
Online, Non-blocking Relational Schema Changes

Jørgen Løland and Svein-Olaf Hvasshovd

Dept. of Computer Science, NTNU, Trondheim, Norway
{jorgen.loland, svein-olaf.hvasshovd}@idi.ntnu.no

Abstract. A database schema should be able to evolve to reflect changes to the
universe it represents. In existing systems, user transactions get blocked during
complex schema transformations. Blocking user transactions is not an option in
systems with very high availability requirements, like operational telecom data-
bases. A non-blocking transformation framework is therefore needed.

A method for performing non-blocking full outer join and split transforma-
tions, suitable for highly available databases, is presented in this paper. Only the
log is used for change propagation, and this makes the method easy to integrate
into existing DBMSs. Because the involved tables are not locked, the transforma-
tion may run as a low priority background process. As a result, the transformation
has little impact on concurrent user transactions.

1 Introduction

Database schemas are typically designed to model the world as understood at design
time. At this point in time, the schema design may be excellent for the intended usage.
Many applications change over time, however. In a study of seven applications, Marche
[18] reports of significant changes to relational database schemas over time. Only one of
the studied schemas had less than 50% of their attributes changed. Furthermore, 16%
of all changes were due to changes in the degree of normalization. The evolution of
the schemas continued after the development period had ended. A similar study of a
health management system [25] came to the same conclusion. This indicates the need
for non-trivial schema transformations.

A schema transformation can easily be made if the involved tables can be locked
while the transformation is performed. Most databases can do this by issuing an insert
into select command, where the select statement can be any valid SQL select statement,
e.g. join or union.

Databases with very high availability requirements should not be unavailable for
long periods of time. For tables with large amounts of data, the insert into select method
could easily take tens of minutes or more. Such databases, often found in e.g. the tele-
com industry, would clearly benefit from a mechanism to change the schema without
being blocked.

In this paper we suggest schema transformation methods for the full outer join (FOJ)
and split relational operators. The methods are non-blocking and are based on log redo.
FOJ and split are considered important operators by the authors because they are used
to change the normalization degree of the schema.

Y. Ioannidis et al. (Eds.): EDBT 2006, LNCS 3896, pp. 405–422, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

406 J. Løland and S.-O. Hvasshovd

We assume that both redo and undo log records are produced, and that undo opera-
tions produce Compensating Log Records (CLR) [6] as described in the ARIES method
[20]. It is also assumed that a log sequence number (LSN) is associated with each record
[12].

The paper is organized as follows: Section 2 describes other methods and research
areas related to non-blocking transformations. An overview of our transformation frame-
work is presented in 3. Details for how to apply the framework to FOJ and split
transformations are presented in Sections 4 and 5, respectively. The framework has
been implemented in a prototype and test results from this prototype are discussed in
Section 6. Finally, in Section 7, we conclude and suggest further work.

2 Related Work

Little research has been published on non-blocking schema transformations in rela-
tional databases. Our method does, however, use techniques from both fuzzy copy and
materialized views (MVs), as described in the following sections.

2.1 Ronströms’ Method

Ronström [23] presents a framework that uses both a reorganizer and triggers within
user transactions to perform schema transformations. Sagas [7] are used to organize
the transformation. New tables, constraints, indices, and triggers are first added to the
schema. The reorganizer then scans the old tables, while triggers make sure that up-
dates to the old tables are executed immediately to the transformed table. When the
scan is complete, the old and transformed tables are consistent due to the triggered
updates.

No implementation or test results have been published on Ronströms method. Trig-
gers are, however, used in a similar way to keep immediate Materialized Views (MVs)
up to date. The extra workload incurred with using triggers to update MVs is sig-
nificant, and deferred MVs are therefore recommended whenever possible (see e.g.
[5, 16]).

With our method, there is no need for the transformed table to be consistent with
the old table before the very end of the transformation. Updates can therefore be prop-
agated to the transformed tables during low workloads.We also expect our method to
be much more efficient in a distributed DBMS where user transactions have to wait
for triggers to access other nodes. Finally, our method does not require the use of
Sagas.

2.2 Fuzzy Copy

Our transformation framework has to make a copy of the source tables without setting
locks to satisfy the non-blocking requirement. To do this, we use a modified fuzzy copy
technique.

Hvasshovd et al. [4, 13] presents fuzzy copy as a way to copy a table to another node
in a cluster without blocking. A begin-fuzzy mark is first written to the log. The records
in the source table are then read without setting locks, resulting in a fuzzy copy where

Online, Non-blocking Relational Schema Changes 407

some of the updates that were made during the scan may not be reflected. The log is
then redone to the copy in a similar way as ARIES [20] to make it up to date. LSNs on
records ensure that the log propagation is idempotent. When all log records have been
redone to the copy in ascending order, it is in the same state as the source table. An
end-fuzzy mark is then written to the log, and the copy process is complete. The method
requires CLR to be used for undo processing.

2.3 Materialized Views

Materialized views (MVs) store the result of a query. They are used to speed up query
processing and must therefore be consistent with the source tables. Methods to prop-
agate changes from the source tables to an MV is an area of extensive research (e.g.
[3, 5, 8, 9, 10, 11, 16, 21, 24, 27]). All these propagation methods require the MVs to be
consistent with a previous state of the source tables. This incurs that an MV must ini-
tially be consistent, i.e. populated with the result of a blocking read.

