
Beyond Schema Evolution to Database Reorganization 

Barbara Staudt Lerner 
A. Nice Habermann 

Carnegie Mellon University 
School of Computer Science 

Pittsburgh, PA 15213 

Abstract 1. Introduction 
While the c.ontents of databases can be easily changed, 

their organization is typically extremely rigid. Some 
databases relax the rigidity of database organization 
somewhat by supporting simpIe changes to individual 
schemas. As described in this paper, OTGen supports not 
only more ccmmplex schema changes, but also database 
reorganization. A database administrator uses a 
declarative notation to describe mappings between objects 
created with old versions of schemas and their 
corresponding representations using new versions. 
OTGen genemtes a transformer that applies the mappings 
to update tb: database to the new definitions, thus 
facilitating improvements in performance, functionality, 
and usability of the database.l 

Separation of interfaces from implementation is by now 
a generally accepted technique for localizing the effect of 
change. It gives the implementor the freedom of 
improving the code without affecting the client, while the 
latter can continue to use the specified interfaces and 
apply the provided operations as before. Only when 
client and implementor agree on a change in the 
specifications will it be necessary to modify the client’s 
application. 

However, changes in either specification or 
implementation not only affect programs, but also the 
representation of persistent data objects. The problem of 
modifying software is not limited to changing code, but 
also affects existing data objects that were generated with 
that software prior to modification. It is thus necessary to 
address the problem of how to adapt existing objects to 
the new requirements imposed by the modified software. 

‘Support for research on Gandalf is provided in part by ZFE F2 
KOM of Siemenr Corporation, Munich, Germany and in part by 
the Defense Advanced Research Projects Agency (DOD), ARPA 
Order #4976, under contract F33615-87-C-1499 and monitored by 
the Avionics Laboratory, Air Force Wright Aeronautical 
Laboratories, Aeronautical Systems Division (AFSC), Wright- 
Patterson AFB, Ohio, 4.5433-6543. 

The views and conclusions contained in this document are those 
of the authors ar.d should not be interpreted as representing the 
official policies, either expressed or implied. of the Defense 
Advanced Resear:h Projects Agency, the US government, or other 
supporting institu.ions. 
Permission to copy without fee all or part of this material is 
granted provided that the copies are not made or distributed for 
direct commercial advantage, the ACM copyright notice and the 
title of the publication and its date appear, and notice is given 
that copying is by permission of the Association for Computing 
Machinery. To copy otherwise, or to republish, requires a fee 
and/or specific sermission. 
a 1990 ACM 089791-41 l-2/90/0010-0067...$1.50 

The problem of updating existing objects is well known 
to the software support groups that install new releases of 
an operating system. They rely heavily on their 
understanding of the impact of system modifications and 
bring existing data up to date with procedures of their 
own ad hoc invention. 

Our work involves the automation of this updating 
process. Our basic approach is to apply a program 
generator to the delta of the data definitions (i.e., to the 
difference between the old and the new definitions), and 
let it produce the necessary programs and tables that can 
transform the existing data into the new formats. 
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Automation of this process has recently received some 
attention from the database world where this problem is 
particularly acute. Examples of projects addressing this 
issue are Orion [l] at MCC and Gemstone [3] at Servio 
Logic. We share with these projects our basic approach 
as to the kind of data transformations that can be 
automated. However, our approach goes much further 
than any we know of in allowing the database 
administrator to reorganize the data. Reorganization is 
accomplished by editing the transformation tables with 
the assistance of our interactive OTGen environment. We 
found that this capability lifts the transformation 
technique from an interesting toy to a tool of great 
practical use. 

