types of the elements serve as
field types (after type mapping).

We leave it as an exercise to the reader to attempt a classification with regard to the
‘type- vs. instance-based mapping’ dichotomy for each of the examples of Sec. 2. (As
we will argue shortly, such a classification may be difficult at times.) Let us consider
a non-trivial but clear-cut example of an instance-based mapping. Suppose we want to
extract a problem-specific XML view on some tables in a relational database. There are
these tables: Orders, Employee and Customer; the XML view should look as follows:9

<Customer CustomerID=”ALFKI”>
<Order OrderID=”10643” />
<Order OrderID=”10952” />
<Order OrderID=”11011” />
<Employee LastName=”Davolio” />
<Employee LastName=”Leverling” />

</Customer>
...

The XML view can be derived through a nested SELECT statement on the database.
Some annotations like FOR XML AUTO, TYPE clarify that the result indeed should be
‘rendered’ as XML data rather than a list of queried rows:

// SQL with XML extensions of SQL Server 2005
SELECT CustomerID AS ”CustomerID”,

(SELECT OrderID AS ”OrderID”
FROM Orders ”Order”
WHERE ”Order”.CustomerID = Customer.CustomerID
FOR XML AUTO, TYPE),

(SELECT DISTINCT LastName AS ”LastName”
FROM Employees Employee
JOIN Orders ”Order” ON ”Order”.EmployeeID = Employee.EmployeeID
WHERE Customer.CustomerID = ”Order”.CustomerID
FOR XML AUTO, TYPE)

FROM Customers Customer
FOR XML AUTO, TYPE

9 Source: http://msdn.microsoft.com/library/en-us/dnsql90/html/forxml2k5.asp
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Let us also look at a less clear-cut example — the generic function for mapping Haskell
terms of arbitrary types to trees according to a universal representation type. Do we face
an example of a type-based or an instance-based mapping, or is it neither of these?

−− Tree−alize data
data2tree :: Data a => a −> Tree String
data2tree x = Node

(showConstr (toConstr x)) −− label
(gmapQ data2tree x) −− subtrees

The mapping is type-based because it is fully generic. Likewise, any reflection-based
mapping (such as object serialization) counts as type-based. Once customization enters
the scene, the mapping may become partially instance-based. Here we assume that cus-
tomization is regarded as a means of providing type-specific value transformations. The
XML view example, given above, is clear-cut instance-based since it defines a query
that is fully specific to certain tables, columns thereof and key-value relationships. One
could impose a certain XML schema (‘type’) on the result of the instance-based map-
ping, or one could even attempt to infer such a schema (‘type’), but the mapping is
nevertheless defined as a value transformation.

3.5 The programmatic-to-declarative scale

It is common to say about mappings that they are defined programmatically or declar-
atively. These are not absolute concepts, but we attempt to justify these terms anyway
since they are in common use and they may eventually turn out to be useful — once we
better understand the scale; once we are in possession of proper definitions. (This is a
future-work item.)

Programmatic mapping We use this term to refer to a mapping that is defined through
program code such as in a general purpose programming language or a (typically Turing-
complete) data processing language such as SQL, XSLT, XQuery, C#, Haskell, Java or
VB. Hence, the FOR XML AUTO example from the previous section would count as pro-
grammatic. Let us review another programmatic mapping example. That is, let us map
a business-object type, Order, to an XML type, Invoice. The following programmatic
mapping code ‘dots’ into the business object, it eventually reaches sub-objects for cus-
tomers and addresses, and it assembles new XML objects (using XML data binding) for
invoices and items thereof; the encoding uses LINQ’s SQL-like query syntax to iterate
over object collections [73]:

// C# 3.0 / LINQ code (as of May 2006)
public static XmlTypes.Invoice Map(ObjectTypes.Order ord)
{

return new XmlTypes.Invoice {
name = ord.cust.name,
street = ord.cust.addr.street ,
city = ord.cust.addr. city ,
zip = ord.cust.addr.zip ,
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state = ord.cust.addr.state ,
items = (from i in ord.items

select new XmlTypes.Item {
prodid = i .prod.prodid,
price = i .price ,
quantity = i . quantity }). ToList (),

total = ord.computeTotal()
};

}

Declarative mapping We use this term to refer to a mapping that is not defined as
an immediately executable program with an intrinsic operational semantics by itself;
instead the mapping (description) is associated with an operational semantics by means
of a separate interpretation, translation or code generation. For instance, the MAPSYM
and MAPRULE constructs of Sec. 2.1 suggest that Maptool descriptions amount to
declarative mappings. The implicit assumption is that a declarative mapping lends itself
‘more easily’ to different analyses and interpretations. For instance, one should expect
that declarative mappings are amenable to updateability (or reversibility, two-way up-
dates) ‘more easily’.

Let us review another declarative mapping example. That is, let us look at object-
relational mapping as it is done in HIBERNATE — an approach for relational persis-
tence for ‘idiomatic Java’.10 The following fragment of a class-centric mapping spec-
ification defines the structure of a class Cat in terms of a table CATS. Class properties
are associated with table columns; a generator class is associated with the id column:

<class name=”Cat” table=”CATS”>
<id name=”id” column=”uid” type=”long”>

<generator class=”hilo”/>
</id>
<property name=”birthdate” type=”date”/>
<property name=”color” not−null=”true”/>
<property name=”sex” not−null=”true” update=”false”/>
<property name=”weight”/>
<many−to−one name=”mate” column=”mate id”/>
<set name=”kittens”>

<key column=”mother id”/>
<one−to−many class=”Cat”/>

</set>
</class>

This declarative mapping admits the derivation of an actual Java class and a relational
schema such that the derived class facilitates the population of objects from relational
data and the persistence of objects as relational data.

10 Source: http://www.hibernate.org/hib docs/reference/en/html/mapping.html
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3.6 Annotations vs. references

The Hibernate mapping of the previous section essentially prescribed both the ultimate
Java class and the associated relational schema. In many mapping scenarios, the actual
source and/or target types of a mapping predate the mapping effort, in which case the
purpose of a (declarative) mapping specification is really just to associate two existing
data model(s) with mapping rules or to define a new data model in terms of a given one.
In these cases, there exist two major options:

– Annotations: A data model is physically annotated with mapping rules.
– References: The mapping specification refers to components of the data model(s).

We illustrate this variation point in the context of XML data binding using the JAXB
technology for Java [91]. JAXB admits mapping customization using both inline schema
annotations and a standalone mapping specification with schema references. Let us pick
up the ‘shapes example’ again, which we started in Sec. 2.3, when we discussed some
drawbacks of xsd.exe’s canonical mapping. The mapping of JAXB is largely different
from xsd.exe’s mapping, and so we encounter different issues:

– Recall the choice group of the Widgets element:

<xs:choice minOccurs=”0” maxOccurs=”unbounded”>
<xs:element name=”Rectangle” type=”Rectangle”/>
<xs:element name=”Square” type=”Square”/>
<xs:element name=”Circle” type=”Circle”/>

</xs:choice>

The canonical default mapping results in the following field:

protected List<Object> rectangleOrSquareOrCircle;

This mapping mostly illustrates Java’s (as much as .NET’s) weak story regarding
‘old-style’ discriminated unions. Still, there is room for improving the mapping
result. In particular, we would like to use customization to replace the generated
‘ugly’ name rectangleOrSquareOrCircle by a more reasonable name, say Shapes.

– As we discussed for the xsd.exe technology, it is limiting that Rectangle, Square,
Circle are unrelated base classes. Again, we would like to enable polymorphism
by establishing a common base class using customization. As an aside, the .NET
technique of using partial classes (cf. Sec. 2.3) cannot be adopted here because
Java (1.5) does not offer an equivalent mechanism. (We could use aspect-oriented
language extensions though [53].)

