Metamodel Matching: Experiments and Comparison

Denivaldo Lopes
Federal University of Maranhao (UFMA)
Sdo Luis, Brazil
Email: dlopes@dee.ufma.br

Abstract— Recently, Model Driven Engineering (MDE) has
been proposed for supporting the development, maintenance and
evolution of software systems. Model Driven Architecture (MDA),
Software Factories and Eclipse Modeling Framework (EMF) are
representative MDE approaches. These MDE approaches have
some concepts and techniques in common such as modeling,
metamodels and model transformation. However, other concepts
and techniques should be envisaged such as metamodel matching.
In this paper, we discuss some issues and provide some insights
into metamodel matching. For this purpose, we use UML and
the C# platform to illustrate our approach and to evaluate our
Mapping Tool for MDE (MT4MDE) and Semi-Automatic Match-
ing Tool for MDE (SAMT4MDE). Afterwards, comparisons with
other tools are presented.

I. INTRODUCTION

In the literature, some issues around Model Driven Engi-
neering (MDE) have been studied and subject to intensive re-
search, e.g. modeling languages [1], transformation languages
[2][3], mapping between metamodels [4] and methodologies
[5]. Another important issue for MDE is metamodel matching.
However, there has been little research in metamodel matching.
In the database domain, the corresponding term for metamodel
matching is schema matching. For a long time, schema match-
ing has been considered as an important issue for schema
management [6][7][8]. Thus, we have some lessons to learn
from database domain in order to improve an MDE approach.

In [4] [9], an approach separating mapping specification
from transformation definition was introduced and imple-
mented in a tool called Mapping Modeling Tool (MMT). In
this approach, a mapping specification specifies the relation-
ships between metamodels, while transformation definition
contains the operational description of the transformation
between models.

However, the manual creation of mapping specification is
a fastidious and error-prone task. Generally, this task im-
plies a search of equivalent or similar elements between
two metamodels. In the database domain, this task is called
schema matching [6]. In the MDE context, this can be called
(meta)model matching. In [10], we present an algorithm for
(meta)model matching, a tool for mapping modeling called
MT4MDE, and another tool for semi-automatic metamodel
matching called SAMT4MDE.

In this paper, we provide some insights into the metamodel
matching, an illustrative example of the utilization of our
approach and a tool for matching the UML metamodel and
C# metamodel, a comparison of our tools (MT4MDE and

Slimane Hammoudi
ESEO
Angers, France
Email: shammoudi @eseo.fr

José de Souza and Alan Bontempo
Federal University of Maranhdao (UFMA)
Sdo Luis, Brazil
Email: {jgeraldo, abontempo} @dee.ufma.br

SAMT4MDE) with other tools and approaches in the database
domain.

This paper is organized in the following way. In section II,
we discuss schema matching in the database domain. In section
III, we present our approach to take into account metamodel
matching. In section IV, we illustrate the application of our
approach and tool for mapping UML to C#. In section V,
we present a comparison between our approach and other
approaches, providing their benefits and limitations. In section
VI, we conclude this paper, presenting the future directions of
our research.

II. APPROACHES FOR SCHEMA MATCHING

In general, metamodels are created with a specific purpose’
and by different groups of persons. Each purpose is determined
in function of the domain, and each group of persons models
a system in different ways. In the modeling task, each group
abstracts, classifies and generalizes the reality based on its own
knowledge. Consequently, different groups working in differ-
ent contexts may create metamodels with different structures
and terminologies [6], causing the semantic distance between
these metamodels [11] [12].

