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Abstract

Schema Matching is the problem of identifying corre-
sponding elements in different schemas. Discovering these
correspondences or matches is inherently difficult to au-
tomate. Past solutions have proposed a principled com-
bination of multiple algorithms. However, these solutions
sometimes perform rather poorly due to the lack of suffi-
cient evidence in the schemas being matched. In this pa-
per we show how a corpus of schemas and mappings can
be used to augment the evidence about the schemas being
matched, so they can be matched better. Such a corpus typ-
ically contains multiple schemas that model similar con-
cepts and hence enables us to learn variations in the ele-
ments and their properties. We exploit such a corpus in two
ways. First, we increase the evidence about each element
being matched by including evidence from similar elements
in the corpus. Second, we learn statistics about elements
and their relationships and use them to infer constraints
that we use to prune candidate mappings. We also describe
how to use known mappings to learn the importance of do-
main and generic constraints. \We present experimental re-
sults that demonstrate corpus-based matching outperforms
direct matching (without the benefit of a corpus) in multiple
domains.

1 Introduction

Semantic heterogeneity is a key problem in any data
sharing system, be it a federated database [24], data inte-
gration system [27], message passing system, web service,
or peer-data management system [20]. The data sources in-
volved are typically designed independently, and hence use
different schemas. To obtain meaningful inter-operation,
one needs a semantic mapping between the schemas, i.e.,
a set of expressions that specify how the data in one source
corresponds to the data in the other.

This paper considers the problem of schema matching:
determining a set of correspondences (a.k.a. matches) that
identify similar elements in different schemas. Matching
is typically the first phase in generating schema mappings.

Schema matching is inherently a difficult task to automate
mostly because the exact semantics of the data are only
completely understood by the designers of the schema, and
not fully captured by the schema itself. In part, this is due
to the limited expressive-power of the data model, and often
is further hindered by poor database design and documen-
tation. As a result, the process of producing semantic map-
pings requires a human in the loop and is typically labor-
intensive, causing a significant bottleneck in building and
maintaining data sharing applications.

Schema matching (a.k.a ontology alignment) has re-
ceived steady attention in the database and Al communities
over the years (see [21] for a recent survey and [19, 1, 4,
6, 3, 12, 13, 16, 29, 26] for work since). A key conclu-
sion from this body of research is that an effective schema
matching tool requires a principled combination of several
base techniques, such as linguistic matching of names of
schema elements, detecting overlap in the choice of data
types and representation of data values, considering pat-
terns in relationships between elements, and using domain
knowledge.

However, current solutions are often very brittle. In part,
this is because they only exploit evidence that is present in
the two schemas being matched. These schemas often lack
sufficient evidence to be able to discover matches. For ex-
ample, consider table definitions T1 and T2 in Figure 1(a).
While both of these tables describe the availability of items,
it is almost impossible to find a match by considering them
in isolation.

This paper describes corpus-based matching, an ap-
proach that leverages a corpus of schemas and mappings
in a particular domain to improve the robustness of schema
matching algorithms. A corpus offers a storehouse of al-
ternative representations of concepts in the domain, and
therefore can be leveraged for multiple purposes. This pa-
per focuses on using it to improve schema matching, and
establishes some fundamental methods for building and ex-
ploiting a corpus. In analogy, the success of techniques in
the fields of Information Retrieval and Natural Language
Processing are based on analyzing large corpora of texts.
This paper is the first step in showing that large corpora of



Match: T1: BookAvailability
ISBN | wLocation | Quantity
| | «— (no tuples)

T2: Stock

warehouselD | productiD | inStock | expectedinStock | itemType
Seattle | 0006388515 | 50 | 4/10/2004 | book

Mapping: BookAvailability(i, w, q) = Stock(i, w, g, NULL, “book”)

(a) Matches and mappings between BookAvailability and Stock

T4: ProductAvailability

productiD | warehouselD | Quantity | bookORcd
078878983X | Seattle | 5354 | book

T3: BookStock

ISBN | Warehouse | Qty
1565115147 | Atlanta | 140

(b) Other schemas about product availability

Figure 1. Schemas T1 and T2 can be bet-
ter matched with the additional knowledge of
schemas T3 and T4 in the same domain.

schemas can be analyzed to benefit difficult data manage-
ment challenges [11].

To illustrate the intuition behind our techniques for ex-
ploiting a corpus, suppose that for any element e (e.g., table
or attribute) in a schema S, we are able to identify the set
of elements, C., in the corpus that are similar to the ele-
ment e. We can use C. to augment the knowledge that we
have about e. In our example, the table T1.BookAvailability
is very similar to the table T3.BookStock in the corpus
(their columns are also similar to each other). Similarly,
T2.Stock is similar to T4.ProductAvailability. It is easy to
see that combining the evidence in T3 with T1 and T4 with
T2 better enables us to match T1 with T2: first there is in-
creased evidence for particular matching techniques, e.g.,
alternative names for an element, and second there is now
evidence for matching techniques where there earlier was
none, e.g., considering T3 with T1 includes data instances
(tuples) where there were none initially.