Our experience in automatic database transformations 
goes back to 1986 when we developed TransformGen, a 
system for transforming tree-structured databases used in 
Gandalf programming environments [2,5]. The 
TransformGen environment is still heavily used for 
editing abstract syntax specifications used to generate 
programming environments. When these specifications 
are modified, TransformGen simultaneously builds 
transformation tables that are later used to transform 
existing trees to the new format. An important next step 
in the process is that the developer can edit transformation 
tables to effect richer transformations, such as movement 
of data from one node to another, creation of new nodes, 
and context-dependent transformations. We showed in 
[5] that this implementation covers the whole range of 

changes a developer might want to perform on a database, 
and we showed that these changes are composable. 
Changes produced automatically by TransformGen are 
composed automatically with those changes already 
encoded in the table. 

TransformGen has enabled us to upgrade our tools 
without hesitation. The ability to generate transformers 
easily has allowed us to develop and use early prototypes 
of systems without fear the data created will be unusable 
when the “real” system is released. This gradual 
evolution of a tool via repeated refinement can continue 
throughout a tool’s lifetime, allowing the experiences 
gained from use of an early version to be applied to the 
redesign and upgrade of later versions, without losing the 
work done with the earlier versions of the tool. 

replacing our tree-structured databases with more general 
object-oriented databases. However, current object- 
oriented databases lack the ability to redefine database 
structures and transform existing databases that we have 
been accustomed to with TransformGen. These 
considerations led to a redesign of TransformGen, 
resulting in our new system, called OTGen (Object 
Transformer Generator), that applies to object-oriented 
databases. 

This paper starts with a discussion of the kind of 
modifications that can be handled automatically in an 
object-oriented database. It proceeds with a discussion of 
the important extensions that make the transformation 
process very practical. 

2. Transforming Object-Oriented Databases 
Because of the richness of the data structures that can 

be stored in an object-oriented database, some changes 
are required to adapt our tree-oriented transformer into 
one suitable for object-oriented databases. In this section, 
we describe our basic data model, the ways in which class 
definitions can be modified, the invariants that the 
transformation process must maintain, and the default 
transformation rules associated with the various class 
definition changes. 

2.1. Basic Object-Oriented Data Model 
We assume a fairly standard basic data model. Classes 

encapsulate typed instance variables and methods. 

Objects are created dynamically. Each object has a type. 

The type is defined by a class. Classes are organized into 
a lattice. Each class has at least one superclass, except for 
the special Object class, which is the top of the lattice. A 
class inherits instance variables and methods from its 
superclasses. In addition, a class may override an 
inherited variable or method, by defining one locally with 
the same name. To be more formal, we describe our data 
model using the following invariants, which are very 
similar to those used by Orion [l]. 

Class Lattice Invariant. The subclass-superclass 
relationship forms a lattice, of which the pre-defined class 
Object is the root. 

Unique Name Invariant. Each instance variable and 
Recently, we started looking into the possibility of 
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method defined or inherited by a class must have a unique 
name. Each class must have a unique name. 

transformations. 

Full Inheritance Invariant. A class inherits the union 
of instance variables and methods from its superclasses, 
unless it defines an instance variable or method with the 
same name. If more than one superclass defines the same 
instance variable or method, the one inherited is the one 
defined by the superclass that appears earliest in the 
class’s superclass lisL2 

Type Compatibility Invariant. If a class t defines an 
instance varable with the same name as an instance 
variable it would otherwise inherit from superclass s, the 
type of r’s variable must be a subclass of the type of s’s 
variable. 

Typed Variable Invariant. The type of each instance 
variable must have a corresponding class in the class 
lattice. 

Numerous extensions can be made to this basic mode1 
without compromising the capabilities of OTGcn. 
Possible extensions include the addition of new type 
constructors (such as set and sequence), class variables, or 
components (to provide “part of” semantics). 

To transform a database defined with one class lattice 
into another database with a revised class lattice, we must 
solve several problems. First, we need to identify the 
kinds of changes that can be made to a class. Second, we 
need to define a set of default transformations indicating 
how existing objects should be transformed for each kind 
of class change. Third, we need to provide a mechanism 
by which a database administrator can override the default 
transformations, yet is prevented from violating the rules 
imposed by tt,e data model. The remainder of this paper 
describes how OTGcn solves thcsc problems. Briefly, 
OTGen assists the database administrator in 
understanding the effects of changes to class definitions, 
provides the default transformations, and provides the 
mechanism ‘10 allow overriding of the default 

?he. details of how conflicts due to multiple inheritance are 
resolved is really orthogonal to the point of this paper. Any 
resolution scheme would work equally well for the purposes of 
transformation, as long as it can be statically determined. For this 
reason, we have chosen the simplest possible resolution scheme to 
avoid the presenta:.ion of unnecessary details. 