A model can be transformed into another model, only if the
metamodel of the former can be mapped into the metamodel
of the latter. In order to map metamodels, the equivalent or
similar elements must be identified, and the semantic distance
should be minimized. The process of searching equivalent or
similar elements is called schema matching [6]. And “the no-
tion of semantic distance was developed to cover the notion of
how close is close enough” [12]. A dual for semantic distance
is schema similarity that is defined as “the ratio between the
number of matching elements and the number of all elements
from both input schemas” [8] (SS = NT*:', where SS is the
schema similarity, N, is the number of matching elements
and N is the number of all elements). Semantic distance can
also be quantified as a numeral value (like schema similarity)
or as a subset of a metamodel [4]. In fact, “one of the primary
purposes of automation in MDA is to bridge the semantic gap
between domain concepts and implementation technology by
explicitly modeling both domain and technology choices in
frameworks and then exploiting the knowledge built into a
particular application framework” [11]. This semantic gap

'UML is a general-purpose modeling language, but it provides profiles as
extension mechanism in order to be adapted to a domain.

IFI'.F

COMPUTER
SOCIETY

Proceedings of the International Conference
on Software Engineering Advances (ICSEA'06)
0-7695-2703-5/06 $20.00 © 2006 IEEE
0-7695-2703-5/06/$20.00 (c) IEEE

is necessary, because it allows separate different abstraction
levels, and it is inherent when two different groups are creating
metamodels from different view points, e.g. metamodels used
to model specific platforms. However, we need to graduality
fill this gap in the transformation process inserting additional
information.

In the literature, several schema matching approaches have
been proposed [13]. Each schema matching approach has its
own characteristics that were grouped in a taxonomy [6]. In
addition, each approach have been evaluated through match
quality measures [8].

In [6], the following characteristics are organized in a
taxonomy:

e Individual matcher approaches use only one matching

criterion. They are classified as:

— schema-only based, when they consider only meta-
models. They can be distinguished in:

x Element level, the mapping is realized for each in-
dividual element. It can be classified as linguistic
and constraint-based. Linguistic is based on name
similarity, description, global namespace, while
constraint-based is based on type similarity and
key properties.

* Structure-level, the mapping is realized taking
into consideration the combinations of elements
related in a structure. It is only classified as
constraint-based that uses graph matching.

— instance/contents-based, when they consider only
instances (or models). It can also be classified as
element-level. This last can be classified as linguistic
and constraint-based. In this case, linguistic is based
on word frequencies and key terms present in the
element instances, while constraint-based is based
on value pattern and ranges of the element instances.

o Combining matchers use multiple matching criteria. They

can be classified as:

— Hybrid, they combine multiple approaches to create
only one matcher in order to produce a result, i.e.
the creation of mapping between the elements.

— Composite, they combine many results obtained from
different approaches in order to produce the mapping
between elements. This combination of results can be
manual or automatic.

Real matches Derivecj}natohes

Fig. 1. Real matches and derived matches [8]

In Figure 1 [8], the interrelationships between metamodels
are organized in sets that can be manually or automatically
created. A set created manually can contain all needed matches

(i.e. matched elements), while a set created automatically can
contain valid and non valid matches. The former set is called
real matches, and the latter is called derived matches. In
addition, other subsets are defined as follows [8]:

o A (false negatives) are matches needed but not automat-
ically identified.

o B (true positives) are matches which are needed and
have also been correctly matched by the automatic match
operation.

o C (false positives) are matches falsely proposed by the
automatic match operation.

¢ D (true negatives) are false matches which have also been
correctly discarded by the automatic match operation.

These sets can be used to create match quality measures as
follows [8]:

Precision = % reflects the share of real correspon-
dences among aJl found ones.

Recall = % specifies the share of real correspondences
that are found.

F-Measure = 2« BrecisionsRecall o, oqents the harmonic

Precision+Recall
mean of Precision and Recall, i.e. o« = 0.5.
_ _ 1 i -
Overall = Recall * (2 Precision quantifies the post

match effort needed for adding false negatives and removing
false positives.

These taxonomies and match quality measures are used
hereafter to evaluate and compare our approach and tool
MT4MDE and SAMT4MDE with other approaches and tools
(see section V).

III. METAMODEL MATCHING

In the model transformation process [4], the creation of a
transformation definition is preceded by the action of finding
correspondences, i.e. metamodel matching. However, there
has been little research in metamodel matching until now.
In our research, we have applied some lessons from sev-
eral researches into the database domain that have explored
schema matching [6] [7] [14]. Schema matching and Meta-
model matching have some similarities. For example, intra-
relationships and cross-kind-relationship implications have
been applied to Schema matching and can also be applied
to metamodel matching [10].