Another method of exploiting the corpus is to estimate
statistics about schemas and their elements. For example,
given a corpus of inventory schemas, we can learn that
Availability tables always have columns similar to ProductID
and are likely to have a foreign key to a table about Ware-
houses. These statistics can be used to learn domain con-
straints about schemas (e.g., a table cannot match Availabil-
ity if it does not have a column similar to ProductID). We
show how to learn such constraints, and how to use them
to further improve schema matching. We note that previ-
ous work has shown that exploiting domain constraints is
crucial to achieving high matching accuracy, but such con-
straints have always been specified manually.

We note that there are many potential sources for schema
corpora. Portals such as XML.org and OASIS.org list
schema standards organized by domain. Some large appli-
cation vendors publish their schemas. Companies often ac-
cumulate schemas and mappings from matching tasks done
by their staff: a corpus-based matcher can be initialized
with a small number of schemas and evolve with each new

matching task.
The specific contributions of the paper are the following.

e We describe a general technique for leveraging a cor-
pus of schemas and mappings to improve schema
matching. Our technique uses the corpus to aug-
ment the evidence about elements in the schemas being
matched, thereby boosting the accuracy of any schema
matching technique.

e We describe how schema statistics can be gleaned from
the corpus and used to infer domain constraints. \We
also show how the relative importance of the different
constraints can be learned. This is important for their
effective use in schema matching.

e \We describe a comprehensive set of experiments that
demonstrate that corpus-based matching has better
performance than direct matching, and in particular
better than previously described methods such as Sim-
ilarity Flooding [16] and Glue [6]. Moreover, the im-
provement is even more pronounced in the case of dif-
ficult matching tasks. We also show that the constraints
we learn from the corpus further improve the perfor-
mance of schema matching.

Our experimental results (see Section 5.1) are based on a
much larger and broader set of schemas: manually and auto-
matically extracted web forms and small and medium-sized
relational schemas, and the results are averaged over large
number of matching tasks. Most previous work have either
been restricted to web-forms or small schemas or have only
reported anecdotal results for medium and large schemas.
The use of previous schema and mapping knowledge has
been proposed in the past, but in very restricted settings: to
map multiple data sources to a single mediated schema [5],
or to compose known mappings to a common schema [4].
Our goal is significantly more ambitious: we show that a
corpus can be used to discover matches between two as yet
unseen schemas.

The paper is organized as follows. Section 2 gives
an overview of our approach. Section 3 describes our
main corpus-based augmentation method, and Section 4 de-
scribes how to extract constraints from the corpus. Section 5
describes our experimental study. Section 6 discusses re-
lated work, and Section 7 concludes.

2 Oveview

We first define the schema matching problem, and sum-
marize the corpus-based matching approach.

2.1 Schema Matching

Semantic mappings are at the core of any data sharing
architecture. Mappings are expressions that relate data in



multiple data sources and are typically expressed in some
formal mapping language such as GLaV (see [14] for a sur-
vey), XQuery or SQL. Schema matching is a first step to-
ward constructing mappings that identify elements in the
disparate schemas that are related to each other. Informally,
a match can be defined as follows: given two schemas S
and T, we say that element s in S matches ¢ in T if the
mapping between S and 7" has a (possibly complex) expres-
sion that relates s and ¢. For example, Figure 1 shows the
matches and the mapping between the tables BookAvailabil-
ity and Stock. The problem of creating mappings from the
match result is considered in [18, 29].

More specifically, our goal is as follows. For each ele-
ment in two given schemas S and 7', identify the element
in the other schema that it matches, if any. Note that some
elements in .S can match multiple elements in 7", and vice
versa.

We note that while we address the problem of discover-
ing correspondences, the basic techniques proposed can be
extended to the case of richer mappings. For example, tech-
niques proposed in [3] can be adapted to discover one-many
mappings with arithmetic or string operations.

Previous schema matching algorithms: Previous schema
matching algorithms can be characterized, broadly, as fol-
lows. Given two schemas, S and T', start by building models
M, and M, for each element s in .S and ¢ in T', respectively.
Each model includes all the information that is known about
the element and is relevant to discovering matches, such as
its name, sample data instances, type information, and re-
lated elements. A variety of matching algorithms are ap-
plied to each element pair, (s € S,¢ € T'). Each algorithm
compares different aspects of the elements. For example, a
name matcher compares the names by computing the edit
distance between the two, while a type matcher uses a data
type compatibility table. The result of such a comparison
is typically a similarity value. The values from different as-
pects are combined into a single similarity value. This step
can potentially involve analysis of the results of the individ-
ual comparisons and analysis of the similarities of other ele-
ment pairs. The result is a similarity matrix that has a score
for each pair of elements. Matches are chosen from the sim-
ilarity matrix to satisfy some criteria for a desirable map-
ping. The vast majority of known approaches build models
for schema elements based only on information available in
the schemas being matched. Hence, all matching decisions
are essentially based on direct comparisons between the two
schemas.

2.2 Corpus-based Matching

The intuition underlying corpus-based schema matching
is that often direct comparison does not suffice, and we
can leverage knowledge gleaned from other schemas and
matches. The corpus is a collection of schemas and map-

Corpus of known
schemas and mappings

Schemas [

la. Build initial models
Ms ,"“’

Element Name: ; ,
Models Instances: )
e{\....m.
Augmented | Name: 1c. Build £
augmented models )\

1b. Find similar

Type: ... elements

Models Instances:
Type: ...