2.2. Effects of Class Changes 
Inheritance is a basic property of object-oriented 

systems. A clear model of inheritance is important to 
understand the ramifications of changing a class. In a 
data model that does not support inheritance, any change 
to a type, affects only that type. In a data model with 
inheritance, however, changes to a single class might 
affect all subclasses of the changed class. 

Below we describe each kind of change that can be 
made to a class. For each change, the database 
administrator initiates the change by changing the class 
definition using OTGen. If the change would violate the 
class lattice invariant by adding cycles to the graph, the 
change is rejected because it would be impossible for 
OTGen to recompute inheritance. Otherwise, OTGen 
recomputes the inheritance of the affected classes. If any 
naming conflicts arise during this computation, they are 
brought to the database administrator’s attention. In 
addition, the database administrator is warned if the class 
lattice becomes disconnected, or if the type compatibility 
or typed variable invariants are violated. After being told 
of the conflicts and violations that would occur, the 
database administrator is given the option of committing 
the change or aborting it. Temporary violations of the 
class lattice, type compatibility, and typed variable 
invariants are allowed. However, before a database 
transformer can be generated, all invariants must hold. 

The changes supported by OTGen are: 

l Adding an instance variable 

l Deleting an instance variable 

l Renaming an instance variable 

l Changing the type of an instance variable 

l Adding a superclass to a class’s superclass list 

l Deleting a superclass from a class’s superclass list 

l Adding a new class 

l Deleting a class 

l Renaming a class 

For example, consider the effects of adding an instance 
variable, v3, to a class C. 
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class in the class lattice. Class C subclass of S 
vl: Tl 
v2: T2 

Before 
Class C subclass of S 

vl: TI 
v2: n 
v3: T3 

After 
Let’s consider each invariant in turn. 

Class Lattice Invariant. Adding an instance variable 
does not affect the class lattice invariant. 

Unique Name Invariant. The unique name invariant 
requires that there be no other instance variable with the 
same name in that class. Therefore, if the new variable 
had been named vl or v2, the unique name invariant 
would have been violated. If a variable with the name v3 
was inherited, it will no longer be inherited, because C’s 
definition of v3 will now override the inherited definition. 

Full Inheritance Invariant. To ensure that the full 
inheritance invariant still holds, we must examine each 
subclass of C. If a subclass defines an instance variable 
named v3 locally, it is not inherited. If it does not define 
v3, and does not already inherit v3, it should inherit C’s 
v3. If it already inherited v3 from C (because it was 
inherited by C), we need to inherit the new definition of 
v3. If v3 was inherited from a different superclass, we 
need to determine which superclass the subclass should 
inherit v3 from by examining the ordering of superclasses. 
In any event, if C’s definition of v3 is inherited by a 
subcIass, we need to repeat this process to propagate the 
inheritance to all of this subclass’s subclasses. 

Type Compatibility Invariant. After having re- 
established the full inheritance invariant, we can now 
determine if the type compatibility invariant is violated. 
If C’s v3 is overriding another definition of v3, we must 
check that the type of C’s v3 is a subclass of the v3 it is 
overriding. Also, if any subclasses of C fail to inherit v3 
because they define their own v3, we must ensure that the 
type of the subclass’s v3 is a subtype of C’s v3. 

Typed Variabie Invariant. To guarantee the typed 
variable invariant, we require ~3’s type to correspond to a 

A similar analysis must be made of each change listed 
above. 