Metamodel matching results in a mapping model, and a
mapping model describes how two metamodels are related to
each other. According to model management algebra [15], a
mapping is generated using an operator called match which
takes two models? as input and returns a mapping between
them. We have modified this operator as follows: given M,,
My and Cyy, a1, /M., the operator match is formally defined
as Match' (Mg, My) = Crr,— i, /Me.

In order to find correspondent elements, we use cross-kind-
relationship implications [16]. In addition, we propose other
cross-kind-relationship implication as follows:

1) if C(p,q) and I(r,q) then C(p,r).

2In our approach, we prefer to employ the term metamodel in the definition
of the term mapping.

IFI'.F

COMPUTER
SOCIETY

Proceedings of the International Conference
on Software Engineering Advances (ICSEA'06)
0-7695-2703-5/06 $20.00 © 2006 IEEE
0-7695-2703-5/06/$20.00 (c) IEEE

original UML metamodel
_ <<enumeration>>
Classifier [@— Feature inhertance [+name :String <
o o +oyte
" lnested h
Classifier_Parameter .. . renar
Classifier - Suter +bol
Classifier_ ReturnTs +type |7
assifier_RetumType svisibilty - Visibilty — +short
+ype Tattached +int
Field_Classifier +type] @) ner [VPE Class
] pworm Clasifer Atvibtte | f\icapact: Boolean +float
BehavioralFeature — oot o | satiiute ©isSealod : Boolean +double
lember .. -
— - b pro— 0."T4implementedby +long
Class +visibility : Visibility ember_Attibute Class.Interface +String
+isStatic : Boolean 9 +content : String o] +implements +void
ZF‘ +attachedm +attrijute property_Classifier
1 0. ’ ‘ 0. “pmpeﬂy +[+implementsitf
Operation frfield 0. [P PModifier
Field Method Property Struct_Interface ot
(a) +isReadOnly : Boolean | |+body : String +isAbstract : Boolean 0.7] +implementedbyStruct |
,, +isVolatile : Boolean +isAbstract : Boolean | [+isSealed : Boolean Struct
SURT +isSealed : Boolean | [+isOverride : Boolean
simplificd UML metamodel ! !
+isOverride : Boolean | | +isNew : Boolean <<enumeration>>
+isNew : Boolean +owner Visibility
; +owner +owner +public
Class @ — Operation Remmtmm S et dsypamme‘er Property_Accessor -
N . +protecte
retumTy +return 0.*| +parameters _ 1.*| +accessors PrimitiveType -
4'_ RetumnType Parameter Accessor - +internal
b 0. +type : SmpleType | |, oio
”+pmodiﬁer PMoifier || +isSet : Boolean
0.+ }parameter |+body : String
T

Fig. 2. Applying cross-kind-relationship implications in UML

This seems contradictory, because r Is-a g, but q Is-not-a
r. However, we understand that Is-a is a special relationship
between r and g. So, if r exists is because a ¢ exists, then r
is linked to the existence of ¢. So, we can manipulate and
replace ¢ by r. Figure 2 was extracted from [1] and it is
manipulated to illustrate the use of this cross-kind-relationship
implication. Figure 2b, Class contains Operation. In fact, a
Class inherits from a Classifier that has a Feature, and
an Operation inherits from a BehavioralFeature, and a
BehavioralFeature inherits from a Feature (see Figure
2a). The manipulation to obtain the Figure 2b from Figure 2a
is presented as follows:

o If an Operation, BehavioralFeature and Feature
exist such that [(Operation,BehavioralFeature) and
I(BehavioralFeature, Feature), then I(Operation, Feature).

o If a Class and a Classifier exist such that
I(Class,Classifier), then Class also represents Classifier,
and we can simplify by presenting only Class.

o If C(Class,Feature) and I(Operation,Feature),
C(Class,Operation).

then

IV. AN ILLUSTRATIVE EXAMPLE: MATCHING THE UML
METAMODEL AND THE C# METAMODEL

In order to validate our approach, we have developed
MT4MDE (Mapping Tool for Model-Driven Engineering) and
SAMTAMDE (Semi-Automatic Matching Tool for Model-
Driven Engineering). These tools are implemented as plug-ins
for the environment Eclipse [17]. In this section, we illustrate
the semi-automatic creation of a mapping model between the
fragments of UML metamodel and a C# metamodel.

