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Abstract. The DTD of a set of XML documents may change due to
many reasons such as changes to the real world events, changes to the
user’s requirements, and mistakes in the initial design. In this paper,
we present a novel algorithm called DTD-DIFF to detect the changes
to DTDs that defines the structure of a set of XML documents. Such
change detection tool can be useful in several ways such as maintenance
of XML documents, incremental maintenance of relational schema for
storing XML data, and XML schema integration. We compare DTD-
DiFF with existing XML change detection approaches and show that
converting DTD to XML Schema (XSD) (which is in XML document
format) and detecting the changes using existing XML change detection
algorithms is not a feasible option. Our experimental results show that
DTD-DIFF is 5-325 times faster than X-Diff when it detects the changes
to the XSD files. We also study the result quality of detected deltas.

1 Introduction

XML has emerged as the leading textual language for representing and exchang-
ing data over the Web. In many applications a schema (i.e., Document Type
Definition (DTD) or XML schema (XSD) [3] is associated with a set of XML
documents to define their legal structures. Schema of such XML documents may
also need to be updated to reflect a change in the real world, a change in the
user’s requirements, mistakes in the initial design, etc. For example, consider the
DTD D; in Figure[l(a) at time ¢;. It may evolve to Dy (Figure[[lb)) at time ¢o
because the university may wish to restructure the information due to change in
the university administrators’ requirements. Such DTD change detection tools
can be useful in maintenance of XML documents when their DTD evolves, in-
cremental maintenance of relational schema of the schema-conscious approach
[9] for storing XML data, XML schema integration, etc. Let us elaborate further
on the usage of DTD change detection tool in maintenance of XML documents.
Let X be a set of XML documents where each document x; € X conforms to
DTD D. Assume that due to mistakes in the initial design, D is modified to D’.
Consequently, x; € X may not conform to D’ anymore. Therefore, it is necessary
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<!ENTITY % info “name,head,website,telp,fax”>

<!ENTITY univName “Open University”>

<IENTITY myScript SYSTEM “script.pl”
NDATA pl>

<!ELEMENT university (information,school+)>

1
2 <!ENTITY univName “Open University”>
3
4
<!ELEMENT information 5 <IELEMENT information ((telp|website|fax?),address)>
6
7
8

<IENTITY myScript SYSTEM “newScript.pl” NDATA pl>

<!ELEMENT university (information,school+)>

1
2
3
a
dd: telp| £ bsit

Lt (el L E e i) ) <!ELEMENT school (sinfo,department¥)>
5 <!ELEMENT school (name,dean,departmentx)> - —
5 <!ELEMENT sinfo (%info;)>
7
8

<IELEMENT department (name,hod,courses)>
<!ELEMENT courses (course*)>

<!ELEMENT department (dinfo,courses)>

9 <!ELEMENT dinfo (%info;)>

<!ELEMENT course (#PCDATA)>

10 <!ELEMENT courses (course+)>
9 <!ELEMENT name (#PCDATA)>

11 <!ELEMENT course (#PCDATA)>
12 <!ELEMENT name (#PCDATA)>

10 <!ELEMENT dean (#PCDATA)>

11 <!ELEMENT hod (#PCDATA)> 13 <!ELEMENT head (#PCDATA)>

12 <!ELEMENT telp (#PCDATA)> 14 <!ELEMENT website (#PCDATA)>

13 <!ELEMENT fax (#PCDATA)> 15 <!ELEMENT telp (#PCDATA)>

14 <!ELEMENT website (#PCDATA)> 16 <!ELEMENT fax (#PCDATA) >

15 <!ELEMENT address (#PCDATA)> 17 <!ELEMENT address (#PCDATA) >

16 <!ATTLIST course code CDATA #REQUIRED 18 <!ATTLIST course code CDATA #REQUIRED
year CDATA #IMPLIED> year CDATA #REQUIRED >
(a) Dy (b) D2

Fig. 1. Two versions of a DTD

to detect the differences between D and D’ (denoted by A(D,D’)) automatically
so that it can be used to transform x; € X to z} such that z} conforms to D’.