We will address both issues by using JAXB’s customization mechanisms.11

Annotation-based mapping We start the XML schema for shapes all over again.
The annotation-based approach requires that we use JAXB-specific annotations in our
schema. Hence, we need to bring all namespaces for JAXB into the scope:

11 Source: http://www.onjava.com/pub/a/onjava/2003/12/10/jaxb.html

21

http://www.onjava.com/pub/a/onjava/2003/12/10/jaxb.html


<!−− XML schema −−>
<xs:schema xmlns:xs=”http://www.w3.org/2001/XMLSchema”

xmlns:jaxb=”http :// java.sun.com/xml/ns/jaxb”
xmlns:xjc=”http :// java.sun.com/xml/ns/jaxb/xjc”
jaxb:version=”2.0” jaxb:extensionBindingPrefixes=”xjc”>

<!−− Cont’d below −−>

Right at the top level of the schema, we attach a new default base class, where we
follow the rules of JAXB’s schema for such binding declarations, and we also adhere to
the rules for placing annotations in an XML schema. That is:

<!−− Cont’d from above −−>
<xs:annotation>

<xs:appinfo>
<jaxb:globalBindings>

<xjc:superClass name=”drawApp.Shape”/>
</jaxb:globalBindings>

</xs:appinfo>
</xs:annotation>
<!−− Cont’d below −−>

We should note that this is a poor man’s solution because Shape will now serve as the
base class for all classes that are derived from the schema at hand. This is acceptable
for the particular shapes schema. We also note that subclassing of the generated classes
Rectangle etc. will be necessary once implementations of the draw method are to be
added. (In the VB.NET version we were able to add the subclass-specific implemen-
tations of the draw method retroactively to the generated classes Rectangle etc. with
the help of the partial-class technique. Again, we could use Java extensions, such as
open-class mechanisms of aspect-oriented programming in similar ways [53].)

The other issue — provision of a reasonable name for the widgets collection — is
resolved as follows. We add an annotation to the Widgets element such that the name
of the generated Java property is defined as Shapes:

<!−− Cont’d from above −−>
<xs:element name=”Widgets”>

<xs:complexType>
<xs:choice minOccurs=”0” maxOccurs=”unbounded”>

<xs:annotation>
<xs:appinfo>

<jaxb:property name=”Shapes”/>
</xs:appinfo>

</xs:annotation>
<xs:element name=”Rectangle” type=”Rectangle”/>
<xs:element name=”Square” type=”Square”/>
<xs:element name=”Circle” type=”Circle”/>

</xs:choice>
</xs:complexType>

</xs:element>

We elide the rest of the schema because it does not contain further annotations.
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Reference-based mapping JAXB offers a reference-based technique for customiza-
tion that simply exploits the following facts. First, XML schemas are XML documents.
Second, fragments in XML document can be addressed precisely through XPath ex-
pressions. It is indeed straightforward to transcribe the earlier annotation-based map-
ping description such that all binding declarations are gathered separately, and they are
attached to schema parts through XPath references. So we reuse the earlier annotations,
as is, but we collect them in designated JAXB bindings elements. For brevity, we only
show the customization of the choice group:

<jxb:bindings node=”//xs:element[@name=’Widgets’]//xs:complexType//xs:choice”>
<jxb:property name=”Shapes”/>

</jxb:bindings>

We can see that the XPath expression under node descends into the element declaration
of @name=’Widgets’, then into the complexType component underneath, until it hits on
the subtree for the choice. One may argue whether or not the use of a low-level (schema-
unaware, very syntactical) selector technique like XPath provides a sufficient level of
abstraction. One alternative is offered by XML schema component designators [97] —
an XML language for identifying XML Schema components.

3.7 Updateability

Various mapping scenarios require updateability in the sense that target-side value mod-
ifications must be pushed back to the source. We have discussed this issue already in
the specific context of GUI data binding. Object-relational mappings constitute another
general class of mappings with an updateability requirement. That is, the database in-
stance and its manifestation as an object graph are supposed to stay in sync. In the
source-to-target direction, syncing is potentially just seen as a ‘refresh’ issue. In the
target-to-source direction, syncing may require building the converse of a mapping (a
‘view’) that was originally thought of as being directed from source to target. For in-
stance, an SQL-like view seems to be directed in that sense. Indeed, the view-update
translation problem for databases [10,34] is the classic form (and challenge) of an up-
dateable mapping. The subsequent discussion is meant to provide an account on sce-
narios for updateability, overall attacks, practical challenges and available foundations
such as data refinement and bi-directional transformations.

Alleviated or missing updateability requirement Updateability (or reversibility) is
not a universal requirement for mappings. For instance, concrete-to-abstract syntax
mappings are mostly not expected to be invertible. However, some degenerated form
of updateability (such as origin tracking [22]) may still be required. Consider a lan-
guage implementation with a type checker that consumes abstract syntax; when type
errors are found, the type checker must be able to refer back to the original part of the
input — for the programmer’s convenience who needs to understand the error message.

‘Near-to’ bijections Let us consider a basic (restricted) form of updateability:
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In this figure, we face types (data models) A and B and instances (elements) a and
b. We also indicate the possibility of a type-level mapping M from A to B, but M is
not essential. It is essential though that there an instance-level mapping m that maps a
to b. Updateability of the mapping means that there is instance-level mapping mr with
which a changed target value, b′, can be mapped back to an accordingly changed a′.

It is clear that mr should be the converse of m. For a bijective m, updateability is
trivially implied. However, this assumption is quite restrictive. For instance, a mapping
that provides a view on a source (just as an SQL view) will be non-injective. In other
scenarios, injectivity may be feasible but surjectivity cannot be delivered. For instance,
the target types of a mapping may be intrinsically richer (say, more liberal). In the
sequel, we identify deviations from bijectivity.

For a non-injective m, we have to come up with a heuristic to resolve the choice
points when mapping back b′ to a′. Suppose m projects away data (such as in a general
SQL SELECT statement), we would have to expect that mr somehow puts back the
eliminated data. This is mathematically impossible for the shown diagram. We really
need to have access to more information such as the original value a. We get to this
different scheme in a second.

For an injective but non-surjective m, there are essentially two major cases. The first
one is that B is representationally richer, but m and modifications on B do not (or are
not supposed to) exploit this generality. In this case, we are still able to define a suitable
mr such that the composition of m and mr is the identity. This case is nicely backed up
by research on data refinement [42,74,78,79,6]. (The functions m and mr are called the
‘representation’ and ‘abstraction’ mappings in standard data refinement terminology.)
For instance, one can easily see that the following types are in refinement order:

X ⊂ X + 1
X → (Y + Z) ⊂ (X → Y )× (X → Z)

The first inequality is the abstract version of mapping a non-nullable type to a nullable
type such as mapping a NOT NULL column of a ‘value type’ to an object type (which
is ‘nullable’ because it is reference type). The second inequality demonstrates the elim-
ination of sums through refinement. Again, the right-hand side admits more values such
as a y ∈ Y and a z ∈ Z both being associated with the same x ∈ X . However, if the
contract is such that the richer representation must not (cannot) be explored, then the
mapping is still updateable.
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For an injective but non-surjective m, we could also face the case that B is designed
to maintain extra data along the life cycle of the mapped data on the target side. In this
case, we assume that any b′ can be narrowed down to the range of m in a meaning-
preserving manner. Here is a simple example: change flags on the target side. These
change flags may be essential for the optimized propagation of updates from the target
to the source, but they are semantically irrelevant because we could (in theory) assume
that all rows were changed.