The UML metamodel [1] is well known and no more
commentaries are needed. In this experiment, we use the
C# metamodel proposed in [9] [18]. Figure 3 presents the
fragments of the C# metamodel used in this experiment.

In Figure 3, we call attention to Attribute. That is a
declarative information that can be attached to programs’ en-
tities (such as Class and Methods) and retrieved at runtime.

NameSpace_Element
+elements “+nameSpace

Fig. 3. A C# metamodel fragment [9] [18]

All attribute classes derive from the System.Attribute base
class provided by the .NET Framework. Although Attribute
belongs to the C# API (i.e. model or M layer), we have used

it as

part of the C# metamodel, in order to manipulate it in

the metamodel layer (i.e. M2 layer). C# Attribute does not

have

the same meaning of UML Attribute. In UML, an

attribute is a feature within a classifier that describes a range
of values whose type is a classifier, while, in C#, an attribute
is used to include additional information to a classifier (such
as Class and Methods).

The steps of utilization of our tools can be enumerated as
follows:

1y
2)

3)

4)

5)

6)

7

8)

A user creates an empty project in Eclipse.

The user copies the UML metamodel and C# metamodel
into this project.

The user uses the MTAMDE wizard for creating a map-
ping model which conforms to our mapping metamodel
[10]. This mapping model is initially empty.

In MT4MDE, the user invokes SAMT4MDE to find
possible correspondent elements, i.e. derived matches.
After that SAMTA4MDE returns the possible correspon-
dent elements, the user can validate or refuse them.
Figure 4 illustrates the execution of SAMT4MDE that
found the possible correspondences between the UML
metamodel and C# metamodel.

SAMTA4MDE creates automatically the mapping model
based on the validated correspondences (see Figure 5).
The user can complete the mapping model. The user
creates the other correspondences that were not found
by SAMT4MDE.

Once the mapping model is completed, our tool can
calculate the match quality measures. The number of
real matches is obtained from the final mapping model,
the number of false positives is obtained from the
number of refused correspondences, and the number of
true positives is obtained from the number of validated

IFI'.F

COMPUTER
SOCIETY

Proceedings of the International Conference
on Software Engineering Advances (ICSEA'06)
0-7695-2703-5/06 $20.00 © 2006 IEEE
0-7695-2703-5/06/$20.00 (c) IEEE

L. [o/x]

.- B-O-rQ- | BHEEG- | = (= & 1ava 2
IEEE Left metamadel B & - % Mapping madel E@ i UL T R gia Right metamadel BEE -
= # UmML A = '@ Mapping Model {v, 0.3} = f# CSHARP A
E Element =187 umMLzCsHARP +- [Element

+1- H ModelElement -3 Element e LML + [_Mame3Space - Element

+- H Mamespace -> ModelElemnent - CSHARP + - Classifier -= Element

+- H Feature -» ModelElement + -2 SimpleType

+- B GeneralizableElement - > ModelElement +- 2 prodifier

+- H StructuralFeature - > Feature + -2 visibility

+- attribute - > StructuralFeature = CSHARP +- [Class - Classifisr

+- H BehavioralFeature - > Feature + 08 attribuke <-> Atbribuke + - Interface -= Classifier

+- H ©Operation -> BehavioralFeature +-[] 8 attribute <-> Field + - Struct -» Classifier

+- B Method - = BehavioralFeature +- [0 8 Method <-> Methad +- [Attribute <> Class