At first glance, MVs have much in common with our schema transformation frame-
work. Blocking read operations are, however, not allowed in the transformation
framework, so fuzzy copies of the source tables are used to create the initial images of
transformed tables. Since a fuzzy copy is not consistent with the source table, the MV
update methods are not applicable. Further more, schema transformations only require
the transformed tables to converge to the source tables (i.e. to be consistent when all
operations are propagated [27]), whereas MVs require consistency for all intermediate
states as well.

2.4 Existing Transformations

Existing database systems, including IBM DB2 v8 [14, 15], Microsoft SQL Server 2000
[19], MySQL 4.0 [26] and Oracle 9i [1], offer some simple transformation functional-
ity. These include removal of and adding one or more attributes to a table, renaming
attributes and the like. Removal of an attribute can be performed by changing the table
description only, thus leaving the physical records unchanged for an unspecified period
of time. Complex tranformations like join are not supported.

3 General Framework

The goal of the transformation framework is to provide methods that transform the
schema without blocking other transactions. The transformations are based on relational
operators for two reasons: the effect of the transformation is easy to understand for the
database administrator (DBA) that initiates it, and it enables us to make use of existing,
optimized code (like join algorithms) for parts of the process.

The framework operates in four steps that are common to both the FOJ and split
transformations. These steps are briefly explained below.

3.1 Preparation Step

Before the transformation starts, the new tables that are to be used after the transfor-
mation have to be created. They may include any subset of attributes from the source

408 J. Løland and S.-O. Hvasshovd

tables, but must include at least one candidate key from each. The reason for this is that
the transformation method needs a way to uniquely identify which records are affected
by an operation on a source table record. In the case that the included candidate key
attributes are not wanted in the transformed tables, they must be deleted after the FOJ
or split transformation completes.

Constraints, both new and from the source tables, may be added to the new tables.
This should, however, be done with great care since constraint violations may force the
transformation to abort.

Any indices that are needed on the new tables should also be created before the trans-
formation starts. These indices will be up to date when the transformation is
complete.

3.2 Initial Population Step

The newly created transformed tables have to be populated with records from the source
tables. The first step of populating the new table is to write a fuzzy mark in the log. This
log record must include the transaction identifiers of all transactions that are active on
the source tables, i.e. a subset of the active transaction table. The source tables are
then read fuzzily, returning an inconsistent result since locks are ignored [13]. Once
the source tables have been read, the transformation operator is applied and the result,
called the initial image, is inserted into the transformed tables.

3.3 Log Propagation

When the initial image(s) have been inserted into the transformed table(s), another fuzzy
mark is written to the log. This log record marks the end of the current log propagation
cycle and the beginning of the next one.

Log records of operations that may not be reflected in the transformed tables are now
inspected. In the first iteration, the oldest log record that may contain such an operation
is the oldest log record of any transaction that was active when the first fuzzy mark was
written. Later log propagation iterations only have to read the log after the previous
fuzzy mark.

Propagation rules for update, insert and delete of records in a source table differ for
each transformation type, and are explained in detail in Sections 4 and 5.

To speed up the synchronization step, locks are maintained on records in the trans-
formed tables during the entire transformation. The locks are likely to conflict during the
transformation. Since they are only needed when user transactions access both source
and transformed tables, i.e. during synchronization, they are ignored for now.

The synchronization step should not be started if a significant portion of the log re-
mains to be propagated because it involves latching of tables. Each log propagation it-
eration therefore ends with an analysis of the remaining work. Based on the analysis,
either another log propagation iteration or the synchronization step is started. The analy-
sis could be based on, e.g. the time used to complete the current iteration, a count of the
remaining log records to be propagated, or an estimated remaining propagation time.

If more log records are produced than the propagator is able to process, the synchro-
nization is never started. If this is the case, the transformation should either be aborted
or get higher priority.

Online, Non-blocking Relational Schema Changes 409

The transformed tables of both FOJ and split of consistent data are self-maintainable
[22], i.e does not need more information than the log and the transformed tables them-
selves. This makes them highly suitable for distributed databases as well.

3.4 Synchronization

When synchronization is initiated, the state of the transformed tables should be very
close to the state of the source tables. This is because the source tables have to be latched
during one final log propagation iteration that makes the transformed table consistent
with the source tables.

We suggest three ways to synchronize the transformed tables to the source tables
and thereby complete the transformation process. These are called blocking commit,
non-blocking abort and non-blocking commit synchronization.

Blocking commit synchronization starts by blocking all new transactions that try to
access any of the tables involved in the transformation. Transactions that already have
locks on the source tables are then allowed to complete before a final log propagation
iteration is performed. The transformed tables are now consistent with the source tables.
New transactions are then given access to the new tables only. This method does not
follow the non-blocking requirement.

The non-blocking abort strategy begins by placing table latches on the source tables
for the duration of one final log propagation. Latching these tables effectively pauses
ongoing transactions that work on them, but since there are only a few log records to
propagate, the pause should be very brief (less than 1 ms in our current implementa-
tion). Once the log propagation is complete, the transformed tables are in the same state
as the source tables. Recall from Section 3.3 that locks have been maintained on the
transformed tables since the first fuzzy log mark. Records that are locked in the source
tables are therefore also locked in the transformed tables. New transactions are now
allowed to access the unlocked parts of the transformed table while transactions that
were active on the source tables are forced to abort. The log propagation continues as a
background process as long as old transactions are alive. Source table locks held in the
transformed tables are released as soon as the propagator has processed the abort log
record of the lock owner transaction.