In this paper, we propose a novel algorithm, called DTD-DIFF, for detecting
the changes to DTDs. To the best of our knowledge, this is the first approach
that addresses the DTD change detection problem. At first glance, it may seem
that the DTD change detection problem can easily be addressed by existing
change detection tools for XML documents [6,[7,10]. Specifically, we can first
transform DTDs to XSD files that are in XML format. Then, the changes to
the DTDs can be detected using existing XML change detection tools (such as
X-Diff [I0] and XyDiff [6]). Although this approach will clearly detect changes,
we argue that they suffer from these following limitations: granularity of types
of changes, inability to detect changes to both unordered and ordered nodes, de-
tection of semantically incorrect changes, generation of non-optimal edit scripts,
and performance bottleneck. The details can be found in [g].

In summary, the main contributions of this paper are as follows. (1) In
Section 2] we present data model to represent the changes to DTDs. By using
this data model we are able to detect the changes to DTDs, that are discussed
Section[3] correctly. (2) In Section[d, we propose a novel algorithm called DTD-
DirF for detecting the changes to DTDs. The algorithm takes as input two
versions of a DTD that are represented using our DTD data model and detects
the changes directly without converting them to XSD format. (3) Through an
extensive experimental study in Section B we show that our approach is 5-325
times faster than X-Diff [I0]. Note that in our study, we convert DTDs to XSD
files prior to employing X-Diff to detect the changes.

2 DTD Data Model

A DTD consists of entity declaration (<!ENTITY ...>), element type declaration
(K'ELEMENT ...>), and attribute declaration (<'ATTLIST ...>) that describe
entities, elements, and attributes, respectively. Formally,

Definition 1 [DTD]. A DTD is a S-tuple D = (£,A,G) where £ is a set of
Element Type Declarations (ETD) in D, A is a set of Attribute Declarations
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1 Changes to Element Type Declaration (ETD) 1.3.10 Deletion of a cardinality
1.1 Insertion of new ETD 1.3.11 Update of a cardinality
1.2 Deletion of an ETD
1.3 Changes to the Content Tree of an ETD 2 Changes to Attribute Declaration (AD)
- Changes to a leaf node 2.1 Insertion of a new AD
1.3.1 Insertion of a leaf node 2.2 Deletion of an AD
1.3.2 Deletion of a leaf node 2.3 Insertion of a new attribute in AD
1.3.3 Move of a leaf node 2.4 Deletion of an attribute in AD
1.3.4 Update of order of a leaf node 2.5 Update of attribute type
- Changes to a subtree 2.6 Update of default value
1.3.5 Insertion of a subtree
1.3.6 Deletion of a subtree 3 Changes to Entity Declaration (ED)
1.3.7 Move of a subtree 3.1 Insertion of a new ED
1.3.8 Update of order of an internal node 3.2 Deletion of an ED
at which a subtree is rooted 3.4 Update of replacement text of an internal ED
- Changes to Cardinality 3.5 Update of URI of an external ED
1.3.9 Insertion of a cardinality 3.6 Update of content notation of an external ED
(a) Content Tree (b) Types of changes

Fig. 2. Content Tree and Type of Changes

(AD) in D, G is a set of internal and external Entity Declarations (ED). Also,
if the numbers of ETDs, ADs, and EDs in a DTD are «, 3, and v then |E| = a,
Al =8, and |G| = ~. O

For example, consider the DTD D5 in Figure [[[(b). Lines 1-3, 4-17, and 18 are
examples of EDs, ETDs, and AD, respectively.

Element Type Declaration (ETD): In a DTD, XML elements are de-
clared using element type declaration. Each element type declaration F has
a name Ng and element content Cg. For example, consider the DTD D; in
Figure [[(a). The name and the content of element type school (line 5) are
school and (name,dean,department*), respectively. Observe that element con-
tent can be very complex with multiple levels of nesting. For example, <! ELEMENT
E1 (E1, (E2+|E3), (E47|E5*| (E6,E7) 7)*)>. We represent the element content
Cg as a content tree Tg. For example, consider the element type declaration
<IELEMENT E1 (E1, (E2+|E3), (E47|E5%*| (E6,E7)7)*)>. The content tree T
is depicted in Figure[(a). Note that in an element content C'p we may have se-
quence (denoted by “”) and choice (denoted by “|”) groups of elements. Observe
that the elements in a sequence group must be ordered, and the order of elements
in choice group is not significant. That is, a content tree T may have ordered
and unordered parts.