Facilitation of original value There are several ways to improve on the discussed
notion of ‘near-to’ bijections. Perhaps the must general and fundamental improvement
is to take the original value, a, into account when mapping b′ to a′:

M

a  :  A b  :  B
m

b’  :  Ba’  :  A

f

mr

That is, when mapping back a piece of target data, b′, we may also observe the asso-
ciated piece of source data, a. Therefore, mr can now compensate for a non-injective
facet of m. (We may want to pass b to mr too, or we may assume that mr ‘re-evaluates’
m(a) in case it needs b.)

The data sets of Microsoft’s ADO.NET technology for object-relational mapping
instantiate this idea.12 In-memory rows from the database carry identities (based on
real or made-up primary keys). Hence, client-side changes can be pushed back to the
database using ‘keyed’ UPDATE statements.

Bi-directional transformations Pierce, Hu and others have recently developed a for-
mal notion of bi-directional transformations [36,45,13] that provide updateability for
mappings on data. This approach facilitates the original value, but its real insight is
centered around the discipline of transformation. What they call ‘transformation’ is
(intuitively) a source-to-target instance-level mapping function which however comes
with two ‘interpretations’ get and put for performing the mapping both ways. The bi-
directional transformation literature studies the various primitive transformations and
composition operators that can be fitted into this conceptual framework. Initially, this
line of work applied to tree data only, but very recent developments also cover rela-
tional data. In fact, it had been observed from the very beginnings that bi-directional
transformations are quite related to view-update translation for databases [10,34].

12 Source: http://msdn2.microsoft.com/en-us/library/y2ad8t9c(VS.80).aspx
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It will be interesting to apply such theory to actual mapping problems such as object-
XML mapping or object-relational mapping. We think that it is necessary to study up-
dateability (say, bi-directional transformations) in a context that pays attention to all
relevant concerns including these: remoting queries and DML operations, dealing with
transient state, making scalar types vs. structured types updateable, making mapping
lazy, and so on.

3.8 Usage protocols

A very complex topic that we can only touch upon here is the provision of protocols
as a complement of the mere data-modeling aspects of mapping. When talking about
mappings, one may easily focus on typing issues and neglect the protocol that goes
with the mapped data. An intuitive definition of the term ‘usage protocol’ is this: a
usage protocol describes order and conditions for the invocation of methods in a (data
access) API.

Protocols in XML data binding For instance, let us consider the protocol for using
a schema-derived object model in the context of XML data binding (i.e., object-XML
mapping). The simple version of the protocol goes as follows:

1. De-serialize XML document into objects.
2. Operate on bound object structure using plain OO programming.
3. Serialize objects back to XML document.

This list is superficial. Here are some neglected protocol issues:

– Construction of structured content follows a certain protocol.
– Mixed content observation and injection requires special protocols.
– On-demand validation of global or other constraints may be provided.
– The tree semantics of XML imposes a certain contract on DML operations.
– Access to low-level XML views may require on-the fly (de-) serialization.
– There may be a protocol to handle transiently invalid content.

The data-sets protocol Let us consider the usage protocol for multiple-tier architec-
tures using ADO.NET, in particular the ability of changing disconnected data sets that
need to be committed later to the database.13 The protocol identifies the following steps
for creating and refreshing a data set, and in turn, updating the original data:

1. Build DataSet.
2. Fill DataSet with data from a data source using a DataAdapter.
3. Change DataSet by adding, updating or deleting DataRow objects.
4. For 2-tier apps:

(a) Invoke Update on DataAdapter with the above DataSet as an argument.
(b) Invoke AcceptChanges on DataSet.

13 Source: http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/

html/frlrfSystemDataDataSetClassTopic.asp
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5. For n-tier apps:
(a) Invoke GetChanges to create a 2nd DataSet that features only the changes.
(b) Send the second DataSet to the middle-tier via WebServices.
(c) On the middle-tier,

invoke Update on DataAdapter, with the 2nd DataSet instance as an argument.
(d) From the middle-tier,

send the updated DataSet back to the client via WebServices.
(This DataSet may have server generated columns set to the latest value).

(e) On the client-side,
invoke Merge on original DataSet to merge the received DataSet, and then
invoke AcceptChanges on the original DataSet.

6. Alternatively, invoke RejectChanges to cancel the changes.

The general observation is that the definition of a mapping is only complete when pro-
tocol issues are clearly defined, too. Unfortunately, in practice, mappings are not rigor-
ously defined in this respect.

3.9 Further reading

There are several fields in software engineering and programming language theory that
involve notions of mapping with similarities to mappings in data processing. We do not
dive into those fields here, but we document them as related work:

– As mentioned before: data refinement [42,74,78,79,6].
– As mentioned before: bi-directional transformations [36,45,13].
– Consistency maintenance in software modeling [60,46].
– Consistency maintenance in cooperative editing [24,90].
– Data views in functional programming (patterns for ADTs) [98,16,77].
– Program views in intentional programming and fluid AOP [88,5,52].
– Reconcilable model transformation in model-driven development [85,26].
– Source-code modeling in re-/reverse engineering [83,58,69,44,56].
– The general notion of coupled transformations [61].

4 Cross-paradigm impedance mismatches

Having discussed mapping examples and concepts, we still need to get a better handle
on the following question: ‘Why is it that inter-paradigmatic mappings are so difficult?’.
The present section identifies and illustrates the impedance mismatches amongst the
major paradigms for data modeling and processing: Cobol, object, relational and XML.
We focus on the technical dimension; we attempt to circumvent the ‘cultural’ dimension
of impedance mismatches [7]. (This separation is not always easy to mark off though.)

4.1 Characteristics of major paradigms

The impedance mismatches are rooted in the different characteristics of the paradigms.
So we recall these characteristics here — as a means of preparation.
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Object-oriented programming

For simplicity, we focus on mainstream, class-based, imperative, typed, object-oriented
programming languages like C++, C#, Java, and VB.

– Reference semantics. Object structures are graphs that are basically assembled by
storing references to objects in data fields of objects. An OO language may prefer
not to surface the distinction between objects and object references (say pointers),
but the semantics of objects is reference-based anyhow. Object construction returns
a reference to the newly constructed object. Objects are passed by reference to
methods. Objects can be compared for equality in the sense of object identity (i.e.,
object reference equality).

– Encapsulation. The data part of object structures does not exist in isolation. Instead,
an object is a capsule of data and behavior (i.e., methods). The interface of an object
typically provides restricted access to the data fields (i.e., to the low-level state) of
an object. Consistent changes of an object’s state (as well as conglomerations of
objects) are to be achieved through the behavioral interface of an object. (In object-
based languages and advanced frameworks, methods may be part of an object’s
state, too.)

– Properties. Data fields are often not directly exposed through an object’s interface,
but the object’s state is instead published through properties adding a level of indi-
rection. This idiom allows one to hide representation details while still providing a
structural view on the object’s state.

– Abstract classes and interfaces. An object model defines its data model potentially
also through types that cannot be directly instantiated. That is, OO languages allow
for abstract classes, and most typed OO languages support interfaces by now.

– Subtype polymorphism. Classes and interfaces are arranged in subtype hierarchies.
Each variable is declared with a static type that serves as a bound for the type of
objects that may be assigned to the variable. A subtype may add components to
the state, and it may enrich the interface. Ideally, subtypes preserve the observable
behavior of the supertype; cf. the substitution principle [66].

– Generics. Most typed OO languages support generics (parametric polymorphism)
by now. That is, classes, interfaces and method types can be parameterized in types.

Relational databases

We restrict ourselves to SQL databases in the sequel.