2.3. Invariants on Transformation 
The purpose of the transformation process itself is to 

change a database from using one version of a set of class 
definitions to another. We require transformation to 
maintain the following three invariants: 

Completeness. When a new set of class definitions is 
released, each object must be transformed to its new 
definition before it can be manipulated further. This 
could be implemented using either lazy or eager 
transformation. 

Correctness. After transformation, each object must 
correspond to a definition of a class in the new set of 
definitions. In particular, the value for each instance 
variable must correspond to the type of the instance 
variable in the corresponding class definition. 

Sharing. If two instance variables, in the same or 
different objects, point to a single object before 
transformation, and if 

l neither instance variable is deleted, 

l neither instance variable’s default transformation is 
overridden, 

l and the transformed object is type correct for each 
instance variable, 

they will both point to the same object after 
transformation. 

2.4. Default Transformations 
With the above invariants in mind, we can now define 

default transformations for each kind of class change. 
Here we consider how a class change should affect 
existing objects in the database. We would like default 
transformations to affect the contents of the database as 
little as possible. If a class is not changed, the default 
transformation for objects of that class should simply 
copy the objects into the new database. If a class is 
changed, we want to preserve the maximum amount of 
information in the object, while changing it to conform to 
the new class definition. 
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For instance, let’s reconsider the example from Section 
2.2 of adding instance variable v3 to class C. We have 
two cases to consider, depending on whether or not C’s v3 
is overriding imother definition. First, if v3 is overriding 
another definition, then objects of class C already have a 
value for v3. If so, we recursively transform the value. If 
the type of the transformed value is the same or a subtype 
of C’s v3, we can assign it to v3 in the new database. If it 
is not type correct, we assign the special value VOID to v3 
and report an error. Similarly, if v3 is not an overriding 
definition, then there is no existing value to assign to v3. 
Instead we initialize it to VOID. 

Similar default transformations are defined by 
considering each kind of class change, and determining 
how to transform existing objects to conform to the new 
class definition while retaining the maximum amount of 
information. 

Up to this point our model of transformation is not 
significantly different from that provided by Orion. In 
some cases, w’e allow more general transformations. For 
instance, Orion only allows a variable type to be 
generalized, while we allow arbitrary changes. In the 
cases where we differ, our default transformation 
typically increases the likelihood that information will be 
lost. By restricting variable type changes to 
generalizations, Orion assures that the variable’s value 
will still be l.ype correct in the new database, and so 
information will not be lost. 

Why then should we allow arbitrary changes, and risk 
the loss of information from our database? The answer is 
that the normal evolution of programs requires not only 
changes to code, but also arbitrary changes to class 
definitions. To support general changes to class 
definitions, it is necessary to support database 
reorganization. The approach taken by other researchers 
(e.g., [l, 3.41) is that all desired database changes can be 
addressed by making changes local to individual classes. 
This assumes that the overall design of the database is 
correct, but that some information should be either added 
to or deleted from individual classes. It does not allow for 
an overall recLesign and reorganization of the database, 
When enhancing a program that uses non-persistent data, 
a programmca can make arbitrary changes to all 
datatypes, procedures, and their relationships to each 
other to provide improved functionality, better 

performance, etc. We believe the same freedom should 
be afforded to programmers using databases. 

3. Supporting Database Reorganization 
The default transformations described above address 

only local changes to class definitions, not database 
reorganization. Our unique contribution is that in 
addition to using OTGen’s default transformations, we 
allow the database administrator to override these default 
transformations in such a manner that arbitrary 
reorganization is possible. This section describes how 
this is done. 

To provide general database reorganization in a 
database transformer, the database administrator must 
describe the relationships among objects in the old 
version of the database and those in the new. OTGen 
provides a tabular notation in which this is done. The 
table has one entry for each class defined in the old 
version of the database. It indicates how instances of that 
class should be transformed. The table is initialized by 
OTGen. When a class definition is changed, OTGen 
describes the effect by changing the table to reflect the 
default transformation provided by the change. The 
database administrator can then change the table to 
override the default transformation. 