Attribute Declaration (AD): The attribute declaration in a DTD is used to
define the attributes of an element. Each AD A has a name N4 of element type
to which a set of attributes S4 belongs. Each attribute a in the attribute set
S4 has a name Ng, type Y,, and an optional default value D,. For example,
reconsider D; in Figure[M(a). The attribute declaration of element type course
is in line 16. The type of data and default value of the attribute code are CDATA
and #REQUIRED, respectively.

Entity Declaration (ED): Entities are variables used to define shortcuts to
common text. Entity references are references to entities. We have two kinds of
entities: general entity and parameter entity. Consider DTD Dy as depicted in
Figure [[(b). Line 1 is an example of parameter entity. An example of general
entity is in line 2. Note that we only consider the general entities. This is be-
cause the parameter entities automatically replace the entity references. Entities
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can be declared as internal or external. An internal ED I has a name N; and
a replacement text Ry. On the other hand, an external ED J has a name Ny,
universal resource indicator (URI) Uy, and a content notation Pj;. For exam-
ple, in D line 2 is an example of an internal ED. The name and replacement
text of this entity are univName and "Open University", respectively. Line 3
(Figure (b)) is an example of an external ED. The name, URIL, and content
notation are MyScript, "Scriptl.pl", and "pl", respectively. The details on
the DTD data model can be found in [§].

3 Types of Changes

A set of DTD changes that can be detected by DTD-DIFF is depicted in
Figure 2(b). We notice that a DTD indeed has richer of types of changes com-
pared to XML documents. In DTD, we have types of changes for cardinalities of
elements, more meaningful types of changes for AD and ED, etc. The details of
each type of changes depicted in Figure[2(b) can be found in [§]. In this section,
we only briefly discuss two issues regarding the types of changes to DTDs.

Update of Node/Attribute Name: We do not consider update of node/ at-
tribute name for the following reason. Consider the ETDs school in Dy and Ds.
We cannot consider that the name of element “name” is updated to “sinfo” and
element “dean” is deleted as it will lead us to have a delta that is semantically
incorrect. On the other hand, suppose we have a “lastname” element whose
name is updated to “surname”. DTD-DIFF detects as a deletion of element
“lastname” and an insertion of element “surname” as we do not have informa-
tion of semantic relationships between “lastname” and “surname”. Note that
the delta is still correct even though the result quality is reduced. Therefore, we
consider the update of node/attribute name as a pair of deletion and insertion
of a node in order to avoid semantically incorrect deltas in some cases.

Changes to Entity Type: If an entity g is changed from being an internal
entity to being an external entity, or vice versa, then we consider as a pair of a
deletion of an entity and an insertion of an entity.

4 DTD-Diff Algorithm

In this section, we present the DTD-DIFF algorithm. The outline of the algo-
rithm is depicted in Figure B(a). It takes as input two DTDs Dy = (&1, .41, G1)
and Dy = (&3, Az, G2) representing old and new versions of a DTD and returns
an edit script Z containing the differences between D and Ds. The algorithm
consists of six phases (Figure Bla)). We shall discuss each phase in turns.

The Parsing and Hashing Phase: Given two DTDs, D; and Dy, DTD-DIFF
parses Dy and D5 into (77,.A1,G1) and (73, Az, G2) respectively and computes
their hash values. Note that 77 and 75 are two sets of content trees of £ and &,
respectively. Since content tree of an element type declaration has both ordered
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Input: Node N
output: The hash value of node N

=(£1.A41.G1)