– Relational algebra. Conceptually, database tables are mathematical relations in the
sense of sets of tuples over scalar data [19,21]. One can process these relations in
terms of set-theoretic operations (such as union, difference and intersection) as well
as relational algebra operations (such as projection, selection, Cartesian product and
join). In practice, we deviate from this mathematical ideal a bit, e.g., order of rows
does matter in tables; SQL’s SELECT statement combines several operations.
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– Keys. Both at a fundamental level (i.e., relational algebra) and in practice, table
columns may specifically serve for the global identification of table rows (cf. pri-
mary key) such that other tables may refer to the identified rows (cf. foreign key). It
is a crucial ingredient of relational schema design to identify such primary and for-
eign keys as they will be used in queries (for joins) and in ensuring the referential
integrity of the database as a whole.

– Data integrity. More generally, a database schema makes contributions to the effec-
tive maintenance of data integrity. To this end, integrity constraints (such as foreign
key constraints), cascading operations and triggers can be used.

– Transactions. DML operations on a database are scoped in groups that are called
transactions. Only the successful completion of such groups leads to an observable
state change of the database. Transactions facilitate consistency in databases. For
instance, the insertion or deletion of a row in one table may only be valid in combi-
nation with updating rows in other tables. Transactions may be expressed as stored
SQL procedures that consist of SQL DML statements.

– Schema evolution. Within limits, a database schema can be adapted, perhaps even
while the database is on-line. The schema may evolve in such a way that all or most
previously valid queries continue to be valid.

– Views. In addition to physical tables, there can be views, which are defined by SQL
queries. Views are never materialized; the defining queries are executed once the
view itself is queried. Updates on views are relatively restricted.

XML document processing

We have in mind XML processing using XPath, XSLT, DOM, XQuery and friends. We
also include uses such that XPath or other XML languages are embedded into general-
purpose languages such as Java or C#.

– Tree structure. XML elements are normally organized as trees — as opposed to flat
tuples or arbitrary graphs. One may use IDREFs to refer to remote elements, but this
idiom is only occasionally used in practice. Also, XML types may be recursive, but
the prevailing concept in XML is hierarchical, tree-like organization of data.

– Element vs. attribute dichotomy. “A perennial question arising in the mind [... of
XML designers ...] is whether to model and encode certain information using an el-
ement, or alternatively, using an attribute. ... Experienced markup-language experts
offer different opinions ...”14

– Mixed content. One may mix structured content (elements) and text. Processing in-
structions (PIs) and comments may occur, too. Some XML use cases require high
fidelity: all details of text, PIs and comments are to be preserved. This issue is very
similar to layout and comment preservation for programming language process-
ing [93,56] (also known as syntax retention).

14 Source: http://xml.coverpages.org/elementsAndAttrs.html
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– Order matters. Element tags are not meant to be (unambiguous) selectors or labels.
Multiple element particles with the same element name may occur in a content
model. XML processing functionality may care about the order of elements. Order
also matters with regard to querying. That is, queries (based on XPath and friends)
are normally supposed to return elements in document order.

– The XML infoset. The representation-biased view on XML is complemented by
a more abstract interpretation of XML documents: the infoset [95]. This seman-
tic domain regulates what sort of information is associated with each node in a
well-formed (and not necessarily valid) XML document. The infoset hints at the
axis-based navigation style for XML. That is, one can navigate to the children, to
the parent, and to the siblings. In fact, the document object model (DOM [94]) al-
most directly implements the infoset semantics. In reality, there is not just a simple
data model for XML. Most notably, each XML API implements a slightly different
variation on the infoset. Also, the data model of XPath is yet again slightly different
from plain infoset.

Cobol

Cobol is not just the most widely used programming language for data-processing ap-
plications; it is in fact a language that has been designed to specifically serve this role.
More than that, Cobol continuously evolves to co-exist with other paradigms. (For in-
stance, Cobol has been turned into a proper OO language over the last decade or so [48].
Admittedly, OO Cobol sees limited adoption.) Here are Cobol’s characteristics:

– Files as a language concept. Unlike development platforms of the last 10 years or
so, persistent data processing is not viewed as an ‘API issue’ in Cobol. Instead,
statically typed language constructs for keyed and sequential file access amount
to an intrinsic component of the language since the 1960s. (“No strings”.) The
concept of keyed files is similar to the relational model except that file access is
record-based and general joins need to be rolled out as nested loops.

– Database support. Embedded SQL (optionally combined with transaction monitors
like CICS) allows for processing relational data in Cobol code. Embedded SQL can
be pre-compiled (including compile-time data dictionary access), which implies
static typing and enables optimizations. SQL queries are executed using a cursor
model, and result rows are stored in accordingly structured (potentially generated)
group fields, based on a simple mapping of SQL data types to Cobol types.

– XML support. Conceptually, records (and Cobol data in general) are described
through arbitrarily nested group fields. This is already a good fit with the tree-like
organization in XML except for the issue of unbounded occurrence constraints and
choice types. Also, Cobol readily offers ‘representation-oriented’ data types, just as
XML schema. Additional native XML support is being added to the standard [8].
This addition allows file processing on XML data and validation. Content mod-
els can be described more or less like normal file records. A cursor-based model
resolves the issue of unbounded occurrence constraints. Choices may be treated
procedurally by tag inspection.
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4.2 An open-ended list of mapping issues

We attempt to pinpoint ‘issues’ that witness impedance mismatches for inter-paradigm
mappings. The issues are phrased as questions. We reckon that each such question does
not lend itself to a trivial, unambiguous and non-debated answer.

Map a relational schema to an object model

Such a mapping is needed when an OO application requires access to business data that
happens to reside in a relational database. This is perhaps the most common mapping
scenario in IT today up to a point that experts have labeled this problem as the ‘Vietnam
of Computer Science’. There are various more or less complex technologies in existence
that attempt to address this problem, e.g., EJB and Hibernate, and some technologies
were never completed. We phrase some issues as questions:

– How to map database schemas to class hierarchies?
(What data is going to be private if any? What to use inheritance for, if at all?)

– How to perform queries on objects (that represent relations)?
(Should we mimic SQL? Should we use OOQL, XPath or XQuery?)

– How do foreign key constraints show up in the behavior of objects?
(How to map foreign key constraints to an OO design?)

– How would we possibly carry out schema evolution on the OO program?
(Also, can we achieve independent evolution of database schema and object model?)

– How to map SQL views and stored SQL procedures to objects?
– How to enable transactions in the object-life cycle?
– Can we make any use of interface polymorphism?
– How to map object access to SQL queries?

Map an object model to a relational schema

Such a mapping is needed in the following situations: (i) the database is meant to serve
for plain object persistence; (ii) the architecture of an OO application is constrained to
expose its object model as a relational schema, which may be considered as a strong
version of (i). In both cases, the mere mapping problem might couple up with a migra-
tion problem. That is, we may need to re-engineer the OO application that pre-dated
the mapping requirement. ‘Normal objects’ are to be replaced or complemented by
database-access objects.

– What classes, fields and properties are mapped to relations?
(In particular, what private fields have to be persisted if any?)

– How do we map single/multiple OO inheritance to relations?
(How does this affect querying tables that correspond to subclasses?)

– How to extract foreign key constraints from OO designs?
– How to extract NOT NULL constraints from OO designs?
– How to map Eiffel’s, Java’s or .NET’s generics to the database?
– What to do about interface polymorphism, if anything?
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Map an object model to an XML schema

Such a mapping is needed in the following situations: (i) data import and export for
the sake of open, interoperable software applications; (ii) XML-based persistence; (iii)
remote-method invocation and web services. Object models seem to lend themselves to
reasonably restricted XML schemas. However:

– What classes, fields and properties need to be mapped anyhow?
(In particular, what private fields are part of the intrinsic object state?)

– How do we draft the hierarchical organization of the XML data?
(What associations to represent through hierarchy? Should we use IDREFs?)

– What to do about sharing or cycles in the object graph?
(How do we even know for sure where sharing and cycles may occur?)