For example, suppose we have a class C with two 
instance variables vl and v2. (The transformation table 
lists both variables that are locally defined, and those that 
are inherited.) Initially, the entry for C is: 

Class C: 
new self: C 

VI : Transform vl 
v2 : Transform v2 

This is the simple copy transformation. Every instance 
of C in the old database is replaced with an instance of C 
in the new database. The values for the variables are the 
result of recursively transforming the values of the 
variables from the old database. 

Suppose now a new variable v3 is added to class C. 
The default transformation changes the table to: 

Class C: 
new self: C 

VI : Transform vl 
v2 : Transform v2 
v3 : VOID 
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If the database administrator wishes to initialize the 
new variable, he can change the entry. For instance, to 
initialize it to 0, he would change the entry to: 

Class C: 
new self: C 

VI : Transform vl 
v2: Transform v2 
v3: 0 

The interesting issues to address for database 
reorganization are the types of changes that can be 
expressed using this notation, and how OTGen can ensure 
that the invariants presented in Section 2.3 are not 
violated. 

3.1. Expressiveness of Transformation Tables 
The transformation tables defined by OTGen’s default 

transformations use the following mapping operations to 
transform an object in an old database to one in a new 
database: 

l Creation of an object in the new database with the 
same class as the object in the old database. 

l Replacement of an object in the old database with 
VOID in the new database. This is used only when 
the old object’s class has been deleted. 

l Recursive transformation of an old instance 
variable’s value into a value for the same instance 
variable in the new database. 

l Initialization of an instance variable in the new 
database to VOID. 

All of the default transformations can be expressed using 
the above four operations of the transformation tables. 

To support database reorganization, OTGen provides 
additional operations. They are: 

l Initialization of variables 

l Context-dependent changes 

l Movement of information from one object to 
another 

l Creation of new objects 

l Sharing of information among objects 

We have already seen how variables can be initialized 
in transformation tables in the introduction to this section 
where v3 was initialized to 0. 

3.1.1. Context-Dependent Changes 
Context-dependent transformations are supported by 

allowing boolean expressions to be attached to each 
portion of a transformation table entry. For instance, 
suppose we add a new class D, which is a subclass of C 
defined as follows: 

Class D subclass of C is 
v2: T4 

Now, suppose we want to transform those instances of 
C whose value for v2 is in T4 to be instances of D. We 
could change the transformation table for C to be: 

Class C: 
if TypeCheck (~2, T4) 

new self: D 
VI : Transform vl 
v2 : Transform v2 

else 
new self: C 

vl : Transform VI 
v2 : Transform v2 

Here TypeCheck is a function provided by OTGen 
which is given an object and a class name. It returns true 
if the type of the object is the same or a subclass of the 
given class.3 

3.1.2. Moving Information 

Suppose we want to move a variable from one class to 
another, with the effect that the variable’s value will move 
from an object of the first class to an object of the second 
class. For instance, suppose we have two classes Outer 
and Inner, and change them by moving instance variable 
i2 from Inner to Outer, as shown below: 

‘In reality, we want to type check the transformed value of v2. 
so the first argument to TypeCheck should be Transform(v2), 
which first recursively transforms v2 before performing the type 
check. The algorithm described in Section 3.2.3, which ensures 
the sharing invariant is maintained, would also ensure that v2 
would be transformed only once. 
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Class Outer subclass 
oi': Tl 
02 * I . Inner 

Class Inner subclass 
il: T2 
i2: T3 

Before 

Class Outer subclass 
oi : Tl 
oil : Inner 
i2: T3 

Class Inner subclass 
il: T2 

After 

The effect; that we want 
demonstrated by Figure 3-1. 

of SI is 

of S2 is 

of SI is 

of S2 is 

on the database is 

Before 

After 

Figure 3-l: Moving Objects in a Database 

The transformation table entries generated by OTGen’s 
default transformation treat this as two changes: the 
addition of a variable to Outer, and the deletion of a 
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variable from Inner. The resulting table entries are: 