DTD D= (€2, Az, G2) 1 IF N is leaf node THEN
output: Edit Script Z s END IF 2 RETURN MD5Value (label(N) ® cardinality (N))
9 END FOR 3 ELSE IF N is non-leaf node THEN
/* Phase 1: 10 END FOR 4 conentenated_text = empty text
“ Parsing and Hashing */ /* Phase 3: Detect Move Operation */ 5 FOR EACH child IN children OF N
1 (Te1.41.G) €— ParseHash (D) 11 Moy € Detectove Ty, Tey s Moen) 6 CcalculateHashvalue ( child )
2 (Ix2.42.G2) é— parseHash (Ds) /* Phase 4: Finding the chas " 7~ END FOR
. R : g the changes to 8 IF N is choice group THEN
/* Phase 2: Finding the changes attribute declaration */ N
to slement type declaration */ | |13 u. o petecencerintoehanges (A 4y | | sort children of N by their hash values
o 1Az 10 END IF
3 FOR EACH &, IN Te1 DO /* Phase 5: Finding the changes to 11 FOR EACH child IN children OF N
4 FOR EACH t: IN Tezm0 entity declaration */ 12 conentenated_text o= Hashvalue(child)
5 IF t; and t; has the same name| |13 y . ¢ DetectEntityChanges( Gi, Ga) 13 END FOR
THEN /* Phase 6: Generating Edit scripts */ 14  conentenated_text = label (N) & cardinality (N)
6 M € Matching(t,, tz) 14 7 ¢— GenerateEditScripts (My,) 15 RETURN MD5Value (conentenated_text)
7 BREAK 15 RETURN 2 16 END IF
(a) Outline of DTDDiff Algorithm (b) The CalculateHashValue Algorithm

Fig. 3. Outline of DTD-DIFF Algorithm and The CalculateHash Value Algorithm

Input: Two root node rl and r2 10 ComputeCost (childl, child2)
Output: a set of matching pairs M 11 ELSE
12 Cost(childl,child2) = oo
1 M = empty set 13 END IF
2 push pair {rl,r2} into queue Q 14 END FOR
3  WHILE (Q is not empty) 15 END FOR
4 pop a pair {rl,r2} from queue Q 16 matched_pairs = set of pairs resulting from
5 M=M U {rl, r2} minimum-cost bipartite-matching among
6 IF HashValue(rl)<>HashValue(r2) AND child nodes of rl and r2
N1, N2 are non-leaf nodes THEN 17 FOR EACH pair{x,y} IN matched pairs
/* compute the cost of matching every 18 push pair{x,y} into queue Q
pair of child nodes of rl and r2 */ 19 END FOR
7 FOR EACH childl IN children of rl 20 END IF
8 FOR EACH child2 IN children of r2 21 END WHILE
9 IF label (childl)=1label(child2) THEN 22 RETURN M

Fig. 4. The Matching Algorithm

and unordered parts (the child nodes of the sequence and choice groups respec-
tively), the algorithm for computing the hash values must be able to address this
issue. We use the CalculateHashValue algorithm as shown in Figure Bl(b). Note
that “e” in Figure Bl(b) denotes concatenation of strings. Function MD5Value
is a hash function based on the MD5 Message-Digest algorithm [I].

We also calculate the hash values of AD in A and ED in G. The hash value
of AD A € A is calculated as follows. Hash(A) = MD5-Value(Hash(Ny)
e Hash(s1) e ... ® Hash(s,), where Hash(s,) = MD5-Value(Hash(Ns) o
Hash(Ys) @ Hash(Dy)), s¢ € Sa, and Hash(s1) < Hash(s2) < ... < Hash(sy).
The hash value of ED E € G is calculated as follows. Hash(E) = MD5-
Value(Hash(Ng) o H), where if F is an internal entity declaration, then
H = Hash(Rg). Otherwise, E is an external entity declaration, and H =
Hash(Ug) o Hash(Pg). The overall complexity of calculating the hash values

is (|2 (1Tl x di) + V2115 | < dy) + A + | A2| + 61| + [G2]) where |73
and |73| are the numbers of content trees in 7; and 7s, respectively, |Tg;| is the

number of nodes in Tg;, and d; is the average out-degree of Tg;.