– How to enable platform interoperability (cf. Java vs. .NET)?
– What to do about interface polymorphism, if anything?
– Which XSD organization style to use when?
– How to map generics to XML schema?

Map an XML schema to an object model

That is, the XML schema serves the role of a ‘first-contract’ data model in this case. The
overall scenarios for this mapping direction are more or less the same as for the other
direction: objects to XML, but this time we face the full generality of XML schemas as
opposed to the subset that is targeted by a given ‘objects to XML’ approach.

– How to group tree elements in objects?
– How to provide fidelity for mixed content?
– How to map ID literals into object references?
– Do simple XSD types constitute wrapper classes?
– How to map identity constraints to OO behavior?
– How to map facets (maxInclusive etc.) to OO methods?
– How to represent order constraints in OO code if at all?
– How to map type derivation by restriction to OO mechanisms?
– How do we cope with XML data that does not comply to the schema?
– Do we need to distinguish elements from complex types in OO types?
– How to map anonymous model groups to fields/properties in OO code?
– Can we enable independent evolution of XML schema and object model?

Map an XML schema to a relational schema

Such a mapping is needed when we want to use a relational database as an XML store.
(In practice, we even may want to store untyped XML data or to neglect the XML
schema for the purpose of storing XML data.) Another scenario for XML-to-relational
is that we actually aim at a faithful relational schema so that we can operate on the data
in two worlds: XML and SQL.

– How to ‘normalize’ the XML schema?
– How to map XSD’s built-in simple types to SQL data types?
– How to avoid clashes of XML IDs from different documents in the database?
– How to (efficiently) support XPath et al. on the relational image?
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Map a relational schema to an XML schema

Such a mapping is needed for the provision of an XML view on relational data. As in
the case of several previous mapping couples, we may have a choice between canonical
mappings (that take any relational schema and expose it as XML without any contri-
bution from a programmer) or custom mappings, where the programmer specifically
describes the shape and the content of the desired XML view relative to the relational
schema. (These two options are sometimes also referred to as prescriptive vs. descrip-
tive mappings.)

– When to use IDs/IDREFs and when to use nesting?
– How to deal with circular reference chains in tables?
– How to map SQL data types to XSD’s built-in simple types?
– Exercise to the reader: find some more variation points.

4.3 Exemplar frictions

We increase the level of detail by discussing exemplar frictions.

OO lacks foreign key constraints

Foreign key constraints in relational databases serve foremost for referential integrity
in a database. One cannot accidentally delete a master row if there are still references
to this row from elsewhere through foreign keys. Modern databases (such as SQL 92
variants) provide support for cascading deletes and updates such that update or delete
operations are distributed automatically from the table with the primary key to tables
with corresponding foreign keys. (In addition, there is also the trigger technique to
achieve this behavior with slightly more effort.)

An example follows. Let us assume a stock table that contains a list of items that a
shop stocks and sells, as well as a stock transaction table that contains a list of purchases
and sales for each stock item. We can only delete a stock item if there are no transactions
left that refer to the stock item. However, a cascading delete makes sense here: the
deletion of the stock item should imply the deletion of the transactions for this stock
item. This is expressed by the ON DELETE CASCADE phrase as part of the foreign key
constraint.

// SQL Server 2000 code
CREATE TABLE stock trans
(
trans id int NOT NULL IDENTITY PRIMARY KEY,
stock id int NOT NULL REFERENCES stock(stock id) ON DELETE CASCADE,
// ... further columns elided ...
)

Cascading operations are not readily available in the OO paradigm. Let us assume that
there are classes for stock items and transactions. Each transaction object holds a ref-
erence to the corresponding stock-item object. Also, let us assume that we maintain
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a collection of stock items. The trouble is that there is no primitive OO operation for
the effective eradication of a stock item including all objects that refer to it. One may
employ a range of techniques for the encoding of cascading deletes: weak references,
explicit memory management with bi-directional references, the publish-subscriber de-
sign pattern, designated design patterns [76,75], and ownership types [18,14,17] (which
would call for language extensions).

Cobol’s REDEFINES

We are asked to migrate the file-based data management layer of an existing Cobol ap-
plication to database technology. Such a migration consists of three parts: (i) reverse
engineering of the file-based data model with the goal to derive a reasonable relational
schema; (ii) data conversion to populate the database; (iii) re-engineering of the Cobol
code to perform database access in place of file access. We will focus on (i) because
we want to illustrate an impedance mismatch between keyed or sequential Cobol files
and the relational model. Once we understand the data-model mapping, the actual data
conversion (i.e., ii) is relatively straightforward. (iii) is rather involved. Clearly, migra-
tion is not the only option. There are cases in which a Cobol system reaches the end of
its conceded life, and we are requested to convert the legacy data to a database. In this
case, we can ignore (iii).

Cobol offers (unsafe) variants through its REDEFINES clause: a given record can
assume different types. The reverse engineering part needs to identify such records
and eradicate them in some way. (The relational model does not comprise designated
expressiveness for variant records.) Let us consider an example. The following record
description for orders distinguishes header records vs. position records, which both
start with a common structure for key data:

∗ Cobol ’85 code
FILE SECTION.
FD ORDER−FILE.
01 ORDER−RECORD.

∗ The level 05 group item holds common key data.
05 ORDER−KEY−DATA.
10 ORDER−NUMBER PIC 9(8).
10 ORDER−ACCOUNT PIC 9(10).
10 ORDER−PRODUCT PIC 9(8).
10 ORDER−POSNR PIC 9(4).

∗ Note:
∗ − ORDER−HEADER−DATA is redefined by ORDER−POSITION−DATA
∗ − If ORDER−POSNR <= 9, then we face a HEADER.
∗ − If ORDER−POSNR > 9, then we face a POSITION.

05 ORDER−HEADER−DATA.
10 ... details of header elided ...

05 ORDER−POSITION−DATA
REDEFINES ORDER−HEADER−DATA.

10 ... details of position elided ...
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The comment reveals that the condition ORDER−POSNR > 9 is supposed to hold for
position records. Here, ORDER−POSNR is a data item that contributes to the key of
any ORDER record. We may not always find such a helpful comment, neither do we
necessarily trust such documentation. Ultimately, we need to engage in reverse engi-
neering indeed. The following code pattern supports the claim in the comment; it aims
to read position records while it initializes ORDER−POSNR with 10:

∗ MOVE ALL POSITION RECORDS TO FORM FOR DISPLAY
INITIALIZE ORDER−RECORD.
MOVE FORM−ORDER TO ORDER−NUMBER.
MOVE FORM−ACCOUNT TO ORDER−ACCOUNT.
MOVE FORM−PRODUCT TO ORDER−PRODUCT.
MOVE 10 TO ORDER−POSNR.
START ORDER−FILE KEY IS >= ORDER−KEY−1.
READ ORDER−FILE NEXT RECORD.
PERFORM WITH TEST BEFORE UNTIL NOT FILE−STATUS−OK

MOVE CORRESPONDING
ORDER−POSITION−DATA TO FORM−FOR−ORDER

READ ORDER−FILE NEXT RECORD
END−PERFORM.

Based on such evidence, we define two database tables corresponding to the variants:

// SQL Server 2000 code
CREATE TABLE Order Header
(

Order Number int NOT NULL IDENTITY PRIMARY KEY,
Order Account int NOT NULL,
Order Product int,
// ... other data items elided ...

)
CREATE TABLE Order Position
(

Order Number int NOT NULL
REFERENCES Order Header(Order Number),

Order Posnr int NOT NULL,
// ... other data items elided ...