Typical Schema Matcher

2. Estimate statistics, Concepts/Clusters

from concept clusters,

Generate’ Matches o

Domain constraints created
Mapping from estimated statistics

Figure 2. A corpus improves a typical schema
matcher by (1) augmenting knowledge about
elements in schemas, and (2) learning con-
straints from schema statistics to aid match
generation.

pings between some schema pairs. Each schema includes
its elements (e.g., relation and attribute names) and their
data type, relationships between elements, sample data in-
stances, and other knowledge that can be used to relate it
to other schemas. Schemas in the corpus are only loosely
related — they roughly belong to a single domain but need
not be mapped to each other.

Since the schemas were defined for a variety of purposes
and by different designers, the corpus has a number of rep-
resentations of each concept in the domain, some of which
are related through the mappings in the corpus. The Corpus-
Based Augment Method (augment), which we describe in
the next section, leverages this variety of representations
by using the corpus to add information to each element’s
model.

Specifically, given the element s in schema S that is not
in the corpus, it finds other elements, say e and f, in the
corpus that are alternate representations of the same under-
lying concept. Elements e and f will differ from s in some
ways since they belong to different schemas. For example,
e can have the same data instances as s but a different name
and will thus contribute to a more general name model for s.
By contrast, f can have a similar name and data instances,
but different relationships with other elements in the do-
main and will thus contribute to a better relationship model.
The augment method builds a model M for s that includes
knowledge about e and f, and uses M in the matching pro-
cess instead of M. The augment method is depicted in
Figure 2.

L earning Schema Statistics: Another use of the corpus is
to estimate various statistics about elements and relations
in a domain. For example, given a collection of relational
schemas, the frequently occurring tables in the schemas



give a clear indication of the important object types in a
domain; the columns of multiple similar tables help us iden-
tify the various possible attributes of these objects; and the
table-column and foreign key relations help us identify var-
ious possible ways in which the objects might be related.
This type of knowledge will help us develop a better un-
derstanding of the domain. While these statistics can be
exploited in many ways, we use them to design constraints
that we use to prune candidate mappings during match gen-
eration. As we shall see in Section 4 such constraints can
be used in concert with others as an input to the match gen-
eration module of a schema matcher. Previous work only
exploited constraints that were given manually.

3 TheAugment Method

We now describe the augment method in detail. We first
describe how we find elements in the corpus that are simi-
lar to a schema element s, and then show how to use these
elements to drive schema matching.

3.1 Models for corpus elements

In order to find elements in the corpus that are similar
to a given schema element s, we compute an interpretation
vector, I, for s. I isavector, (..., pe.s,Py,s, - -- ), Where
PDe,s IS an estimate of how similar s is to element e in the cor-
pus. We use machine learning to estimate these similarities.
Specifically, for each element of the corpus, e, we learn a
model; given an element s, the model of e predicts how sim-
ilar e is to s. The model for each element is created via an
ensemble of base learners, each of which exploits different
evidence about the element. An example of a base learner is
a name learner that determines the word roots that are most
characteristic of the name of an element (as compared to the
names of other elements). Likewise, a data instance learner
determines the words and special symbols (if any) that are
most characteristic in instances of an element. The predic-
tions of the base learners are combined via a meta-learner.

Learning the models for each element requires training
data. We describe how training data is obtained and then
some of the base learners that we use.

Training Data

Training a learner requires learner-specific positive and neg-
ative examples for the element on which it is being trained.
For any element s € .S, these training examples can be ex-
tracted from S and from schemas that have known map-
pingsto S.

e Within S: An element is a positive example of it-
self. All the other elements in the schema are negative
examples, except for those that are duplicated in the
schema with the same properties.

e Outside S: If, in some mapping, s is deemed similar to
an element ¢ in 7', then the training examples for ¢ can
be added to the training examples for s. If s matches
more than one element in 7", then each of them con-
tributes positive examples, and the other elements in T°
contribute negative examples. Mappings enable us to
obtain more training data for elements and hence learn
more general models.

Base Learners

We use the following base learners.

Name Learner: The name of an element typically con-
tains words that are descriptive of the element’s semantics.
However, names are not always easy to exploit and con-
tain abbreviations and special characters that vary between
schemas. Our name learner tries to identify frequent word
roots in the element names. We use two separate schemes.
In the first we split the names of the elements based on
capitalization and stem the resulting fragments, e.g., Pro-
ductAvailability becomes (Product Availability). Second, we
split the names into their corresponding n-grams e.g., the
3-grams of the name Quantity are (qua uan ant nti tit ity).
N-grams have been shown to work well in the presence of
short forms, incomplete names and spelling errors that are
common in schema names [4]. In many schemas in our
data sets, we found that names could not be easily split into
smaller sensible sub-words, and hence n-grams seemed to
be especially effective. Each name fragment or n-gram set
for an element contributes one training example to the name
learner. The name learner can be any text classifier such as
TF/IDF [23] or Naive Bayes [7].

Text Learner: Text descriptions of elements typically ex-
plain the meaning of elements more than the names them-
selves. But the quality of these descriptions varies a lot.
We extract any text annotations that we can obtain from the
elements. We also add the name fragments used for the
Name Learner to the text annotations to account for over-
lapping information in the names and annotations. Finally,
we eliminate non-significant words such as prepositions. A
text classifier is trained on the resulting examples.