The Matching Phase: Given two content trees of ETDs E; and Fs, denoted
as Tg1 and Tpgo respectively, DTD-DIFF invokes the Matching algorithm as
depicted in Figure @l The Matching algorithm returns a set of matching pairs
Mnin. The principle behind the Matching algorithm in DTD-DIFF is based on
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Input: Two node rl and r2

14 tched, i = t of i 1ti £ ini - t
output: C, Cost of matching rl and r2 matched_pairs = set of pairs resulting from minimum-cos

bipartite-matching among child nodes of rl and r2
15 C = C + cost of minimum-cost bipartite-matching

1 c=o0
B among child nodes of rl and r2
2 ffCH:ihvilueéz; - :j:i?j}j;j‘ﬂ’ THEN RETURN 0 16 FOR EACH childl IN children of rl
ost of up operation®/ 17 IF childl matched pairs THEN
3 IF cardinality(rl) <> cardinality(r2) THEN C=1 .
18 C=C+1 /% cost of delete operation*/
4 IF rl and r2 are leaf node THEN RETURN C 19 END IF

/* recursively compute the cost of matching every ||, FOR

21 FOR EACH child2 IN children of r2

22 IF child2 matched_pairs THEN

23 C = C + size of child2 /* cost of insert operation*/
24 END IF

25 END FOR

pair of child nodes of rl and r2 */
FOR EACH childl IN children of rl
FOR EACH child2 IN children of r2
IF label(childl)=label(child2) THEN
ComputeCost (childl, child2)

© <o,

9 ELSE
o Cost (childl,child2) = 00 26 IF rl and r2 are sequence group THEN
n D F 27 C = C + number of local move operations required

28 END IF

12 END FOR 59 RE c

13 END FOR

Fig. 5. The ComputeCost Algorithm

the one in X-Diff [I0]. That is, our matching technique finds the minimum-cost
bipartite matchings of two content trees. However, there are critical differences
between the Matching algorithm in DTD-DIFF and the one in X-Diff as we ex-
ploit the unique structural and semantic features of a DTD. First, the Matching
algorithm in X-Diff is invoked once. DTD-DIFF invokes the Matching algorithm
as many as the number of ETDs. Observe that each ETD in a DTD has a
unique name and hierarchy. Each root node in the content tree appears only
once and mapping occurs only between nodes with the same signature. So each
smaller content tree will be compared with another smaller tree from the second
version having the root node with same name. Note that this computation is
independent from the remaining content trees. Second, the ComputeCost algo-
rithm in Figure [l that is invoked by the Matching algorithm in DTD-DIFF to
compute the cost matching between r1 and r, considers the cardinality changes
(line 3, Figure[]). Note that the Matching algorithm in X-Diff does not consider
the cardinality changes as it deals with XML documents, not DTDs. Third,
unlike X-Diff which is based on unordered trees, a content tree can have or-
dered and unordered subtrees. Hence, in order to ensure our matching technique
works on ordered subtrees as well, we adopt the technique used in XyDiff [6]
to find the largest order preserving sequences among those matching pairs in
sequence groups (line 26-28, Figure [). The overall complexity of this phase is
O(min{aq, az} X |Te1| x |Tea| x mazx{dy,d2} x log(max{dy,ds}), where |Tg|
and |Teo| are the average numbers of nodes of the content trees in Teq and Teo,
respectively, d; and dy are the average out-degree of the content trees in Tgq
and Tgo, respectively, and a1 and as are the numbers of ETDs in Dy and Ds,
respectively.

The Move Detection Phase: After we have a set of matching pairs M,n,
DTD-DIFF detects move operations. Formally, the move operation is defined
as follows. Let m; and no be two nodes in Tgy and Tgs respectively. Let
parent(n) be the parent node of node n. Then, node n; is moved to be
node ng iff (parent(ni),parent(ng)) € Mym and Hash(niy) = Hash(nsg).
Note that we only consider a move operation if the hash values of n; and
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ngy are the same. This is because if the hash values of n; and ny are different,
then we need to check the differences in the subtrees rooted at nq and ns. If
the hash values of n; and nsy are different, then the algorithm detects it as a
deletion of n; and an insertion of ny. Now, we discuss how the move operations
are detected. Let P and @ be two lists of the subtrees from the first and second
versions respectively that have no matching subtrees in M,,;,. Subtrees in P
and @ are sorted by their size in decreasing order. For each subtree in P, the
algorithm checks whether there is a subtree in @ that have the same hash value.
If p; € P and ¢; € @ have the same hash value, then the algorithm marks that
subtree p; in the first version is moved to be subtree g; in the second version.
The complexity of this phase is O(n X log(n)), where n is the number of nodes
in the content tree.