)

That is, the order number is designed to be the primary key of the table for header
records, while it is a foreign key in the table for position records. The position number
only shows up in the table for position records. All general key data (account, product,
...) is centralized in the table for header records. The illustrated mapping requires rela-
tively deep insight, when done manually, or very much advanced program analyses, if
the mapping should be automated.
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5 Call to arms

For some of the above mapping couples, substantial research work has been delivered.
For instance, the couple ‘map a relational schema to an XML schema’ has received
ample interest [86,32,27]. For all of the above mapping couples, actual technologies
do exist and serve business-critical roles everywhere in IT. For most of the above map-
ping couples, the scientific understanding is largely unsatisfactory. Progress is mainly
achieved through industrial drive. No integrated foundation of mapping is available.
When we compare the situation in mapping with the one in compiler construction, we
are clearly in need of a ‘Dragon Book’ [3] for mapping. However, before someone can
write this book, more research is needed. Also, previous and current mapping projects
should be carefully analyzed so that the observations (often failures) can be effectively
used in new mapping projects and as driving forces for mapping research.

5.1 Overall goals

Foundations — we are in need of general and scalable foundations across paradigms;
Robustness — data access in data processing must not ‘go wrong’;
Evolvability — data models, APIs and code must not resist change;
Productivity — we need a simpler way of developing data-access layers.

5.2 A list of challenges

Here is a list of challenges that we see ahead of us. We reckon that progress in the
area of data-processing application development boils down to progress regarding these
challenges.

– Data models as contracts. While data-modeling languages such as OCL (UML) and
Schematron provide rich constraint mechanisms, the transcription of such models
to program types may not transport all constraints to the static type system of the
programming language at hand. Extending the (static) type system of languages
is one direction [72,71,12]. Delivering a language design with support for general
pre- and post-conditions is another direction. In fact, a blend of verification, static
typing, soft typing [25,101] and dynamic typing seems to be most promising. We
quote from [29]:

“We believe that the development of an assertion system [...] serves two
purposes. On one hand, the system has strong practical potential because
existing type systems simply cannot express many assertions that program-
mers would like to state. On the other hand, an inspection of a large base
of invariants may provide inspiration for the direction of practical future
type system research.”

Further work on the tension between conservative (static) type-system extensions
vs. more flexible language support for typing and verification should also benefit
from the body of work on OO specification languages such as VDM++; cf. [30].
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– Data-model evolution. Research on database schema evolution has a history of
about 20 years [11,65]. In practice, simple forms of relational schema evolution
are established; think of ALTER TABLE in SQL. Related foundations and tech-
niques have been contributed by the field of data re-engineering and reverse engi-
neering [37,67,39] with focus on relational schemas and ER models in information
systems. The problem of XML schema evolution may just gain momentum. In OO
programming and design, several refactorings address object-model evolution — in
particular class refactorings [80,31]. In reality, data-model evolution is a complex
topic, and existing methods are difficult to apply (because of restrictions and engi-
neering reasons).

– Co-evolution of programs. Assuming that we master the evolution problem for data
models themselves, we get to the next hurdle: co-evolution of data-processing pro-
grams. This is a particularly challenging (and potentially beneficial) mode of evo-
lution. We need cross-paradigm transformations to push changes of relational and
XML schemas into application programs, 4GL code, and others.

– Loose coupling of data models. Rather than thinking in terms of the propagation
of transformations from the data model to the data-model-dependent code, we may
also anticipate the problem up-front, and employ an architecture with loose cou-
pling. That is, most business logic would be coded against a more stable object
model, which is intelligently mapped to a less stable ‘external’ data model. Loose
coupling would not just help with localizing impact of evolution, it would also
allow us to use the preferred internal object model, which may differ from a po-
tentially suboptimal, external data model. Unfortunately, we lack comprehensive
foundations of loose coupling.

– Data model reverse engineering When we talked about mapping so far, we mostly
focused on the technical provision of the mapping assuming that we have a reason-
able understanding of the data source and its conceptual, logical as well as physical
data model. In practice, we also need to address the problems of ‘data-model rot’
or ‘data-model legacy’. To this end, we need to engage in data-model reverse engi-
neering and re-engineering. These activities may concern both external data models
(such as relational schemas) and object models.

5.3 Challenges in detail

We pick out two of the above items for a detailed discussion.

Re-/Reverse engineering of data models

Defining mappings on existing data (or object) models in a concise and robust manner
is one issue, knowing the concepts to map from and to is another issue that easily dom-
inates the picture whenever we face complex data models, whenever we specifically
want to provide a simple-to-digest view.

Let us consider an example. The emerging Mendocino project (an effort in which
SAP and Microsoft Corp. participate) is aimed at the integration of SAP processes (such
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as time management, budget monitoring, organizational management and travel and
expense management) directly into Microsoft Office.15 We may ask how difficult it is
to provide such interoperability. One thing to notice is that interoperability is more than
a technical term. For Mendocino to be useful in the context of office-ware integration,
the business processes need to be exposed through lean data models and APIs.

In [89], the implementation of SAP R/3 is analyzed in several respects. The pub-
lished data points lead us to the conclusion that a useful interoperation of SAP with
Office is very challenging. We quote some details. For the record, SAP R/3 is imple-
mented in the 4th generation language ABAP/4 (short for Advanced Business Applica-
tion Programming). According to the results of the study, SAP R/3 consists of 40,000
programs, 34,000 functional modules, 11,500 tables. Regarding the internal data model,
it was found that 69% of all data type declarations were not reused (i.e., they were just
declared and used once); 6.2% were not used at all. For most of the remaining declara-
tions, the number of reuses (in this huge system) is surprisingly small. For four fifths of
the reused declarations, reuse was restricted to 2–5 times.

These figures indicate that any reasonable SAP API or any data model for SAP
integration would need to make a major effort in order to hide the complexity of the
‘as-implemented’ data model and to furnish a concise and clear data model that can
actually be used by programmers. (The Mendocino project does not start from zero
because it can leverage previous interoperability efforts that have gone into the SAP
software.)

In the context of software re-/reverse engineering, effective and well-founded meth-
ods for data re-/reverse engineering [37,4,43,39] have been developed. We wonder
whether these methods can also be adopted in a mapping context that aims at the de-
livery of programming APIs. In this context, we are not interested in the extraction of
relational schemas or ER models for the sake of understanding, system modification or
new development; instead we are interested in the provision of programming-enabled
views on as-implemented data models.

Loose coupling for data and object models

In Fig. 4, we illustrate the not so obvious point that a given data model could correspond
to quite different object models in an application. The first object model is ‘flat’ — just
like the physical model. The second object model separates out zip-code objects and
extra information about them. Both the first and the second model only deal with US
addresses; they omit the country code. The third model defines a flat address structure,
but it uses subclassing (in a somewhat pragmatic way) to enable the representation of
international addresses.

Differences between external and internal models may arise for various reasons:

– We changed the external data model, but did not change the object model.
– We want to bind to the external data model but favor a different object model.
– We face a legacy object model to be bound to a new external data model.

15 http://www.sap.com/company/press/press.epx?pressID=4520
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(Source: http://www.agiledata.org/essays/drivingForces.html)

Fig. 4. Different object models for the same physical model
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Fig. 5. A mapping web for data-processing applications

Mapping techniques should help us to realize different internal (and even external) mod-
els at a high level of abstraction. Unfortunately, in practice, the various models in an
application are typically hand-crafted and laborious low-level mapping code is needed
to move data back and forth.

In Fig. 5, we sketch the idea of a flexible architecture for data-processing applica-
tions. One assumption is that external data models can be combined and transformed
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(Source: http://java.sun.com/blueprints/patterns/DAO.html)

Fig. 6. The design pattern for ‘data-access objects’ — instantiated for the case of a XML-based
data for screen definitions. The business object accesses screen definitions through the data-access
object without commitment to the general or particular XML format used underneath.

before entering the software application as canonically derived object models for data-
access objects (DAO).16 (The intent of DAOs is the provision of a data-access layer that
does not expose implementation details of the underlying data management; see Fig. 6
for an example.) Another assumption is that any number of canonical object models, in
turn, can be combined and transformed into ‘facades’ — these are the object models that
are considered useful for implementing the business logic. We may want to assume that
the architecture makes it unnecessary to materialize data in interim data-model layers.