Non-blocking commit synchronization works much like the previous strategy in that
latches are placed on the source tables during one final log propagation. But in contrast to
the previous strategy, transactions on the source tables are allowed to continue processing
once the tables have been synchronized. This is called a soft transformation in [23]. The
drawback of this method is that as long as any of the old transactions are alive, all locks
on source tables have to be acquired on the corresponding records in the transformed
tables. However, nonconflicting transactions are not aborted due to the transformation.

Finally, the source tables are dropped from the schema, and the transformation is
complete.

4 Full Outer Join Transformations

The method for FOJ transforms two source tables, R and S, into one table T by ap-
plying the FOJ operator. An example transformation is shown in Figure 1. The general

410 J. Løland and S.-O. Hvasshovd

Fig. 1. Example full outer join transformation

transformation steps explained in Section 3 are discussed for FOJ below. For readability
it is assumed that the join attribute of table S (attribute c in Figure 1) is unique, i.e. there
is a one-to-many relation between the source tables. A solution for the many-to-many
case is sketched in Section 4.2.

4.1 Preparation and Initial Population Steps

In the preparation step, the transformed table T is created. As a minimum, T must
contain an identifying attribute set from both tables in addition to the join attributes.
Constraints may be added, but unique constraints on attributes in S should be avoided
since a record in S is likely to occur multiple times in T.

Without lack of generality, we assume that the key attributes of R are also the key
attributes of T. As long as there is a unique way to identify the T records to update, the
method will work without this assumption.

To improve transformation performance, an index should be created on the join at-
tributes of T. If the join attributes of S are not the same attributes as the primary key, an
index should also be created on the primary key attributes of S in the transformed table.
These indexes provide fast lookup on all T−records that are affected by an operation
on an S−record.

During the initial population step, the source tables are first read fuzzily. The FOJ
of the results are then inserted into T . Special R− and S− NULL records, denoted
rnull and snull, are joined with records that otherwise would not have a join match, as
illustrated in Figure 1.

4.2 Log Propagation

The fuzzy copy method of Hvasshovd et al. [13] use a record state identifier, typically
the Log Sequence Number (LSN), to make logged operations idempotent. Logged op-
erations are applied to records only if the LSN of the log record is greater than the LSN
of the record.

In our framework, there are no valid state identifiers for the records in the newly
created T . This is because records in T consist of two records, one from each source
table. The records from the source tables have an LSN each, while the resulting record
may only have one LSN. The LSN of a record in T is therefore not a correct state
identifier.

Online, Non-blocking Relational Schema Changes 411

The rest of this section describes how to apply the log to the initial image, i.e. the
join of the fuzzy read source tables, without using state identifiers. It works under the
assumption that all write operations on the source tables use exclusive locks; i.e. delta
updates [17] are not allowed.

When fuzzy read starts, the two source tables are in state 0, denoted R0 and S0. After
the initial image has been inserted, T is in an inconsistent state i, denoted Ti, where all
records are in the same or newer state than they had in R0 and S0. All operations on
the source tables that happened after state 0 are now applied sequentially to T . At some
future point in time, during synchronization, all operations in the log have been redone
to T , making T up to date with R and S. The states of the tables at that point in time is
called c, denoted Rc, Sc and Tc. c is an action consistent state since both R and S are
latched for the final synchronization.

At any point in time during log propagation, R and S have the same or newer state
than T for all records. This is a consequence of the fact that all operations reflected in
T are simply redoes of operations on R and S. In addition, the current state t (denoted
Rt and St) of the source tables precedes the state c for all records. Thus, 0 ≤ i ≤ t ≤ c,
where a ≤ b means that b contains at least all operations reflected in a, but may also
reflect newer operations.

A Basic Property. Without valid state identifiers, the log propagator does not know if
a log record is already reflected in T . The rules are idempotent, i.e., a log record may
be redone multiple times. The rules can not handle lost updates, but as shown in the
following theorem lost updates never appear:

Theorem 1. (Records in Ti are up to date)
Assume that the log propagator is currently processing a log record describing an op-
eration to a source table record. The appropriate records in the transformed tables are
then either in the same state as the source table record was in when the operation was
originally executed, or in a newer state.

Assuming that the concurrency controller enforces serializability, the record must have
been up to date when the operation was originally executed in the source table [2]. The
original sequence of operations on that record is in the same order in the log because
the log is sequential and the operations are serializable.

A fuzzy read of a table catches all updates that happened before the read started.
As a consequence of the fact that fuzzy read ignores locks, it may also include some
updates that happened during the read.

Since all updates that happened before the fuzzy read started are guaranteed to be
reflected in the initial image, a lost update must have been introduced after that point in
the log. The log propagator starts with the first log record of any active transaction at
the time of the first fuzzy mark. This is the first operation that may not be reflected in
the initial image of the transformed table.

Assume that the log propagation rules are correct, i.e. all records in the transformed
table that should be affected by a logged operation on a source table record, are updated
correctly by the propagator. Then, since no lost updates existed in the initial image and
because the log is propagated sequentially, no lost updates can exist after the first log

412 J. Løland and S.-O. Hvasshovd

record has been applied. By induction, the transformed table has no lost updates when
the current log record is encountered.

In other words: as long as the log is applied in sequential order to the initial fuzzy
copy, all records in Ti are in the same or a newer state than the source table records
were in when the operation was originally executed.

Insert Operations. The log propagator may encounter log records describing insert,
update and delete operations on records in the base tables. In what follows, rules for
how to propagate insert log records are described.