Data Instance Learner: The data instances of similar el-
ements are often similar: the same values can appear, e.g.,
makes of cars; the same words can appear, €.g., adjectives
such as good, poor, or excellent reviews; or the values might
share common patterns (e.g., monetary units). For each el-
ement, we place all of its instances into a single training
example. In addition to the instances themselves, we add
special tokens for each symbol and for numbers. The in-
stance learner is built by training a text classifier on these
examples.

Context Learner: Similar elements are typically related to



elements that are, in turn, similar to each other. To exploit
this context information, we determine for each element the
set of other elements to which it is related, e.g., for columns
of tables this is the table and other columns in that table.
For each element we create a context example containing
the tokenized names of all the elements in that set, and then
train a text classifier on these context examples.

Our framework is general enough to incorporate addi-
tional base learners as well as non-learning techniques. For
example, we also have a simple name comparator that uses
string edit distance between the names to estimate the simi-
larity of two elements.

Meta Learner: Given an element s, a base learner L,
makes a prediction p} , that s is similar to the corpus ele-
ment e. We combine these predictions of the different base
learners into a single similarity score between e and s using
logistic regression:

1
1+e®

De,s = U(Z akpf’s — by), where o(x) =
k

The sigmoid (o) function has been shown to have a number
of desirable properties as a combination function [6]. In
practice we found this to work better than a simple linear
combination. The parameters a, and by are learned from
training separately for each element in the corpus, using the
stacking technique [25].

Given the model created by the meta-learner, we can
compute the interpretation vector, I, = (pe ), for an el-
ement s. Recall that the interpretation vector of s has an
entry for each element e in the corpus. Each p. ; is the esti-
mated similarity between s and e.

3.2 Augmenting element models

The goal of the augment method is to enrich the models
we build for each element of the schemas being matched,
thereby improving our ability to predict matches. Our first
step is to find the elements in the corpus that will contribute
to the enriched model.

Given the interpretation vectors computed as described
above, the most similar elements to s are picked from the
interpretation vector using a combination of two simple cri-
teria:

e Threshold a: Pick e such that p. s > .
e Top N: Pick the NV elements most similar to s.

For each element s, let Cs(«, N) (henceforth C;) be the
elements e in the corpus that are among the N most similar
to s and have p. s > a.

The augmented models are constructed in a similar way
to building models for each element in the corpus. Having

determined C,, we build the training set for s as follows:
include as positive examples for s the union of the positive
examples of s and each of the elements in C,. The negative
examples for s are the union of the different negative ex-
amples, excluding those that appear as positive examples.
As described earlier, mappings in the corpus can be used to
obtain more examples for any element. Thus in addition to
C,, other elements that are known to map to elements in C
also contribute to the examples for s.

We construct the augmented model M_* for each s in a
schema and base learner L. We note that while the training
phase for elements in the corpus is done offline, the train-
ing for the augmented models is done during the matching
process.

The training examples obtained from the corpus can be
weighted by their similarity score in I,. This will enable us
to differentiate the relevance of the different training exam-
ples and can also be used to prevent the corpus information
from dominating the examples already in s.

Since there are multiple schemas in the corpus, it is eas-
ier to find some elements that are similar to s rather that
directly matching to elements in schema T". Even if a few el-
ements are incorrectly added to the augmented model, there
are benefits as long as there are fewer of them than correctly
added elements.

3.3 Matching based on augmented models

The augmented models for each element are also an en-
semble of models, as are the models for the elements in the
corpus. We use them for matching elements s € S and
t € T as follows.

For each base learner Ly, the augmented model for s can
be applied on ¢ to estimate the similarity p";t. Similarly, the
augmented model for ¢ can be applied on s to estimate pffys.
The similarity p, , is obtained by combining the individual
p’;t’s using the meta-learner for s (and similarly for p; ;).
We compute the similarity sim(s,t) as the average of p; ,
and py .

We contrast the augment method with a more naive
method, pivot, which was described in our initial explo-
rations of corpus-based matching [15]. With pivot, the sim-
ilarity between two elements s and ¢ is obtained directly
from the interpretation vectors I, and I; by computing their
normalized vector dot product (the cosine measure). How-
ever, pivot has two significant drawbacks. First, in many
cases, the learned models are not robust because of few
training examples. Second, pivot biases the matching pro-
cess to rely only on the corpus, and hence ignores infor-
mation in .S and 7" that can contribute to the mapping. We
compare pivot and augment experimentally in Section 5.

The result of both the augment and the pivot methods is
a similarity matrix: for each pair of elements s € S and



t € T, we have an estimate for their similarity (in the [0, 1]
range). Correspondence or matches can be selected using
this matrix in a number of ways, as we describe next.

4 Corpus-aided Match Generation

The task of generating matches consists of picking
the element-to-element correspondences between the two
schemas being matched. As observed in previous work [16,
5], relying only on the similarity values does not suffice for
two reasons. First, certain matching heuristics cannot be
captured by similarity values (e.g., when two elements are
related in a schema, then their matches should also be re-
lated). Second, knowledge of constraints plays a key role in
pruning away candidate matches.