The Attribute Declaration Change Detection Phase: Recall that at-
tribute list can be seen as a collection of attributes. The algorithm for de-
tecting the changes to attribute declarations works as follows. Given two ADs,
Ay € Ay and Ay € Ay, we compare the hash values of these ADs. If Hash(A;) =
Hash(As), then A; is the same as Ay and we mark them to indicate that they
have been matched and are not changed. Otherwise, we start to compare the at-
tributes in the attribute list of Ay to the ones in the attribute list of As. We use
the hash values and the attribute name of these attributes. If the hash values of
two attributes are the same, then they are not changed. Otherwise, we compare
their attribute names. If their names are the same, then we check their attribute
types and default values. Observe that if their attribute names are different, then
we do not need to compare their attribute types and default values as we do not
consider the update of the attribute name for the reasons discussed in Section [3l
The cost of detecting the changes to attribute declarations is O(n x log(n)),
where n is the number of attributes defined in the DTD.

The Entity Declaration Change Detection Phase: The change detection
mechanism of EDs is quite straightforward and similar to the approach for de-
tecting changes to attribute declarations. Hence, we do not elaborate on this
step further. The complexity of the algorithm for finding the changes on the en-
tity declarations is O(n x log(n)), where n is the number of entity declarations
defined in the DTD.

Edit Scripts Generation Phase: The edit script Z is generated as follows. (1)
An edit script Z is initialized as a set of move operations detected in the preced-
ing step. (2) Then, for all unmatching nodes in the first tree, delete operations are
added into edit script Z. (3) Next, for all unmatching nodes in the second tree,
insert operations are added into edit script Z. (4) For all pairs of matching nodes
that have different cardinality, cardinality update operations are added into edit
script Z. (5) For all pairs of matching nodes that belong to sequence groups and
have incorrect local order, local order move operations are added into edit script
Z. (6) The changes to the attributes lists are added into edit script Z. (7) Finally,
the changes to the entity declarations are added into edit script Z. The overall

complexity of this step is O(Y 17 (|Tm:|) + 121 (1T 1) + [ As |+ Az| ]G | +Gal)-
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5 Experimental Results

We have implemented DTD-DIFF entirely in Java. The experiments were con-
ducted on a Microsoft Windows XP Professional machine having Pentium 4 1.7
GHz processor with 512 MB of memory. We use both real world DTDs and a set
of synthetic DTDs generated by using our DTD generator. The second versions of
DTDs are generated by using our DTD changes generator. We vary the numbers
of element types, the percentage of changes, the out-degree of each element types,
and the depth of each element types. We compare the performance of DTD-DIrFF
with the state-of-the-art approaches. Unfortunately, despite our best efforts (in-
cluding contacting the authors), we could not get the Java version of XyDiff.
Hence, we compared our approach to the Java version of X-Diff [10] (down-
loaded from http://www.cs.wisc.edu/~yuanwang/xdiff.html) only. As X-Diff is
not designed for detecting the changes on DTDs, we convert the DTDs into XSD
[3] using Syntex dtd2zs (downloaded from http://www.syntext.com/downloads/)
before detecting the changes. Note that the results of X-Diff suffer from the lim-
itations discussed in Section 1. We also study the result quality of DTD-DIFF.

Execution Time vs Number of Element Types: We set the out-degree and
depth of each element type to “5” and “3” respectively. Note that the average
of the maximum depth of real DTDs is “3” [5]. The number of attributes of
each element is set to “3”. We set the percentage of changes to “9%”. The
characteristic of the data sets used in this set of experiments is depicted in

Figure [6l(a).