For mappings on external models, one can readily use techniques that are specific to
the underlying data-modeling paradigm, e.g., XQuery or XSLT for XML, or SQL views
for relational databases. (Creating new data models with contributions from different
paradigms is more involved.) In Fig. 7, we illustrate tool support for XML schema
mapping. (The actual example encounters schema composition by instance-level join.)
The tool at hand generates XSLT scripts from the visually designed mapping. Under
certain preconditions, one obtains scripts that map both ways.

The situation for mappings on internal models is in flux. There are various design
patterns that could be said to help (somewhat) with the design and implementation of
mappings: composite, facade, bridge, factory, model-view controller, and most notably,
mediator [59,33]. The mediator pattern directly allows for the systematic translation
of an API into another API (APIs) using connectors as the primary concept. (Notice
how well this corresponds to the XML schema mapping exercise in Fig. 7.) The overall
notion of mediator is of profound use in the related field of data integration [82,84],
but the design pattern is still too weak to do the heavy lifting for mappings in data-
processing applications. The mediator pattern does not (nor does any other pattern we
know of) provide higher-level operations on data or object models. We can describe the
sought-after improvement:

16
http://java.sun.com/blueprints/corej2eepatterns/Patterns/DataAccessObject.html

http://java.sun.com/blueprints/patterns/DAO.html

40

http://java.sun.com/blueprints/patterns/DAO.html
http://java.sun.com/blueprints/corej2eepatterns/Patterns/DataAccessObject.html
http://java.sun.com/blueprints/patterns/DAO.html


(Source:

http://geekswithblogs.net/synboogaloo/archive/2005/04/22/37335.aspx)

Fig. 7. Join two XML schemas (based on the Biztalk technology)

The design and the implementation of programmatic object-model-to-object-
model mappings is normally carried out at a low level of abstraction, in terms
of free-wheeling, basic OO code. We need higher-level language concepts and
programming techniques and APIs that enable these mappings more directly.

Language-integrated query mechanisms (such as LINQ [73]) may serve this agenda.

6 Concluding remarks

We have compiled a survey on mapping practices and mapping issues for data modeling
and data-processing with Cobol, object, relational and XML. We have provided rich lit-
erature and on-line references. However, the problem is that the intricacies of intra- and
inter-paradigm mappings are not fully appreciated by the archetypal research agenda
on programming languages and software engineering. As a result, this important field
of computer science ends up being driven by industry — not surprisingly more or less
in an ad-hoc fashion.

We too adopt an ad-hoc method here to make our point — ‘Google’ science:

– http://www.google.com/search?q=object-relational+mapping
– http://www.google.com/search?q=XML+data+binding
– http://www.google.com/search?q=model-driven+transformation
– http://www.google.com/search?q=aspect-oriented+programming

At the time of writing this conclusion, we observe the following situation. The Google
results for the first two links on object-relational mapping and XML data binding do
not lead to any research content on the first two pages. (We didn’t continue beyond
that.) The Google results for the last two links on model-driven transformation and
aspect-oriented programming readily list several research papers and research projects
on the first page. We reckon that, in principle, mappings are worth the same scale of
attention in research. Given the fact that IT industry is fighting with various impedance

41

http://geekswithblogs.net/synboogaloo/archive/2005/04/22/37335.aspx
http://www.google.com/search?q=object-relational+mapping
http://www.google.com/search?q=XML+data+binding
http://www.google.com/search?q=model-driven+transformation
http://www.google.com/search?q=aspect-oriented+programming


mismatches and data-model evolution problems for decades, it seems to be safe to start
a research career that specifically addresses these problems.

One could perhaps think that the bulk of impedance mismatches will be resolved by
language extensions soon. (Why not earlier?) The fix-point of this argument is that we
end up with a language in which all mainstream data-modeling paradigms and program-
ming paradigms are ‘happily’ united. We may need to try indeed, just to see whether the
resulting paradigm soup is still digestible. However, the fix-point may be hard to reach
anyway. New data modeling and data processing ideas come up all the time. Also, plat-
form providers as much as compiler, IDE, API and tool vendors use differentiation as
an intrinsic element of their business strategies. The increasing use of standards in IT
(think of reference schemas etc.) is a good thing, but the increasing number of standards
(and their size) challenges fix-point iteration, too. So it is essential to continuously cope
with diversity. It is therefore a good idea to intensify research efforts on mapping prob-
lems that concern Create-Read-Update-Delete applications.
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A Exercises and riddles

We list exercises on a scale of ‘*’ to ‘***’. Excellent, generalized solutions to the exer-
cises in the three-stars category have the potential to lead to a workshop or conference
paper. We also annotate exercises by ‘G’ to admit that googling might help, and we use
‘P’ for an indication that advanced programming skills are to be leveraged.
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A.1 Mappings in parsing and un-parsing

We start with some old-fashioned mapping problems that work fine as warm-up. Parsers
and un-parsers, at some level of abstraction, describe highly systematic mappings. How-
ever, occasionally, these mappings need to work hard to bypass a kind of ‘impedance
mismatch’ between concrete and abstract syntax representations, or they need to ac-
count for implementational restrictions.

Exercise 1 (*, G). Given is a set of binary operators with associated priorities. Using
your programming language of choice, give a concise description of a mapping that
parses a list of operators and operands into the correctly parenthesized term. (Note that
the actual operators and their priorities are a parameter of the mapping.) For instance,
the list [1,+,2,*,3] should be parsed into the term ’+’(1,’*’(2,3)) assuming
common priorities for ’+’ and ’*’.

Exercise 2 (*, G). Continue Ex. 1 to include explicitly parenthesized expressions.

Exercise 3 (**, G?). Continue Ex. 2 as follows. Given is a term. Describe an ‘un-
parsing’ mapping that generates the concrete representation (a list of operators and
operands) with the minimum number of necessary parentheses.

Exercise 4 (**, G?). Continue Ex. 3 so that it will definitely preserve all parentheses
that were explicit in the original input. That is, the composition of parsing and un-
parsing should be the identity function on the set of all parseable strings. (Hint: the
term representation needs to be refined.)

Exercise 5 (**,G,P). Here is a definite clause grammar (DCG) for the language (a|b)∗

% Prolog/DCG code
aorbs(snoc(Xs,X)) −−> aorbs(Xs), aorb(X).
aorbs( lin ) −−> [].
aorb(a) −−> [a].
aorb(b) −−> [b].

The grammar also describes the synthesis of a left-associative list (cf. snoc rather than
cons and lin rather than nil ). Such left-associativity suggests a left-recursive grammar,
as shown indeed. However, Prolog’s normal left-to-right computation rule implies non-
termination for left recursion. Hence, we need a right-recursive grammar. Assignment:
develop the corresponding DCG.

We could build an intermediate cons list, and rephrase it eventually:

aorbs(SL) −−> aorbsCons(CL), { rephrase(CL,SL) }.
aorbsCons(cons(X,Xs)) −−> aorb(X), aorbsCons(Xs).
aorbsCons(nil) −−> [].

rephrase(CL,SL) :− rephrase(CL,lin,SL).
rephrase(nil ,SL,SL).
rephrase(cons(X,Xs),SL1,SL2) :− rephrase(Xs,snoc(SL1,X),SL2).

48



This solution involves an unnecessary traversal. We ask for a solution that avoids such
an inefficiency. As an aside, general descriptions of left-recursion removal are avail-
able [3,68]. Also, one may consider techniques for deforestation [99], which could even
be useful to automatically derive an efficient solution from the inefficient encoding that
we have shown.