+- [Parameter - = MadelElement +-[] 8 Parameter <-> Parameter +- [Member -> Element

+- H Classifier - > GeneralizableElement 08 Interface <-> Interface + - Field -= Member

+- H Generalization - Relationship +-[] 8 Primitive <> PrimitiveType +- H Method - = Member

+- [Association - > Relationship, Generaliza = RN el +-E Property - Member

+- B AssociationEnd - > ModelElement +- 5 PrimitiveType -» Classifier

[Relationship - > ModelElement +- [Acessor - > Element

+- B Menendency -= Relatinnshin . +- [Parameter - = Element

4 | ¥ il Pl DabenTwns o~ Elamank Nt
Selected Object: LML

Fig. 4. The possible correspondences found by SAMT4MDE

correspondences.

9) Finally, the user uses the MT4AMDE for creating auto-
matically the transformation definition in a transforma-
tion language such as Atlas Transformation Language
(ATL) [2].

The evaluation of our approach and tool through this illus-
trative example resulted in the following values 3:

o Schema similarity
S5 =0.74

o Match quality measures
Precision = 0.71
Recall = 0.68
F-Measure = 0.69
Overall = 0.40

In the ideal case, Precision=Recall=1.0, i.e. when the num-
ber of false negatives and false positives are both zero. In our
experimentation, Precision = 0.71 demonstrates that 71% of
derived matches were correctly determined using our schema
matching algorithm. And Recall = 0.68 demonstrates that
68% of real matches were automatically found.

However, our tool has limitations. For example, we call at-
tention to Figure 4 that shows our tool SAMT4MDE proposing
that Attribute from UML may correspond to Attribute
from C#. This mistake can be justified because a UML
Attribute has a relationship* with a UML Classifier, and
a C# Attribute has a relationship with a C# Classifier.
In addition, the name of both elements are equal, but the
meanings are different. In other words, both have similar
structures, and a preliminary linguistic analysis determines

3We used a fragment of the UML and Java metamodel in this experimen-
tation.
“#After the application of cross-kind-relationships implications

that they are equal. In future research, we aim to avoid
mistakes like this improving our tool with semantic analysis
and machine learning.

We have used our tools in some use cases, e.g., creating a
mapping model between UML and Java [10], between UML
and WSDL, and between EDOC and WSDL.

V. RELATED WORK AND DISCUSSION

In the database domain, some approaches and tools support
the creation and edition of mappings between schemas such
as Clio [7][19], Type Evolution Software Systems (Tess) [20]
and Rimu Visual Mapper (RVM) [21].

Clio, Tess and RVM have three basic characteristics. First,
the searching for correspondences between schemas in order to
create a mapping. Second, a translating program is generated
from this mapping. Third, this translating program is applied
to transform a document in another document.

MT4MDE and SAMT4MDE constitute a set of tools provid-
ing the same characteristics as Clio, Tess and RVM. We sepa-
rate the mapping specification from transformation definition.
A mapping specification can be semi-automatically generated.
Afterwards, a transformation definition is generated from this
mapping specification.

Other schema match approaches and tools were evaluated
and submitted to benchmarks such as SEMantic INTegrator
(SEMINT) [22], Learning Source Descriptions (LSD) [23] and
Cupid [24]. In [6], E. Rahm and P. A. Bernstein analyze these
approaches and tools following a taxonomy. In [8], H.H. Do,
S. Melnik and E. Rahm analyze these same approaches with
the aid of the match quality measures.