Class Outer: 
new self: Outer 

01 : Transform 01 
02 : Transform 02 
i2 : VOID 

Class Inner 
new self: Inner 

il : Transform il 

Using these tables, the value of Inner’s i2 is lost. To 
retain the value in Outer’s i2 instance variable, the 
database administrator must override the default 
transformation by changing the entry for Outer to: 

Class Outer: 
new self: Outer 

01 : Transform 01 
02 : Transform 02 
i2 : Transform o2.i2 

Any expression that evaluates to an object in the old 
database may be used in a transform statement. In the 
above example we dereferenced the instance variables 
directly. Function calls are also acceptable. 

3.1.3. Creating New Objects 
Another desirable reorganization is to add objects that 

did not exist in the original database. For instance, 
suppose we want to modify objects of class C so that vl is 
an object of a new class Wrapper whose first field is the 
old value for vl. The definitions of C and Wrapper are as 
follows: 

Class C subclass of S is 
vl : Tl 
v2: T2 

Before 

Class C subclass of S is 
vl : Wrapper 
v2: 7-2 

Class Wrapper subclass of T is 
wl: Tl 

After 

OTGen sees this change simply as a type change of an 
instance variable. The default transformation for a type 
change is a recursive transformation, where the 
assignment will fail if the transformed variable value is 
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not type correct for the variable. To get the effect that the 
database administrator wants, he must change the 
transformation table entry to: 

Class C: 
new self: C 

VI : Create WRAPPER 
wl : Transform vl 

v2 : Transform v2 

Figure 3-2 shows the effect this transformation has on an 
object of class C. 

Before 

After 

Figure 3-2: Creating Objects During Transformation 

3.1.4. Sharing Information 
The sharing invariant stipulates that sharing must be 

maintained across transformation, However, suppose the 
desired database reorganization is to introduce sharing. 
This can be done in one of two ways. If the object to be 
shared existed in the old database, simple transform 
statements, such as those used above, identifying the 
object to be shared will introduce the sharing. However, 
if the object to be shared is being created in the new 
database, sharing must be done explicitly using a shared 
expression. 

For instance, suppose we have two classes Cl and C2. 
Some instances of each of these classes share values via 
variables vl and v2, respectively. Suppose we want to 
wrap this shared value in a new class, called Wrapper, 
and share this value instead. An example of this 
transformation is shown in Figure 3-3. 

74 

Before 

After 

Figure 3-3: Introducing Sharing 
During Transformation 

This sharing is achieved as follows: 

Class Cl 
new self: Cl 

VI : Share NewWrap 

Class C2 
new self: C2 

v2 : Share NewWrap 

(VI) 

(IQ) 

Shared expression NewWrap(oldobj) 
Create WRAPPER 

wl : Transform oldobj 
A shared expression is a parameterized variable 

transformation, A shared expression is evaluated once for 
each distinct set of argument values it is instantiated with. 
After it is evaluated, the result is cached in a table indexed 
by the argument values. Then, if the shared expression is 
instantiated a second time with the same set of argument 
values, the cached value is returned. In this way, the 
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sharing can be moved from one object to another as in the 
example above. 

Any object from the old database can be passed to a 
shared expression. The shared expression may require 
any number of arguments, including zero. If zero 
arguments are used, then all references to the shared 
expression will result in sharing of a single object. Also, 
it is not necessary for a shared expression to use the 
arguments in evaluating the expression. They might just 
be used to control sharing by being used as indices into 
the cached table. 

3.2. Guaranteeing Transformation Invariants 
In this section, we describe how OTGen preserves the 

transformation invariants in the presence of arbitrary 
database reorganization. 

3.2.1. Complelteness 
In OTGen we collect together class definition changes 

before updating database objects, rather than creating a 
new database version for each change. A database 

administrator performs a collection of related changes, 
affecting both class definitions and methods, and releases 
them as a unit. When changes are released, it is necessary 
to restart all database servers, but it is not necessary to 

transform the database immediately. Instead, we support 
lazy transformations, where a collection of connected 
objects is transformed when it is first accessed with the 
new version of the database server. In this way the 

downtime of the database is very short, with short delays 
the first time each object from an old version is accessed. 