Constraints can either be generic or dependent on a par-
ticular domain. As examples of the latter, if a table matches
Books, then it must have a column similar to ISBN. If a
column matches DiscountPrice, then there is likely another
column that matches ListPrice. Most prior work has used
only generic constraints, and when domain constraints have
been used, they have been provided manually and only in
the context where there is a single mediated schema for the
domain [5].

In this section we make two contributions. First, we
show how to learn domain constraints automatically from
the corpus. Second, we show how to use the mappings in
our corpus to learn the relevance of different constraints to
match generation. The latter is important because many of
the constraints we employ are soft constraints, i.e., they can
be violated in some schemas. We note that the constraints
we learn from the corpus can also have other applications,
such as helping the design of new schemas in a particular
domain. However, here we focus on exploiting them for
schema matching.

4.1 Computing Schema Statistics

To extract constraints from the corpus, we first estimate
various statistics on its contents. For example, given a col-
lection of Availability schemas, we might find that all of them
have a column for ProductiD, 50% of them have product in-
formation in separate tables, and 75% have Quantity and
ExpectedInStock information in the same table.

In order to estimate meaningful statistics about an ele-
ment, we must have a set of examples for that element, e.g.,
we can make statements about tables of Availability only
when we have seen a few examples of similar tables. We
now show how we group together elements in our corpus
into clusters that intuitively correspond to concepts. We
then compute our statistics in terms of these concepts.

Clustering Algorithm: We use a hierarchical clustering al-
gorithm (outlined in Figure 3). We start with each element
being a separate cluster. We iteratively try to merge the two

cluster Elements (elements: set of elements from all the schemasin the corpus)
concepts = elements
for(i=1; i<= number of base learners + 1; i++)
concepts = clusterConcepts(concepts, combinationParameters(i))
return concepts

cluster Concepts (iConcepts: input set of concepts,
m.: base learner combination parameters)
train ensemble of base learners for each concept in iConcepts
SiMyy_.1:n = COMpUtel nterConceptSimilarity (iConcepts, my)
oConcepts = iConcepts
cm = sort-decreasing(i Concepts, sim)
while(top(cm).sim > th,)
remove(oConcepts, top(cm)). ¢, = Merge(top(cm)). add(oConcepts, C,,)
eliminate from cm all pairsincluding concepts in top(cm)
computeSimilarity(c,,, 0Concepts)
insert new candidate pairsin order into cm

return oConcepts

Figure 3. Clustering elements in the corpus
into concepts to estimate schema statistics.

most similar current concepts into a single concept, until
no further merges are possible. For lack of space, we only
highlight some of the salient features of our algorithm.

The basic clustering procedure clusterConcepts is in-
voked n + 1 times, where n is the number of base learners.
In each of the first n iterations, the i base learner is heav-
ily weighted compared to the others during the similarity
computation. In the last iteration all the learners are equally
weighted. This enables us to obtain clean initial clusters at
the end of the first n iterations, and then collapse them more
aggressively in the final iteration.

In each invocation of clusterConcepts the base learners
are retrained, and the inter-concept similarity re-computed.
This exploits the clustering from earlier iterations. The
inter-concept similarity is computed by applying the learned
models for the concepts on each other (outlined in Sec-
tion 3.3). computeSimilarities re-computes the similarity
of a new concept with all the existing concepts to be the
maximum similarity among sub-concepts: sim|[cnew, ] =
max(simlc;, ¢, sim[cj, c]), if cpew < merge(c;, ¢;).

We ensure that two elements from a schema are never
in the same concept by eliminating merge candidates that
might have elements from the same schema. The intuition
for this is that the same concept is never duplicated within
one schema (similar to [12, 28]).

We note that clustering elements into concepts can also
benefit the augment method. Instead of searching for sim-
ilar elements to a given element, the algorithm can search
for similar concepts. Thus the augmented model for any
element e will include evidence from elements that are not
directly similar to e, but are similar to other elements in the
corpus similar to e.

Example schema statistics: We now give a flavor for some
of the statistics that are computed.

Tables and Columns. For relational schemas, we sepa-
rately identify table concepts and column concepts. We



compute for each table concept ¢; and each column con-
cept ¢;, the conditional probability P(¢;|c;). This helps us
identify the contexts in which columns occur. For exam-
ple, the ProductlD column most likely occurs in a Product
table or an Availability table (as foreign key), but never in a
Warehouse table.

Neighborhood: We compute for each concept the most
likely other concepts they are related to. Briefly, we con-
struct itemsets from the relationship neighborhoods of each
element, and learn association rules from these. For exam-
ple, we learn that AvailableQuantity — WarehouselD, i.e.,
availability is typically w.r.t. a particular warehouse.

Ordering: If the elements in a schema have a natural order-
ing (e.g. the input fields in a web form, or the sub-elements
of an XML element), then we can determine the likelihood
of one concept preceding another. For example, in our auto
domain (Section 5), all web forms are such that the make
is always before the model and price inputs, but after the
new-or-used input.