The notation ry
x means a record from table R where y is the primary key value and

x is the join attribute value. By tyx, we refer to the record in T resulting from the join
of ry

x and sx
x (abbreviated sx). As previously assumed, the join attribute of S is unique.

Records with no join match in the opposite source table are joined with the R− or S−
null record (rnull and snull), as described in Section 4.1. A and B are the sets of all
primary key and join attribute values allowed, respectively.

Rule 1 (Insert ry
x into R)

Check if a record with the key y, tyx, exists in Ti. If so, ignore the log record. Otherwise,
use the join attribute index of T to find a record with the join attribute value x. There
are three possible results: If tnull

x is found, it is updated with the attribute values of ry
x

to form tyx. If tvx is found (v ∈ A, v �= y), a new tyx−record is inserted after joining ry
x

with the sx−part of tvx. If no record with this join attribute exists in Ti, tynull is inserted
after joining ry

x with snull .

Theorem 1 states that all records in Ti are up to date with or in a newer state than the
log record. For this reason, if tyx is found, the log record is already reflected in Ti and
can safely be ignored. If this was not the case, two records with the same key y existed
in R at the same time.

The other cases are straightforward; by searching the index, the log propagator finds
all information necessary to insert tyx.

Even if tyw (w ∈ B) is not found in Ti, it is possible that Ti has a newer state for
tyw than that of the log. This can only be the case if tyw is later deleted, leaving no trace
of its existence. If so, the insertion of tyx will be corrected when the log record of the
delete is encountered later.

Rule 2 (Insert sx into S)
Use the S−key index to find all records with the join attribute value x in Ti. If any of
these records are joined with snull, they are updated with the new sx values. T -records
joined with an S−record other than snull are not updated. Otherwise, if no records
have x as the join attribute, tnull

x is inserted after joining rnull with sx.

sx−records found in Ti are not modified since Theorem 1 guarantees that they are up to
date. For both insert rules, FOJ requires that records with no join match are still present
in the result.

Delete Operations

Rule 3 (Delete ry from R)
Check if ty exists in Ti, and ignore the log record if not. If tynull is found, it is simply

Online, Non-blocking Relational Schema Changes 413

deleted. If tyx is found, the index is used to see if tyx is the only record in Ti containing
sx. If so, tnull

x is inserted after joining sx with tnull. tyx is then deleted.

Rule 4 (Delete sx from S)
Use the join attribute index to identify all records with x as join attribute value. If tnull

x

is found, it is deleted. All other records tvx (v ∈ A) that are found are joined with snull.

These rules are simply delete operations that guarantee the continued existence of their
joined counterparts.

Update Operations. Insert and delete log records contain all the information needed to
propagate the log. For insert log records, this information includes all attribute values.
For delete log records, the primary key of the record to delete is all the information
needed.

Update log records are less informative since they typically contain the primary key
and updated attribute values only. The information not found in the log record is, how-
ever, available in Ti as described next.

Rule 5 (Update join attribute of ry
x to z)

The record with key attribute value y, tyw (w ∈ B), is first read from Ti. If tyw is not
found in Ti, or if w �= x, the log record is ignored. Assuming that tyx is found, the join
attribute index of Ti is searched to find if sx is represented in at least one more record.
If not, tnull

x is inserted by joining rnull with sx.
Next, the join attribute index is searched for a record with z as the join attribute. If

tnull
z is found, it is updated with the attribute values of ry

z to form tyz . If tvz (v ∈ A, v �=
y) is found, a new tyz−record is inserted after joining ry

z with the sz− part of tvz . If no
record with this join attribute exists in Ti, tynull is inserted after joining ry

z with snull .

Again, Theorem 1 guarantees that the record tyw found in Ti is at least up to date with
the log. If w �= x, an operation representing a newer state than that of the log record is
already reflected in tyw. Applying the logged update would not lead to inconsistency in
the future state Tc since the log record leading to that newer state will be found in the
log before c is reached. Doing so does, however, incur extra work.

Even though the join attribute is guaranteed to be unique in S, it is not necessarily
the primary key. It may therefore be updated:

Rule 6 (Update join attribute of sx to z)
All records in Ti that have x as the join attribute value, are first identified. If no record
is found, the log record is ignored. If tnull

x is found, it is deleted. If found, all records tvx
(v ∈ A) in Ti are joined with snull to form tvnull.

Next, all records in Ti that have the new join attribute value, z, are identified. If tvnull

is found, it is updated with sz to form tvz . Any tvz record already joined with an sz record
stays unmodified. If no other T−record is joined with sz, rnull is joined with sz to form
tnull
z .

This rule operates like delete of sx followed by insert of sz . Like in propagation rule 5,
sx is used to extract the attribute values of sz since the log does not include this infor-
mation.

414 J. Løland and S.-O. Hvasshovd

Rule 7 (Update other attribute of ry or sx)
If an update of ry is described, the record ty with the same primary key is updated with
the new attribute values. Similarly, if sx is updated, the index of Ti is used to identify
all records tvx (v ∈ A) with x as the join attribute value. All records found are updated
as described in the log. If no records are found, the log record is ignored.

The rule should be intuitive: all records in Ti that partly consist of the updated record
must be updated with the new values. If no records match the key, the log record can
safely be ignored since Theorem 1 guarantees that Ti has a newer state for that record
when this happens.

Sketch of Log Propagation for Many-to-Many Relationships. The described log
propagation rules work under the assumption that the join attribute of S is unique. In
this section, we sketch what needs to be done when this assumption does not hold.