Comparing our approach and tool with these approaches and
tools, we can find some similarities and differences between
them. SAMT4MDE uses an object oriented model as schema

Proceedings of the International Conference
on Software Engineering Advances (ICSEA'06)
0-7695-2703-5/06 $20.00 © 2006 IEEE

0-7695-2703-5/06/$20.00 (¢) IEEE

IFI'.F

COMPUTER

SOCIETY

£ Java - UML2Csharp.map - Eclipse Platform

File Edit Mavigate Search Project Runm Mapping Edicor Window Help
i [-0-Q- BHFG- | B o - E | & 1ava &
Oy =
2. Left metamadel El v 8% Mappingmodel B! el BeE B I v B&, Right metamade! El -
[= m A =5 Mapping Model (v, 0.3) = @ CSHARP ~
H Element =181 UML2CSHARP + H Element
+ [ModelElement - Element ey LML + [_MameSpace - Element
+-] Mamespace -> ModelElement: -y CSHARP + [Classifier -= Element
+- E Feature - ModelElement 4 AttributezField +- 2 SimpleType
+- E GeneralizableElement - ModelElement [+ 4 Method2Method +- 2 PModifier
+- F StructuralFeature - > Feature [+|-4-# Parameter2Parameter +- 2 visibility
+- E attribute - = StruckuralFeature -4+ InterfacezInterface + [Class -> Classifier
+- E BehavioralFeature - = Feature |- 4 Primitive2PrimitiveType +- 5 Interface - > Classifier
+-] Operation -> BehavioralFeature -4 VisibilityKind2visibility +- [Struct - Classifier
+- £ Method - BehavioralFeature [+ 4% Class2Class +- [Attribute -= Class
+- E Parameter -= ModelElement +- [Member -> Element
+-] Classifier - > GeneralizableElement + [Field - » Member
+- [Generalization - > Relationship +- [Method -= Member
+- E] Association - Relationship, Generaliza +- E Property -= Member
+- E AssociationEnd -> ModelElement +- [PrimitiveType -> Classifisr
E Relationship -> ModelElement +- [Acessor -> Element
=+ H nenendency -= Relatinnshin b + [Parameter - Element
< | ¥ L El DaburnTun, Elaank o
Selected Object: LML

Fig. 5.

type, while the other approaches/tools use relational or XML
as schema type. The metadata representation of SAMT4MDE
is a metamodel (which conforms to Ecore), while the other
approaches/tools have XML schema trees or extended Entity-
Relationship (ER) models as metadata representation. All
approaches with the exception of SEMINT have a granularity
of matching at element or structure level. The other approaches
provide a match cardinality of 1 : 1, while our approach
provides a match cardinality of 1 : n. The majority of these
approaches have a combination of matches of type hybrid.
Our proposition and tool provide several criteria based on the
terminology, while the other approaches take benefits from
terminology and artificial intelligence for searching corre-
spondences. SAMT4MDE does not have instance-level match
characteristic, while SEMINT provides character/numerical
data pattern and value distribution, and LSD provides Whirl,
Bayesian learners and list of valid domain values. SEMINT,
LSD and Cupid are used in data base systems, more precisely,
in data integration and data translation, while SAMT4MDE is
used in the model transformation in order to develop software
systems. SAMT4MDE has the advantage of being developed
as a plug-in for Eclipse, so it is independent from MT4MDE
and it can be integrated into other tools.

According to Table I, SAMT4MDE and Cupid allow
only two schemas per match task (2/1 schemas/task), while
SEMINT allows ten schemas per five match tasks (10/5
schemas/tasks) and LSD twenty-four schemas per twenty tasks
(24/20 schemas/tasks). SAMT4MDE uses discrete values
{—1,0,1} as match result representation (i.e. different, similar
or equal), while the others use continuous values in the
range [0,1] to represent the similarity degree. We obtained
average values for match quality measures that are close
to those from SEMINT and LSD, through the execution of

A mapping model created automatically by SAMT4AMDE

SAMT4MDE for creating a mapping model between UML
and C# (see section IV) and another mapping model between
UML and Java [10]. As presented in this paper, SS=0.74, Pre-
cision=0.71, Recall=0.68, F-Measure=0.69 and Overall=0.40
for the use case UML and C#, while, as presented in [10],
SS=0.84, Precision=0.86, Recall=0.68, F-Measure=0.76 and
Overall=0.57 for the use case UML and Java. Thus, we
have obtained the following average values: SS=0.79, Preci-
sion=0.785, Recall=0.68, F-Measure=0.73 and Overall=0.49.
These comparisons among our tools and SEMINT, LSD and
Cupid demonstrated the quality of our tool. We note that
SEMINT, LSD and Cupid are used in the database domain,
and our tool is used in development of information systems.