4.2 Constraint-based Match Generation

Given two schemas S and 7', our goal is to select for each
element in S the best corresponding element in 7" (and vice-
versa). Specifically, for each element e in .S we will assign
either an element f in schema 7", or no match (¢). Let M
represent such a mapping. Thus, M = U, {e; < f;}, where
e;€Sand f; € TU {6}

We assign a cost to any such mapping M that is depen-
dent on our estimated similarity values and constraints:

Cost(M) = — Zlog simles, fi] + ij x K;(M) (1)

where sim/e;, f;] is the estimated simﬁarity of elements ¢,
and f;, each K; (> 0) is some penalty on the mapping M
for violating the ;' constraint, and w; is a weight that in-
dicates the contribution of the j* constraint. The first sum
is an estimate of the total log likelihood of the mapping (if
the similarities were interpreted as probabilities). The sec-
ond sum is the penalty for violating various constraints. The
task of generating the mapping from S to 7" is now reduced
to the task of picking the mapping M with the minimal cost.
We use A* search [22] to pick the best mapping M, which
guarantees finding the match with the lowest cost. Our con-
straints are encoded as functions, K ;, that produce a value
in the interval [0, 1]. We do not provide the details for each
K, but note that the weight-learning algorithm described
in the next section adapts w; to the values K ; evaluates to.

A* explores the space of solutions by maintaining a fron-
tier of partial solutions. Each partial solution is associated
with an under-estimated cost of any eventual complete so-
lution. At each step the partial solution with the least cost
is examined, and replaced by new partial solutions that con-
sider the different match options for an as yet unmatched el-

ement. The under-estimated cost of a partial solution is cal-
culated by assuming that unmatched elements match their
highest similarity candidate element without incurring ad-
ditional constraint violations. The search stops when the
first complete solution is reached. For very large schemas,
we approximate by bounding the size of the frontier and
shrinking it periodically to retain only a few of the best cur-
rent partial solutions.

Some of the constraints we use are the following. For
generic constraints, uniqueness states that each element
must match with a distinct element in the target schema,
and mutual (pep in [16]) states that e can match f only if
e is one of the most similar elements of f and mutually f
is one of the most similar elements of e. As domain con-
straints obtained from the corpus, we have the following:
(1) same-concept: if two elements are to be matched, then
they have to be similar to the same concept(s) in the corpus;
(2) likely-table: if column e matches f, then e’s table must
be a likely table for f to be in; (3) neighbors: if element f
is to be assigned to e, then elements that are likely related to
f must be related to e; and (4) ordering: if element f is to
be assigned to e, then the ordering corpus statistics should
not be violated.

4.3 Learning Constraint Weights

Since many of the constraints we use in our matching al-
gorithm are soft, i.e., encode preferences rather than strict
conditions, the choice of weight for each constraint is cru-
cial. Prior work has always hard-coded these constraint
weights. We now describe how these weights can actually
be learned from known mappings.

Consider a matching task between source schema S and
target schema 7". Consider a mapping M in which the cor-
rect matches are known for all elements in S except e. If f
were the correct match for element e, then in order that e is
also correctly matched with f, given the exact matches of
other elements, the following condition must hold.

Vfi, fi # f,Cost(Mle — f) < Cost(Mle — f)  (2)
This can be re-written for each f; as below.

L(M, sim,e, f;,w) = log simle, f] — log sim[e, fi]+
> wy x [Kj(Mle — f) = Kj(Mle — f:)] >0 (3)

An incorrect match is chosen for e if
L(M,sim,e, f;w) < 0. The best matches will be
generated if the number of incorrect decisions are min-
imized. We try to achieve this by learning @ from
known mappings: specifically, given a set of known
mappings Mi,...,M,, we try to find w such that
Il {(e, fi) : L(My, sim, e, f;;w) < 0} || is minimized. The
similarity matrix sim has the results from matching the
schemas in each M.



domain type # schemas # elements # mappings evidence
(min-max, average, std.deviation)
auto webforms 30 3-28 11 6.7 74 text, variable names,
real estate | webforms 20 3-20 7 4.1 37 select options
invsmall relational 26 11-33 18 4.9 39 names, examples,
inventory | relational 34 26-90 4 165 30 descriptions, context

Table 1. Characteristics of domains.

We find the w;s using hill climbing search [22]. Specif-
ically, we start with a random initial guess for w = (w; =
0). We repeatedly compute the change in number of viola-
tions of condition 3 by modifying each w; separately, while
keeping the others constant. The modification that results
in the best change is accepted (with ties broken randomly)
and this process is repeated. Since we can land in a local
minimum we perform multiple restarts that can result in dif-
ferent solutions (because of random tie breaks), and choose
the best overall best solution.

Increasing Precision: We note that the above training pro-
cedure tries to minimize the total number of incorrect de-
cisions. Alternatively, we can modify the weight learning
procedure to maximize precision, i.e., make only correct
predictions at the expense of making fewer predictions. The
intuition is that we do not penalize no matches (i.e., e < ¢),
and hence we omit these examples from the minimization.

5 Experimental results

We now present experimental results that demonstrate
the performance of corpus-based matching. We show that
corpus-based matching works well in a number of domains,
and in general has better results than matching schemas di-
rectly. Furthermore, we show our techniques are especially
effective on schema pairs that are harder to match directly.
We also show that the results from corpus-based matching
can be used to boost the performance of other matching
techniques.

5.1 Datasets

Table 1 provides detailed information about each of our
domains. We describe them briefly below. All the schemas
we used in our experiments are available at [2].