In many-to-many relationships, each R−record can be joined with multiple S−rec-
ords. Because of this, the primary key of R cannot be used as the primary key in T
alone. Instead, one or more identifying attributes from both source tables, e.g. their
primary keys, should be used together to form the primary key of T . In what follows,
tyx
z means a record in Ti that consists of a record ry

z joined on attribute value z with sx
z .

The one-to-many rules for operations on S−records does not need modification to
work in many-to-many transformations. Operations on R−records, however, need to be
modified so that all records in Ti that consist of the described R−part are affected. An
index should be created to speed up the search for these.

For update and deletion of a record ry
z , the modified rules simply has to identify

all T−records consisting of ry
z and apply the operation described for the one-to-many

case. For every deletion of a T−record, the existence of other S−records with the same
primary key has to be checked to ensure full outer join.

When a log record describes an insert of ry
z , a tyv

z −record (v ∈ A) has to be inserted
for every matching record sv

x. When the join attribute of an ry
z is updated, all existing

T−records that the ry
z contributed to must be deleted. The continued existence of the

deleted records‘ S−counterparts must be enshured as well. New join-matches are then
inserted into T .

4.3 Synchronization

Synchronization of FOJ transformations are performed as described in Section 3.4.
Lock propagation between the old and new tables must, however, be described in more
detail for the non-blocking strategies.

Since locks from two source tables R and S are transferred to one new table T, the
source table locks may conflict in T . This is, however, only a consequence of the lock
granularity being record as opposed to attribute. Clearly, operations on R and S do not
modify the same attributes. New lock compatibility rules for T are needed to avoid the
conflict. Note that this is only needed for the non-blocking strategies.

Lock Compatibility. A transaction being aborted cannot aquire new locks, so the non-
blocking abort strategy only needs lock releases to be transferred from the source tables

Online, Non-blocking Relational Schema Changes 415

R.r

 y

 y

 y

 y

 y

 n

S.r

 y

 y

 y

 y

 y

 n

T.r

 y

 y

 y

 n

 n

 n

R.w

 y

 y

 n

 y

 y

 n

S.w

 y

 y

 n

 y

 y

 n

T.w

 n

 n

 n

 n

 n

 n

R.r

S.r

T.r

R.w

S.w

T.w

Fig. 2. Lock compatibility matrix for locks in
T for the non-blocking strategies.

Fig. 3. Example Split transformation

to T . When a transaction aborted log record is encountered in the log, the propagator
releases the locks of that transaction in T.

With non-blocking commit, transactions are active on both the source tables and the
transformed table at the same time. All transactions may acquire new locks, but to
prevent inconsistencies, locks must be transferred both from T to R and S and vice
versa. If a transaction cannot get a lock on all implicated records in all tables, it is not
allowed to go forward with the operation.

Because locks from two non-conflicting operations in R and S could conflict in T ,
new lock compatibility rules have been developed for locks that are transferred from
the source tables to T . As can be seen in Figure 2, the new rules ensure that locks from
operations executed by transactions on the source tables do not conflict in T , whereas
they conflict with operations executed by transactions in T. The compatibility matrix
can easily be extended to multigranularity locking [2].

As for the non-blocking abort case, locks are released when the propagator encoun-
ters a transaction aborted or commited log record.

5 Split Transformation

The (vertical) split transformation takes one source table, T, and transforms it into
two tables R and S. This is the reverse of the FOJ transformation described in the
previous section, as illustrated by Figure 3. It follows the four steps described in
Section 3.

When a table T is split, multiple records may have equal S−parts. These records
should be represented by only one record in S. Further more, a record in S should only
be deleted when there are no more records in T with that S−part. To be able to decide
if this is the case, a counter, similar to that of Gupta et al. [10], is associated with each
S record. When an S record is first inserted, it has a counter of 1. After that, the counter
is increased every time a record with the same primary key is inserted, and decreased
every time one is deleted. If the counter of a record reaches zero, the record is removed
from S.

The notation is the same as in Section 4: each record tyx in T is split into two records,
ry
x and sx where y ∈ A and x ∈ B. A and B are the sets of valid primary key

values in R and valid values for the attribute used to split, respectively. As for join,

416 J. Løland and S.-O. Hvasshovd

the states Rc and Sc is reached at some future point in time when the log propaga-
tor has applied the entire log to the transformed tables and the synchronization step is
complete.

For readability, we assume that the split attribute is also the primary key in S, al-
though this is not required for the method to work. The method does, however, require
that the split attribute is a candidate key in S, i.e. can be used to identify S−records.

5.1 Data Consistency

Before the split method is described in detail, we show that inconsistencies that make
it impossible to process the transformation may be found in T . Consider the following
example:

Example 1. A company maintains a database of customer contact information, as shown
in the table:

Customer ID Name Postal Code City
001 Peter 7050 Trondheim
002 Mark 5020 Bergen
003 Gary 0050 Oslo
.
134 Jen 7050 Trnodheim

Customer ID is used as the primary key of this table. There is also a functional depen-
dency in that postal code determines city.

Notice that there is an inconsistency between customers 001 and 134 since the postal
codes are the same, whereas the city names differ. Nothing prevents such inconsisten-
cies from occuring in this table, and the schema transformation framework has no means
to decide whether “Trondheim” or “Trnodheim” is correct if we were to split this table
on postal code. �

If inconsistencies like the one in Example 1 exist in T, we are not able to perform a split
transformation without fixing them.