4 Elomeny D12 (DTD-DIff) | XSD (X-Diff) 4 Etomeny  DT2 (OTD-DIff) | XSD (X-Diff)
Code Types Fllesize #  Filesiza # Code Types | Fllesize &  Filesize # oo | #Element  # Atiribute
(Kb) Nodes (Kb) Nodes (Kb) Nodes (Kb)  Nodes Type [
E005-B05-D02 5 2| 105 7| 390| |[E075-B05-D02 75 18] 1,430 87| 5360 |SigmodRecord 11 1
E010-805-D02 10 3| 175 12| 691| [E100-B05D02| 100 23] 1,880 113] 7.044| [PSD 66 10
E015-805-D02 15 4| 275 17| 1,031| [E150-B05D02| 150 36| 2,785 170[10,564| [Policy? 56 26
E025-805D02| 25 6| 490 30| 1847| [E250-805-D02| 250 59| 4,410 273[16,903| [DBLP 36 12
E050-805-D02 50 12| 900 56| 3460| |E500-805-D02| 500 122] 9,280 570[35,076] |NewsML_1.1 17 114
(a) Different Number of Element Types (d) Real DTD Characteristics
DTD (DTD-Diff) XSD (X-Diff)
Code Depth Filesize Filesize
# Nod # Nod
o DTD (DTD-Diff) XSD (X-Diff) (Kb) ) =
ut-
Code Filesize | # | Filesize E025-805-D01 | 1 5 150 13 868
degree #N

9" "(Kb) Nodes  (Kb) S| [Eozssosoez| 2 6 465 28| 1731

E025-805D02| 5 6| 485 30| 1837| [E025-B05-D03| 3 10 1215 68| 3,896

E025-810-D02| 10 12| 1,585 82| 5022] [E025-B05-D04| 4 21 3,585 194] 10444

E025-B15:D02| 15 21| 3,265 162|  10047| [E025-B05-D05| 5 46| 9045 500 25,720

E025-825:D02| 25 45| 7,975 385 24021| [E025-B05-D06| 6 86| 17,305 994| 49,068

E025-840-D02| 40 114 21,625] 1,032 64611 |E025-B05-D07 | 7 209| 43465] 2853| 122182

E025-850-D02| 50 167] 31,325]  1,500] 94,014| |E025-805-D08| 8 557 117,180]  7,231] 328,862

(b) Different Number of Out-degree (c) Different Number of Depth

Fig. 6. Data Sets

Figure [[(a) depicts the performance of DTD-Di1rF and X-Diff. We observed
that DTD-DIFF significantly outperforms X-Diff. DTD-DIFF is 5-272 times
faster than X-Diff. X-Diff failed to detect the changes when the numbers of
elements are more than or equal to 250 due to lack of main memory. The inability
of X-Diff to process large number of nodes in XML data is also highlighted in [7].
We now briefly discuss why our approach significantly outperforms X-Diff. First,
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Fig. 7. Experimental Results

the tree representations of XSD files (XSD tree) contain elements with same
names. On the other hand, in DTD-DIFF, each root node of the content trees
in a DTD has a unique name. As a result, there exists a one-to-one mapping
between a content tree in the old version to another content tree in the new
version. Hence, X-Diff does more number of bipartite matching compared to
DTD-DIrF. Second, the number of nodes in the content trees is lesser in most
cases compared to an XSD tree. This further reduces the number and cost of
bipartite matching in DTD-DIFF. The details can be found in [8]. Furthermore,
numbers of nodes in the XSD files are larger than the number of nodes in the
content trees (from 2.8 up to 5.8 times larger, Figure [)).