Web forms: While a web form is not strictly a schema,
there has been recent interest in automatic understanding
and matching such structures [12, 28, 26]. Matching in this
context is the problem of identifying corresponding input
fields in the web forms. Each web form schema is a set of
elements, one for each input. The properties of each input
include: the human readable text, the hidden input name
(that is passed to the server when the form is processed), and
sample values in the options in a select box. We consider the
auto domain and the real estate domain. In the auto domain
the schemas are automatically extracted. As a result, there
is some noise in identifying the human readable text with
each input, but we do not make any manual corrections. The
extractor does simple filtering of HTML tags and assigns

each word of text to its nearest input. The unclean extraction
makes matching tricky and challenging, but more realistic.
The forms in the real estate domain are manually cleaned
to identify human readable text correctly with inputs. The
forms in the auto and real estate domain were obtained from
the original lists in [17] and [9] respectively.

Relational Schemas: This data set was created by students
in several database course offerings from similar, but not
identical English domain descriptions of an online book and
music seller with inventory in multiple warehouses. The
elements in each schema include the tables and columns,
a small number (2-5) of tuples per table, and foreign key
constraints. We created two datasets from our collection.
Each schema in invsmall is a subset of the original schema
and includes only tables and columns about books and their
availability. The schemas in inventory also have information
about other products and warehouses. There are significant
differences among the schemas, most importantly normal-
ization: the number of tables varied from 3 to 12, and the
standard deviation of number of elements is 16.5.

We also collected a dataset that consists of real-world
schemas that we obtained from sources on the Internet (e.g.,
at xml.org), in the domain of purchase orders and customer
information. The trends we observed in that data set were
similar to other domains, and hence we do not report them
in detail.

In each domain, we manually created mappings between
randomly chosen schema pairs. The matches were one-
many, i.e., an element can match any number of elements
in the other schema. These manually-created mappings are
used as training data and as a gold standard to compare the
mapping performance of the different methods.

5.2 Experimental Methodology

We compared three methods: augment, direct, and pivot.
augment is our corpus-based solution as described in the
previous sections. direct uses the same base learners de-
scribed in Section 3.1, but the training data for these learn-
ers is extracted only from the schemas being matched. di-
rect is similar to the Glue system [6] and can be considered
a fair representative of direct-matching methods. pivot, as
described in Section 3, is the method that computes cosine
distance of the interpretation vectors of two elements di-
rectly.

In each domain, we compared each manually created
mapping pair against the mapping that was predicted by the
different methods. The corpus contents (schemas and map-
pings) were chosen at random and are mentioned in each
experiment.

Constraint Weight Training: In order to fairly compare
the above three techniques, we selected a random 25% of
the manually created mappings in each domain, and learned
the constraint weights with them as training data (these
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Figure 4. (a) shows that augment performs better overall than direct and pivot in all domains, and
improves either precision (b) or recall (c) or both in each domain.

mappings were not part of the corpus and hence not ex-
ploited by the base learners of augment). The constraint
weights were learned separately for augment, direct, and
pivot. The reported results are on the remaining 75% of the
mappings.

5.3 Measuring Matching Performance

The result of each of our methods is a directional match:
for each element in a schema, an element from the other
schema is chosen such that the cost of entire mapping is
minimized. If the gold standard has a match in which s
matches a set of elements F, then a matcher is said to have
predicted it correctly if s is predicted to match any one el-
ement in £, and every element in E is predicted to match
s. As aresult, any 1 : m mapping is considered as m + 1
separate matches.

We report matching performance in terms of three mea-
sures: Recall, Precision, and F-Measure. For a given
schema pair, let ¢ be the number of elements in the two
schemas for which a match is predicted and the predicted
match is correct. If a match was predicted for n elements,
and a match exists in the gold standard for m elements,
precision(p) is the fraction of elements with correct pre-
dictions, recall(r) is the fraction of matches in the manual
mapping that were correctly predicted, and f-measure is the
harmonic mean of precision and recall.

pr c c
FMeasure = ——,wherep = —,r = —
r n m

Optimizing for f-measure tries to balance the inverse re-
lation between precision and recall, and is used commonly
in IR. An increase in f-measure indicates a better ability
to predict correct matches and also identify non-matches.

We report the f-measure averaged over multiple runs of all
matching tasks in a domain.

5.4 Comparing Matching Techniques

Figure 4 compares the results of direct, augment, and
pivot in each of the four domains. There are 22 (auto),

16(real estate), 19(invsmall), 16(inventory) schemas respec-
tively and 6 mappings in the corpus. augment achieves a
better f-measure than direct and pivot in all domains. There
isa0.03—0.11 increase in f-measure as compared to direct,
and a 0.04 — 0.06 increase as compared to pivot. In gen-
eral, augment has a significantly better recall as compared
to direct in three out of four domains. This shows that aug-
menting the evidence about schemas leads to the discovery
of new matches. The precision of augment is better than di-
rect in two of the domains (auto and invsmall), lower in one
(inventory) and about the same in the other.

The lower precision in the inventory domain is due to the
presence of many ambiguous matching columns (e.g. mul-
tiple address, price and id columns) with similar names and
very few data instances. However there is a noticeable in-
crease in recall in this domain. The reason for the dramatic
increase in precision in the auto domain is that there are a
number of elements in the schemas that do not have any
matches, and augment is able to prune them away with do-
main constraints.