The log propagation rules are divided into two parts. Section 5.2 describes rules
working under the assumption that inconsistencies does not appear in T . Section 5.3
describes additional rules needed when such assumptions are not made.

5.2 Split of Consistent Data

In this scenario, it is assumed that the DBMS applies measures that guarantee consis-
tency. The method provides an easy-to-understand basis for the scenario where incon-
sistencies may occur.

During the preparation and initial population steps, S and R are simply created and
populated as described in Section 3.

An alternative strategy is to create and populate the S−table only. Since all attributes
needed in R are already present in T, T can be renamed to R during synchronization if
attributes that are not part of R are removed first. By utilizing this, the transformation

Online, Non-blocking Relational Schema Changes 417

would require less space, and updates that would not affect attributes in S could be
ignored. Unfortunately, the log propagator needs information on both the LSN and the
split attribute value of each R−record in the current intermediate state. A temporary
table P would be needed to keep track of this information during propagation.

Although P may potentially be much smaller than R, this section describes how
the method works when R is created as a separate table. Only minor adjustments are
needed for the temporary table method to work.

The synchronization step works as described in Section 3.4.

Insert
After the initial images have been inserted into R and S, log propagation can start.
When a log record for an insert into T is found in the log, R and S are updated using
the following rule:

Rule 8 (Insert tyx into T) The existence of a record with the primary key value y, ry ,
in Ri is first checked. There are two scenarios: if ry is found, the log record is ignored.
If ry is not found, the R−part of tyx, ry

x, is inserted into Ri.
Assuming that ry did not previously exist in Ri, the S−part of tyx, sx, is now inserted

into Si. First, the existence of a record with the same primary key x is checked. If found,
the counter of that record is increased by one. The LSN is then updated if the LSN of
the log record is higher than that of sx. If sx does not exist in Si, sx is inserted with a
counter of one and the LSN of the log record.

By Theorem 1, if a record with the key y is found in Ri, the log record is guaranteed
to be reflected in the transformed tables. Both insertion into Ri and Si are therefore
ignored. With guaranteed consistency, the inserted sx record is either equal to an ex-
isting record in Si, or the transaction that generated this log record also updated all
other T−records contributing to sx consistently. Changing nothing but the counter and
possibly the LSN is therefore correct.

Delete

Rule 9 (Delete ty from T) If no record with the primary key value y, ry , exists in R, or
if one exists that has a higher LSN than that of the log record, the log record is ignored.

If a record ry
v (v ∈ B) exists and has a lower LSN, it is deleted from Ri. The counter

of sv is then decreased, and the LSN is changed if the log record has a higher LSN. If
the counter reaches zero, the record is completely removed from S.

Using the LSN of the delete operation appears erroneous since it represents the state
of a record that does not exist in T anymore. This is not a problem for the transforma-
tion framework because the log is propagated sequentially. Changing the LSN of the
S−record has therefore no consequence on whether future log records will we applied
to the table.

We could have chosen not to update the LSN. The same problem would, however,
occur in related situations: Assume that the records tac and tbc are the only records in T
that contribute to the record sc. Also assume that tac is updated and later deleted. Even
if the LSN of the S−record is not changed by the delete, it still has the LSN value of
the update of the record tac that no longer exists.

418 J. Løland and S.-O. Hvasshovd

Update
Updating the R−part of a record in T is straightforward:

Rule 10 (Update ty: the R−part) The existence of a record with the same primary key
y, ry, in Ri is first checked. If ry is not found, or if it has a higher LSN than the logged
operation, the log record is ignored.

Assuming that ry is found and that it has an LSN lower than the log record, the
record and its LSN is simply updated. The LSN is changed even if no attribute values in
ry
x are updated.

There are two cases of updates propagated to Si that must be considered: the split
attribute is either updated or not. Note that updates are only applied to Si if ry was
updated in Rule 10. The reason for this is that the LSN values in Ri uniquely identifies
which operations in T are already reflected on existing records in the transformed tables.
If a logged operation is reflected in Ri, it must also be reflected in Si.

Rule 11 (Update tyx: the S−part) The record sx with the split attribute value x, read
from ry

x, is first identified. If the LSN of that record is lower than the log record’s, the
update is propagated as follows: assuming that only non-split attributes are updated,
sx is simply updated with the new attribute values. Otherwise, if the split attribute is
updated, the update is treated as a deletion of sx, followed by the insertion of sv (v
being the new split attribute). Following the argument for insert of S−records, only the
counter and possibly the LSN of the record with the new key is updated.

5.3 Split of Possibly Inconsistent Data

If consistency is not guaranteed by the DBMS, the transformation framework has to
make sure that errors like the one in Example 1 are corrected. Performing this check
comes with an overhead to the log propagator. The overhead is, however, not present
within user transactions since the log propagation, and therefore the overhead, runs as a
low priority background process.

A flag is associated with each record in S. Two values are allowed: Consistent (C)
and Unknown (U). A C flag is used when an S−record is known to be consistent, and
the U flag is used when an S−record is known to be inconsistent or has an unknown
consistency state.

Every S−record that was consistent in the fuzzy read gets a C−flag. All other records
get a U−flag. During log propagation, inserting a record sx that is not equal to an existing
record with the same split value changes a C−flag into U. The same happens when an
update is applied to an S−record with a counter greater than 1. A U−flag is changed to
C only if the operation updates all non-key attributes of a record with a counter of 1.