We also study the performance of DTD-DIFF and X-Diff by using real world
DTDs [2,[]. Figure Bld) depicts the characteristics of the real world DTDs.
We set the percentage of changes to 3%. Figure [[(f) depicts the performances
of DTD-Di1rr and X-Diff. We notice that X-Diff has slightly better perfor-
mance than DTD-Dirr. This is primarily due to the characteristics of the
data. For instance, although NewsML 1.1 has 117 elements, the performance
of DTD-DI1FF is comparable to X-Diff! Observe that for synthetic data set
with similar size, DTD-DIFF outperforms X-Diff significantly. This is because
in NewsM L 1.1, only 6 out of 117 ETDs have nested content and the maximum
depth of NewsML 1.1 DTD is only 2. Hence, cost of bipartite matching is al-
most the same. In summary, X-Diff performs relatively better than DTD-DIrF
when the DTDs have simple and “flat” structure. When the DTD structure is
complex, DTD-DIFF outperforms X-Diff as shown using synthetic dataset. Also,
note that DTD-DIFF is still better than X-Diff because of the inaccuracies and
incompleteness in the results generated by X-Diff [§].

Execution Time vs Percentage of Changes: We use the E025-B05-D02
data set, whose number of element types, out-degree, and depth are 25, 5, and 2
respectively, as the first version of the DTD. We vary the percentages of changes
from “1%” to “20%”. Figure[f{b) depicts the execution time of DTD-DIFF and
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X-Diff for different percentages of changes. We observe that the percentage of
changes slightly affect the performance of DTD-Dirr and X-Diff.

Execution Time vs Out Degree: We set the number of element types and the
depth to “25” and “2” respectively. We set the percentage of changes to “9%”. We
vary the out-degree of each element type from “5” to “50”. The characteristic of
the data sets used in this set of experiments is depicted in FigureBl(b). Figure[d(c)
depicts the performance of DTD-DIFF and X-Diff for different numbers of out-
degree of each element type. We observe that DTD-DIFF is up to 325 times faster
than X-Diff. This is because of the reasons discussed above. We also notice that
X-Diff cannot detect the changes to XSD files when the out-degree is more than
or equal to 25 due to the lack of main memory.

Execution Time vs Depth: We set the number of element types and the out-
degree to “25” and “5” respectively. We set the percentage of changes to “9%”.
We vary the out-degree of each element type from “1” to “8”. The character-
istic of the data sets used in this set of experiments is depicted in Figure [6fc).
Figure[7l(d) depicts the performance of DTD-DIFF and X-Diff for different depth
of each content tree. We observe that DTD-DIFF is up to 89 times faster than
X-Diff. X-Diff failed to detect the changes when the depth is more than or equal
to 8 due to the lack of main memory.

Result Quality: We also examine the quality of deltas detected by DTD-DIFF.
We use E010-B05-D02 data set and the percentages of changes are varied between
“1%” to “10%”. Then, we calculate the result quality, that is, the ratio between
the number of edit operations detected by DTD-DIrF and the optimal one.
Figure[l(e) depicts the ratios. We observe that DTD-DIFF is able to detect the
optimal deltas until percentage of changes is set to “5%”. Afterwards, DTD-
Dirr detects almost optimal deltas. This is because, in some cases, a move
operation is detected as a pair of deletion and insertion. Note that we do not
compare the result quality of DTD-DIFF to other approaches as, to the best
of our knowledge, DTD-DIFF is the first approach for detecting the changes
to DTDs. We do not compare the result quality of DTD-DIFF to the one of
X-Diff (when we use XSD files) as the types of changes of DTD and XML are
different.

6 Conclusions

A DTD change detection tool can be useful in several ways such as maintenance
of XML documents and incremental maintenance of relational schema for storing
XML data. In this paper, we present a novel technique for detecting the changes
to DTDs. Our work is motivated by the problem that converting DTD to XML
Schema (XSD) (which is in XML document format) and detecting the changes
using existing XML change detection algorithms (X-Diff and XyDiff) is not a
feasible option. Such effort is expensive and may generate semantically incorrect
and non-optimal edit scripts. We propose an algorithm DTD-DIrF that directly
computes the changes between two versions of DTDs by taking into account
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the structural and semantic features of DTDs. We experimentally demonstrate
that X-Diff performs relatively better than DTD-DIFF when the DTDs have
simple and “flat” structure. When the DTD structure is complex, DTD-DIrF
runs significantly faster (5-325 times) than X-Diff for given data set. DTD-DIFF
is also able to produce optimal or at least near-optimal deltas.
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