VI. CONCLUSION

In this paper, we have presented our approach to take
into account metamodel matching in the context of MDE.
The study of metamodel matching in MDE is a promising
trend to improve the creation of mapping specification and,
consequently, transformation definition. Tools for metamodel
matching are necessary to avoid error-prone factors linked to
the manual creation of transformation definition and to evolve
mapping specification when metamodels change. In fact, we
have used the principles of MDE to develop MDE. First,
the metamodel matching algorithm helps in the creation of
mapping specification. Afterwards, a mapping specification
is transformed in a transformation definition. So, a mapping
specification is a PIM, and a transformation definition is a
PSM.

The main contributions of this work are some insights
in metamodel matching, some discussions about our plug-in
for metamodel matching tool (SAMT4MDE), an illustrative
example and an evaluation of our approach. An illustrative

IFI'.F

COMPUTER
SOCIETY

Proceedings of the International Conference
on Software Engineering Advances (ICSEA'06)
0-7695-2703-5/06 $20.00 © 2006 IEEE
0-7695-2703-5/06/$20.00 (c) IEEE

SEMINT LSD Cupid SAMT4MDE
[22] [23] [24]
Test problems
Tested schema types relational XML XML Object-oriented model
#Schemas/#Match tasks 10/5 24/20 2/1 2/1
Avg schema similarity size 57 - 47 79

Match result representation

Matches with similarity value in range [0,1] with discrete values {0, 1
(element-level corresp.) and -1}
Element repr. node (attr.) node [path node
Best average match quality
Prec./Recall 0.78/0.86 0.8/0.8 - 0.79/0.68
F-Measure 0.81 0.8 - 0.73
Overall 0.48 0.6 - 0.49

Evaluation highlights

Big schemas, No pre-match
effort

Big schemas

Comparative evaluation of 3
systems

Representative metamod-
els (UML, Java and C#
metamodel) for develop-
ing information systems

TABLE I
EVALUATION OF SAMT4MDE AND OTHER TOOLS (BASED ON [8])

example using UML and C# metamodels is presented to
validate our approach. The values of match quality measures
for the illustrative example demonstrate the potential of our
approach and tools.

In future work, we will study and implement other meta-
model matching algorithms, e.g. algorithms based on machine
learning and other heuristics. In addition, we envisage to study
the optimization of mapping models which seems to be another
important issue in MDE.

ACKNOWLEDGMENTS

The work described in this paper was financed by Fundo
Setorial de Tecnologia da Informacao (CT-Info), MCT,
CNPq (CT-Info/MCT/CNPq).

[1]

[5]
[6]
[7]
[8]

[9]

REFERENCES

OMG, Unified Modeling Language Specification, Version 1.4, September
2001.

J. Bézivin, G. Dupé, F. Jouault, G. Pitette, and J. E. Rougui, “First Ex-
periments with the ATL Model Transformation Language: Transforming
XSLT into XQuery,” 2nd OOPSLA Workhop on Generative Techniques
in the context of Model Driven Architecture, October 2003.

OMG, Meta Object Facility (MOF) 2.0 Query/View/Transformation
Specification, November 2005, ptc/05-11-01.

D. Lopes, S. Hammoudi, J. Bézivin, and F. Jouault, “Generating
Transformation Definition from Mapping Specification: Application to
Web Service Platform,” The 17th Conference on Advanced Information
Systems Engineering (CAiSE’05), no. LNCS 3520, pp. 309-325, June
2005.

F. Fondement and R. Silaghi, “Defining Model Driven Engineering
Processes,” WiSME@ UML 2004, October 2004.

E. Rahm and P. A. Bernstein, “A Survey of Approaches to Automatic
Schema Matching,” VLDB Journal, vol. 10, no. 4, pp. 334-350, 2001.
P. Andritsos, R. Fagin, et al., “Schema Management,” In IEEE Data
Engineering Bulletin, vol. 25, no. 3, pp. 32-38, September 2002.
H.-H. Do, S. Melnik, and E. Rahm, “Comparison of Schema Matching
Evaluations,” Revised Papers from the NODe 2002 Web and Database-
Related Workshops on Web, Web-Services, and Database Systems, pp.
221-237, 2003.