A “concistency checker” (CC) is run regularly. A U−flagged record, say sv, is first
chosen. The CC then writes a “Begin CC on v” record to the log. All records in T con-
tributing to sv are then read without using locks. If they are consistent in T, a “CC: v is
ok” record is written to the log together with the correct image of sv. The log propagator
keeps track of the records being checked: if sv is not changed in any way between the
two log records, sv is guaranteed to be consistent and is changed accordingly. Note that
all records in S should have a C−flag before synchronization is started. Because T has
to be read during CC, the split of tables with inconsistent data is not self-maintainable.

Online, Non-blocking Relational Schema Changes 419

Workload
5060708090100

R
el

at
iv

e
T

hr
ou

gh
pu

t

0.94

0.95

0.96

0.97

0.98

0.99

1.00

Throughput for
user transactions

(a) Interference on throughput by initial
population with 20% updates on T

Workload
405060708090100

R
el

at
iv

e
R

es
po

ns
e

T
im

e

1.00

1.05

1.10

1.15

1.20

1.25

1.30
Response time for

user transactions

(b) Interference on resp. time by initial
population with 20% updates on T

Workload
5060708090100

R
el

at
iv

e
T

hr
ou

gh
pu

t

0.88

0.90

0.92

0.94

0.96

0.98

80 % updates on T
20 % updates on T

(c) Interference on throughput by log prop-
agation for two update scenarios

(d) Time and interference vs transforma-
tion priority at 75% workload

Fig. 4. Test results of Split Transformation

6 Prototype Implementation

A prototype that performs the described non-blocking transformations has been imple-
mented in Java. It is simplified in that it keeps all data in main memory. This is realistic
for databases requiring very fast response time (e.g. [12]), but not for most traditional
databases. The costs of the changes are still relevant because we measure relative per-
formance, i.e. performance before the change vs. performance during the change.

Four client nodes, one server node and one admin node, all running Linux kernel
2.6, have been used. Each node had 2 AMD Athlon 1600+ CPUs (the prototype has
only used one on each node) and 1GB RAM. The nodes were connected with a 100
Mb/s ethernet.

Hundreds of tests have been executed to find the cost of the described schema changes.
The cost is measured in reduction in throughput and increased response time of normal
transactions run both alone and concurrently with the schema changes.

Each transaction updated 10 records using record locks. 100% workload was defined
as the number of concurrent transactions that produced the highest possible throughput.
Lower workloads were achieved by reducing the number of concurrent transactions.

The tests for the FOJ transformation were done with 50000 records in R and 20000
records in S. For the split transformation, 50000 records were inserted into T . These
were split into approximately 50000 records in R and 20000 records in S.

420 J. Løland and S.-O. Hvasshovd

Some important test results for split transformations are shown in Figure 4. As can
be seen in Figures 4(a) and 4(b), the interference incured on user transactions heav-
ily depends on the workload on the server, ranging from approximately 2% to 6% for
throughput and 5% to 30% for response time. In these plots, 20% of all updates are
on records in the source table. Little variation is observed for throughput tests while
the response time tends to vary more with increasing server workload. Tests on concis-
tency checking during split transformations and initial population of FOJ transforma-
tions show very similar results to those presented in Figures 4(a) and 4(b).

For log propagation to finish, more log records have to be propagated than gener-
ated. Because of this, the propagator needs a higher priority if many log records are
generated than it needs if few are generated. Figure 4(c) illustrates this point. Two
plots are shown: the lower plot is for tests where 20% of all generated updates are
on records in T. The upper plot is for 80% updates on T, thus 4 times more relevant
log records are generated during the same time interval. The operations that are not
on T update records in a dummy table to keep the workload constant. The priority of
the transformation could be kept lower in the 20% case, resulting in less interference.
Again, the same effect is observed on log propagation for FOJ on both throughput and
response time.

As discussed, a reduction in the priority of the transformation process reduces inter-
ference. Unfortunately, this also increases the completion time of the transformation.
Figure 4(d) shows how both the time needed to propagate log and the interference to
throughput responds to the same changes in priority. The plot is for log propagation of
split transformations with 75% workload on the server. FOJ tests show similar results.
The transformation will never finish if the priority is set too low, in this case at about
0.5%. Clearly, the priority of the transformation must be chosen with care.

Transformations should for obvious reasons be executed when the workload on the
server is as low as possible. If executed during off-hours, say at 50% workload, the ob-
served interference should be acceptable on both throughput (< 2%) and response time
(< 9%). During normal usage, say at 70% workload, the interference on throughput is
still acceptable at approximately 2.5%. The interference to response time may, how-
ever, be too high. The cost should be carefully considered before the transformation is
started. If too much interference is observed, the transformation should be aborted im-
mediately. Aborting the transformation simply means that log propagation is stopped,
and that the transformed tables are deleted.

Transactions that operate on the source tables could potentially be long lived. The
completion time of the synchronization step is therefore much more predictable if the
non-blocking abort strategy is used than if non-blocking commit is used. Synchroniza-
tion takes less than 1 ms in the prototype tests with non-blocking abort. Interference
plots for this step is therefore of little interest.

7 Conclusion and Further Work

A method to perform non-blocking full outer join (FOJ) and split schema transfor-
mations has been developed for relational databases. A prototype able to perform the
transformations with approximately 2% interference on throughput and 5% on response

Online, Non-blocking Relational Schema Changes 421

time has also been developed. The results also show that interference increases with in-
creasing workload. Because of this, database schemas should be transformed during
periods with as low workload as possible.