Each collect:ion of connected objects has a root through 
which it can be externally accessed. Each root has a 
version number indicating the version of the database 
server that last accessed it. If the current database server 

is a newer version, all objects reachable from the root are 
transformed. lf the objects are more than one version 
out-of-date, a series of transformers will be called, each 
updating the objects one version. By transforming all 
connected objects when the root is accessed, we can 
assure the completeness invariant, 

3.2.2. Correctness 
The correctness invariant of transformation is 

guaranteed by the transformation algorithm itself. All 
operations provided by transformation can be broken 
down into two basic components: creation of new 
objects, and assignment of values to instance variables. 
When an object is created, it is created using the latest 
version. Thus, new objects are type correct. Before a 
value is assigned to a variable (for instance during 
initialization, or recursive transformation of a variable), 
the value is tested for type correctness. If the value is not 
type correct, VOID is assigned, and an error message is 
produced. 

OTGen provides some assistance to the database 
administrator during modification of the transformation 
tables, in order to increase the likelihood that the resulting 
transformations will be type correct. Whenever the 
database administrator requests the construction of a new 
object, OTGen provides a template listing the variables of 
the new object’s class. The table is not complete until 
each variable transformation is specified. It is not 
possible for the database administrator to delete variable 
entries within a construction. In addition, when a variable 
transformation specifies that a new object should be 
constructed, OTGen can determine whether that 
construction will be type correct by comparing the new 
object’s class to the variable’s type. If the object’s class 
is not the same or a subclass of the variable’s type, the 
construction can be flagged as an error immediately, 
rather than waiting until transformation time. 

3.2.3. Sharing 
The sharing invariant is guaranteed by the 

transformation algorithm by associating unique identifiers 
(UIDs) with each object in the old database. When an 
object is recursively transformed, it maintains the same 
UID in the new version of the database. Each object 
created during transformation gets a new UID. Before 
recursively transforming a variable’s value, the 
transformer looks at the UID of the value in the old 
database, and sees if an object exists in the new database 
with that UID. If so, the old object has already been 
transformed; and the corresponding new object can 
simply be assigned to the variable (assuming it is type 
correct). 
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Sharing introduced by shared expressions works in a 
similar manner. The tables caching the results of shared 
expressions are indexed by UIDs of the arguments, and 
return a UID for an object in the new database if a match 
is found. For instance, reconsider the example from 
Section 3.1.4. Suppose the shaded object has UID 3. 
When the Cl object is transformed, it requests a shared 
value described by NewWrup(3). Suppose NewWrap(3) 
has not yet been evaluated. The lookup in the cached 
table will fail. We therefore create a new object of type 
Wrapper. Suppose its UID is 4. We then make the 
following entry in the NewWrap table: 

Y 
Result 

4 

Now when the C2 object is transformed, it requests the 
shared value described by NewWrap(3). This time the 
lookup in the cached table succeeds, and the new shared 
object is assigned to variable v2. 

4. Conclusions 
The ability to change the format and reorganize the 

contents of a database are imperative if the database is to 
keep pace with the demands of its user community. In 
this paper, we have described the design of OTGen, a tool 
to aid the database administrator in the development of 
transformers to facilitate such updating of databases. The 
functionality achieved in this way goes beyond that 
provided by Orion [ 11, Gemstone [3], and Skarra and 
Zdonik’s work [4]. While they allow simple changes to 
be performed to individual schema, we support not only 
more complex operations, but also support database 
reorganization, and arbitrarily complex transformations 
on the contents of individual objects as well as the 
database as a whole. We believe the evolution supported 
by OTGen is very important, since it allows databases to 
evolve as users’ experiences create new demands on the 
database, rather than remain more or less committed to 
the original database design conceived probably with 
good intentions, but undoubtedly with lack of experience. 
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