D. Lopes, “Study and applications of the mda approach in web service
platforms,” Ph.D. thesis (written in French), University of Nantes, 2005.

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]
[18]

[19]

[20]

[21]

(22]

(23]

[24]

D. Lopes, S. Hammoudi, and Z. Abdelouahab, “Schema Matching in
the Context of Model Driven Engineering: From Theory to Practice,”
Proceedings of the International Conference on Systems, Computing
Sciences and Software Engineering (SCSS 2005), December 2005.

G. Booch, A. Brown, S. Iyengar, J. Rumbaugh, and B. Selic, “An MDA
Manifest,” MDA Journal, May 2004.

H. T. Goranson, “Semantic Distance and Enterprise Integration,” Knowl-
edge Sharing in the Integrated Enterprise - Interoperability Strategies
for the Enterprise Architect, vol. 183, pp. 39-52, October 2005.

X. L. Sun and E. Rose, “Automated Schema Matching Techniques: An
Exploratory Study,” Research Letters in the Information and Mathemat-
ical Sciences, vol. 4, pp. 113-136, 2003.

Y. Velegrakis, R. J. Miller, and L. Popa, “Mapping Adaptation under
Evolving Schemas,” Proceedings of the 29th VLDB Conference, pp. 584—
595, September 2003.

P. A. Bernstein, “Applying Model Management to Classical Meta Data
Problems,” Proceedings of the 2003 CIDR, pp. 209-220, January 2003.
R. A. Pottinger and P. A. Bernstein, “Merging Models Based on Given
Correspondences,” Proceedings of the 29th VLDB Conference, pp. 826—
873, 2003.

Eclipse Project, “Eclipse,” 2006, available at http://www.eclipse.org.

J. Bézivin, S. Hammoudi, D. Lopes, and F. Jouault, “B2B Applications,
BPEL4WS, Web Services and dotNET in the context of MDA,” Knowl-
edge Sharing in the Integrated Enterprise - Interoperability Strategies
for the Enterprise Architect, vol. 183, pp. 225-236, October 2005.

L. Popa, Y. Velegrakis, R. Miller, M. Hernandez, and R. Fagin, “Map-
ping Generation and Data Translation of Heterogeneous Web Data,” In
International Workshop on Data Integration over the Web (DIWeb), May
2002.

B. S. Lerner, “A Model for Compound Type Changes Encountered in
Schema Evolution,” ACM Transactions on Database Systems (TODS),
vol. 25, no. 1, pp. 83-127, March 2000.

J. Grundy, J. Hosking, R. Amor, W. Mugridge, and Y. Li, “Domain-
Specific Visual Languages for Specifying and Generating Data Mapping
Systems,” Journal of Visual Languages and Computing, vol. 15, no. 3-4,
pp. 243-263, June-August 2004.

W.-S. Li and C. Clifton, “SEMINT: a tool for identifying attribute
correspondences in heterogeneous databases using neural networks,”
Data Knowl. Eng., vol. 33, no. 1, pp. 49-84, 2000.

A. Doan, P. Domingos, and A. Y. Halevy, “Reconciling Schemas of
Disparate Data Sources: a Machine-Learning Approach,” SIGMOD Rec.,
vol. 30, no. 2, pp. 509-520, 2001.

J. Madhavan, P. A. Bernstein, and E. Rahm, “Generic Schema Matching
with Cupid.” San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., 2001, pp. 49-58.

Proceedings of the International Conference
on Software Engineering Advances (ICSEA'06)
0-7695-2703-5/06 $20.00 © 2006 IEEE

0-7695-2703-5/06/$20.00 (¢) IEEE

IFI'.F

COMPUTER

SOCIETY