FOJ and split are considered the most important nontrivial operators in a transforma-
tion framework because the normalization degree can be changed using these. Methods
for other relational operators should, however, also be developed.

Even though it is not discussed in this paper, the split framework is able to split one
source table into a many-to-many relashionship by repeating splits.

Non-blocking population of tables may have other important usages than schema
changes. Using the technique to create other types of derrived tables like Materialized
Views is an obvious example.

References

1. R. Baylis and K. Rich. Oracle9i Database Administrator’s Guide Release 2 (9.2). 2002.
2. P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Recovery in

Database Systems. Addison-Weslay Publishing Company, 1st edition, 1987.
3. J. A. Blakeley, P.-A. Larson, and F. W. Tompa. Efficiently updating materialized views. In

Proc of the 1986 ACM SIGMOD Intl. Conference on Management of Data, pages 61–71,
1986.

4. S. E. Bratsberg, S.-O. Hvasshovd, and Ø. Torbjørnsen. Parallel solutions in ClustRa. IEEE
Data Eng. Bull., 20(2):13–20, 1997.

5. L. S. Colby, T. Griffin, L. Libkin, I. S. Mumick, and H. Trickey. Algorithms for deferred
view maintenance. In Proc of the 1996 ACM SIGMOD Intl. Conference on Management of
Data, pages 469–480. ACM Press, 1996.

6. R. A. Crus. Data Recovery in IBM Database 2. IBM Systems Journal, 23(2):178, 1984.
7. H. Garcia-Molina and K. Salem. Sagas. In Proc of the 1987 ACM SIGMOD Intl. Conference

on Management of Data, pages 249–259. ACM Press, 1987.
8. T. Griffin and B. Kumar. Algebraic change propagation for semijoin and outerjoin queries.

SIGMOD Rec., 27(3):22–27, 1998.
9. A. Gupta, D. Katiyar, and I. S. Mumick. Counting solutions to the view maintenance prob-

lem. In Workshop on Deductive Databases, JICSLP, pages 185–194, 1992.
10. A. Gupta, I. S. Mumick, and V. S. Subrahmanian. Maintaining views incrementally. In Proc

of the 1993 ACM SIGMOD Intl. conference on Management of data, pages 157–166. ACM
Press, 1993.

11. H. Gupta and I. S. Mumick. Incremental maintenance of aggregate and outerjoin expressions.
2005.

12. S.-O. Hvasshovd. Recovery in Parallel Database Systems. Verlag Vieweg, 2nd edition, 1999.
13. S.-O. Hvasshovd, T. Sæter, Ø. Torbjørnsen, P. Moe, and O. Risnes. A continously available

and highly scalable transaction server: Design experience from the HypRa project. In Proc
of the 4th International Workshop on High Performance Transaction Systems, 1991.

14. IBM. IBM DB2 Universial Database Administration Guide: Implementation, version 8.
IBM.

15. IBM. IBM DB2 Universial Database SQL Reference, Volume 2. IBM, 8 edition.
16. A. Kawaguchi, D. F. Lieuwen, I. S. Mumick, D. Quass, and K. A. Ross. Concurrency control

theory for deferred materialized views. In Proc of the International Conference on Database
Theory, pages 306–320, 1997.

17. H. F. Korth. Locking primitives in a database system. Journal of the ACM, 30(1):55–79,
1983.

422 J. Løland and S.-O. Hvasshovd

18. S. Marche. Measuring the stability of data. European Journal of Information Systems,
2(1):37–47, 1993.

19. Microsoft Corporation. Microsoft sql server 2000 books online, version 8.00.002 (sp3),
published 17.01.2003.

20. C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and P. Schwarz. Aries: a transaction recovery
method supporting fine- granularity locking and partial rollbacks using write-ahead logging.
ACM Transactions on Database Systems, 17(1):94–162, 1992.

21. X. Qian and G. Wiederhold. Incremental recomputation of active relational expressions.
Knowledge and Data Engineering, 3(3):337–341, 1991.

22. D. Quass, A. Gupta, I. S. Mumick, and J. Widom. Making views self-maintainable for
data warehousing. In Proc of the 4th International Conference on Parallel and Distributed
Information Systems, 1996, USA, pages 158–169. IEEE Computer Society, 1996.

23. M. Ronström. On-line schema update for a telecom database. Proc of the 16th International
Conference on Data Engineering, 2000.

24. O. Shmueli and A. Itai. Maintenance of views. In Proc of the 1984 ACM SIGMOD Intl.
Conference on Management of Data, pages 240–255. ACM Press, 1984.

25. D. Sjøberg. Quantifying schema evolution. Information and Software Technology, 35(1):35–
44, 1993.

26. M. Widenius and D. Axmark. MySQL Reference Manual. O’Reilly & Associates Inc, 1
edition, 2002.

27. Y. Zhuge, H. Garcia-Molina, J. Hammer, and J. Widom. View maintenance in a warehousing
environment. In Proc of the 1995 ACM SIGMOD Intl. conference on Management of data,
pages 316–327. ACM Press, 1995.

	Introduction
	Related Work
	Ronströms' Method
	Fuzzy Copy
	Materialized Views
	Existing Transformations

	General Framework
	Preparation Step
	Initial Population Step
	Log Propagation
	Synchronization

	Full Outer Join Transformations
	Preparation and Initial Population Steps
	Log Propagation
	Synchronization

	Split Transformation
	Data Consistency
	Split of Consistent Data
	Split of Possibly Inconsistent Data

	Prototype Implementation
	Conclusion and Further Work
	Bibliography

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