A.2 Mappings for XML grammars

When programming language folks first looked at DTD [96], some might have said
“This is just a verbose variation on EBNF [47].” — leaving implicit that there are a
few issues that go beyond context-free grammars, e.g., IDREFs. This proposition does
not so easily generalize to the XML schema language (XSD), which is a relatively
rich XML grammar formalism. In general, the differences between grammar notations
(XML schema, DTD, Relax NG, Schematron, EBNF, BNF, SDF, ASDL, ASN.1, . . . )
invite insightful mapping exercises. Some XSD-based riddles follow.

Exercise 6 (*,G?). The EBNF formalism is orthogonal in itself in the sense that it offers
regular operators that can be applied to other grammar phrases in arbitrary ways. In what
sense does XML schema deviate here? (Hint: think of occurrence constraints.) Argue
regarding the pros (if any) and cons of this deviation.

Exercise 7 (**). The content model <choice/> (i.e., the empty choice) is invalid ac-
cording to the XML Schema recommendation by the W3C. Why is that a sensible
restriction, and how does the notion of empty choice transcribe to context-free gram-
mars? Suppose <choice/> was not forbidden, how does it compare to <sequence/>,
and again, what does this comparison mean in context-free grammar terms? Give a few
more algebraic equations on content models. For instance, give equations that involve
occurrence constraints.

Exercise 8 (**). Consider the following schema:

<!−− XML schema −−>
<xs:schema ... elided for brevity ...>

<xs:element name=”foo”>
<xs:complexType>

<xs:sequence>
<xs:element name=”bar” type=”xs:string”/>
<xs:element ref=”foo”/>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:schema>

According to the WC3 recommendation, this schema is valid. When considered as a
context-free grammar, what basic property is violated by this schema? (Hint: it is the
same property that is violated by <choice/>.) Argue that this property is valuable from
an XML-centric point of view. Also explain the formal means to enforce such a restric-
tion by adopting context-free grammar techniques.
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Exercise 9 (***). Provide a detailed mapping for, what you might call, ‘DTDification’
of XML schemas. (We choose this name to hint at the similar process of YACCifica-
tion, where EBNF-like expressiveness is normalized to BNF-like notation [64].) That
is, how can you compile away the extra expressiveness of XSD such that the resulting
schemas can be mapped to DTDs rather directly. Argue that the resulting DTD accepts
a ‘reasonable’ superset of the XML instances that are accepted by the initial schema.

A.3 Compensation of semantical impedance mismatches

Mapping operations on data models may lead us to semantical challenges (as opposed
to merely typing mismatch challenges). The following exercises focus entirely on fun-
damental properties of language semantics in the context of data processing.

Exercise 10 (**,G,P). We will be concerned with the simulation of a lazy semantics.
This is clearly necessary when we want to transcribe data-processing problems from a
lazy encoding to a non-lazy encoding (i.e., perhaps to an eager language). Consider the
following Haskell session that demonstrates lazy list processing:

haskell> take 10 [0..]
[0,1,2,3,4,5,6,7,8,9]

For the record, the function take is defined in the Haskell Prelude as follows:

−− Haskell 98 code
take n | n <= 0 = []
take [] = []
take n (x:xs) = x : take (n−1) xs

Also, the notation [0..] is a shortcut for incForever 0, where:

incForever n = n : (incForever (n+1))

Detailed assignments:

– Redefine lists, take and incForever such that an eager semantics would be sufficient.
– Transcribe the eager Haskell solution to an OO language as verbatim as possible.
– Use streams (as of C# 2.0 etc.), i.e., lazy lists, instead.
– Describe a data-processing scenario that calls for lazy structures other than lists.

Exercise 11 (***,P). We want to do data processing in Haskell with an OO-like refer-
ence semantics. Consider the following algebraic data types, given in Haskell syntax;
they describe a fragment of an abstract syntax for an imperative, statement-oriented
language with nested scopes for declarations of variables and procedures:

type Block = ([ Dec],[Stm])
data Dec = VarDec Id Type | ... −− procedures etc.
data Id = Id String
data Type = IntType | StringType
data Stm = Assign Id Exp | BlockStm Block | ... −− other statements
data Exp = Var Id | ...
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Hence, blocks in this language are lists of statements combined with the new declara-
tions for this block. Each block opens a nested lexical scope. Now let us assume that
we are interested in a richer AST format, which faithfully models ref/dec relationships.
That is, whenever a variable is referenced in an expression or a statement, we want to
be able to navigate from such a ‘ref’ side to the corresponding ‘dec’ side, i.e., to the
binding block that holds the visible declaration.

Detailed assignments:

1. Extend the algebraic data types, given above, to include constructor components
for ref/dec relationships. Take into account that these relationships may not be rep-
resented in terms initially, as they might be computed separately. Employ lazy, pure
functional programming (rather than explicit references of the IO or the ST monad)
to navigate from ref to dec sides.

2. Refactor the data types to use Haskell’s IORefs. Illustrate the use of ‘smart’ con-
structors so that user code is not blurred by the allocation of references and assign-
ments to references. A useful literature reference: [87].

3. How can we avoid cycles of generic algorithms that walk over the Haskell graphs?
For instance, an algorithm for showing a Haskell term must not run into a cycle
when hitting on a ref/dec relationship? Describe a technique that does not require
intimate knowledge of the problem-specific data types.

A.4 XML, object, relational mapping

These exercises illustrate cross-paradigm impedance mismatches as discussed in Sec. 4.

Exercise 12 (*). Suppose we store XML documents with IDs and IDREFs in a relational
database. What extra measures are necessary in case we want to (i) store multiple docu-
ments in the database, or (ii) extract new XML views from the database that potentially
involve multiple documents?

Exercise 13 (**). Consider the following XSD identity constraints:

<!−− XML schema −−>
<xs:element name=”order” type=”OrderType”>

<xs:keyref name=”prodNumKeyRef” refer=”prodNumKey”>
<xs:selector xpath=”items/∗”/>
<xs:field xpath=”@number”/>

</xs:keyref>
<xs:key name=”prodNumKey”>

<xs:selector xpath=” .// product”/>
<xs:field xpath=”number”/>

</xs:key>
</xs:element>

These constraints read as follows: “Each child of items must have a number attribute
whose value is unique within the order. All product descendants of order must have a
number child whose value matches one of these unique product numbers.” [100]. Let us
assume that the schema with those constraints is bound to objects. How can we enforce
the identity constraints within the object model?
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Exercise 14 (**). We recall the discussion of cascading deletes in Sec. 4.3. A deletion
of a stock item was supposed to lead to the deletion of all relevant transaction items.
We seek the object-oriented counterpart for this cascading delete. Here, we assume that
stock items and transactions reside in OO collections whose implementation has to be
made aware of cascading.

To hint at the solution, we provide an SQL-based encoding that does not use the
cascading annotations that we facilitated in Sec. 4.3. Instead, we create a trigger to kick
in when a delete operation is about to affect the stock table:

// SQL Server 2000 code
CREATE TRIGGER stock cascade delete ON stock FOR DELETE AS
DELETE FROM stock trans
WHERE stock id IN

( SELECT stock id FROM deleted )

Provide an OO encoding of the cascading behavior.

Exercise 15 (***). Continue Ex. 14 as follows. We seek a general, aspect-oriented so-
lution that can be reused for cascading deletion. To this end, we note that the overall
problem is similar to design patterns like ‘observer’ for which indeed modular, AOP-
based solutions have been proposed [38,41]. Such an AOP-based solution may illustrate
whether AOP can be useful for mastering cross-paradigm impedance mismatches.

52