Except for the recall on the auto domain, augment also
performs better than pivot, which is just comparable to that
of direct. This suggests that mere comparison of the inter-
pretation vectors is not sufficient. For example, when two
elements are very similar, but there is nothing in the corpus
similar to these elements, pivot cannot predict a match while
augment can.

The results in this section consider only the single best
match for each element. In an interactive schema-matching
system, we typically offer the user the top few matches
when there is a doubt. When we consider the top-3 can-
didate matches, then augment is able to identify the correct
matches for 97.2% of the elements, as opposed to 91.1% by
direct and 96.7% by pivot.

5.5 Difficult versus Easy matching tasks

Our central claim is that corpus-based matching offers
benefits when there is insufficient direct evidence in the
schemas. To validate this claim, we divided the manual



mappings in each domain into two sets - easy and difficult:
all the schema pairs in the test set were matched by direct
and then sorted by direct’s matching performance. The top
50% were identified as the easy pairs and the bottom 50%
as the difficult pairs.

Figure 5a compares the average f-measure over the diffi-
cult matching tasks, showing that augment outperforms di-
rect in these tasks. More importantly, the improvement in
f-measure over direct is much more significant (0.04 —0.16)
than in Figure 4a, e.g., there is an improvement of 0.16 in
the invsmall domain, and 0.12 in the real estate domain as
compared to the 0.11 and 0.07 increases when all tasks are
considered.

Figure 5b shows the same comparison over the easy
tasks. The performance of augment for these tasks, while
still very good, is in fact slightly worse than direct in one
domain and the improvements are much less in the other
domains. This is quite intuitive in retrospect. When two
schemas are rather similar (easy to match directly), includ-
ing additional evidence can lead the matcher astray.

In summary, for the schema pairs that are difficult to
match we are able to leverage the corpus to significantly
improve our matching performance, while on schema pairs
that are relatively easier to match we get smaller improve-
ments.

5.6 Constraints and Match Generation

We now look at the utility of constraints in the generation
of matches. Given the similarities computed by augment,
we compare two cases: using corpus and generic constraints
(C&@), against only using generic constraints(G). We also
separately consider the cases of learning to improve over-
all match generation and that of learning for high precision
results (Section 4.3).

Maximizing F-Measure: We compared C&G and G
against a best-match strategy that does not use constraints:
for e € S, select element f € T with the highest similar-
ity provided it is greater than a threshold ¢A. Threshold th
is determined from the same mappings that were used for
training constraint weights. The f-measure for C&G (same
as in Figure 4a) was better than the best-match in all the do-
mains. The improvements were auto:0.02, real estate:0.12,
invsmall:0.05, and inventory:0.02 respectively. There is no
significant improvement for C&G over G (within 0.02 of
each other in all the domains). The better performance of
G and C&G indicate that the weights learned for the con-
straints are reasonable.

Maximizing Precision: In some contexts where schema
matching systems are used, we may prefer to present the
user only the matches of which the system is very confident,
or equivalently, emphasize high precision. We claim that
corpus constraints are useful in determining more matches
under high precision requirements. Suppose, for example,

that our goal is to achieve a precision of 0.9, i.e., 9 in 10
predictions are correct. Figure 5¢ shows the utility of con-
straints in achieving this high precision. The figure com-
pares the augment method with two oracle strategies. Best
Naive is the same as best-match except that the best thresh-
old is chosen by trying all thresholds in increments of 0.1
and reporting the results when the precision is closest to
0.9. Best Generic is more sophisticated: in addition to
Best Naive the mutual constraint described in Section 4 is
strictly enforced. In a sense this captures the notion of best
possible performance of G. Note that these are oracles be-
cause the best thresholds are chosen by comparing to the
gold standard.

In three domains (real estate, invsmall, and inventory),
the recall achieved by C'&G is higher than both of the ora-
cle solutions. G is able to achieve such a high precision only
in one domain (invsmall). In this domain using the generic
constraints appears to perform better. These results suggest
that the corpus constraints are effective in pruning incorrect
matches, and ensuring higher recall under very high preci-
sion requirements.

The poor performance of C&G in the auto domain is
probably due to the overfitting of the constraint weights in
this domain. Notice from Figure 4a that when optimized for
f-measure (as opposed to precision), the precision obtained
0.92 is actually as required, and the precision is also high.

5.7 Interaction with other Matchers

We investigated using a corpus-based matcher as an in-
dependent module that contributes to other matching algo-
rithms, and in particular, to the Similarity Flooding algo-
rithm [16]. simflood is a graph matching algorithm that it-
eratively modifies the similarity of an element pair based
on the similarities of other elements the pair are related
to. We modified the code so that the similarities between
elements in the schemas is initialized using the similarity
matrix that results from direct (direct—simflood) and aug-
ment (augment—simflood). Figure 5d shows the results of
this modification. direct—simflood does significantly better
than simflood in all domains demonstrating that direct was a
good matcher to be comparing against in our earlier exper-
iments. augment—simflood significantly improves upon it
ininvsmall. There is a small improvement in real estate and
inventory and a small drop in auto. The small changes in the
webform domains are not surprising since these schemas do
not have much structure for the graph matching to exploit.
The rich structure (tables and columns) already present in
inventory schemas results in augment not being able to con-
tribute much in this domain. But in the evidence-parched
schema pairs in invsmall there is the noticeable improve-
ment. Note that in all four domains the f-measure of all
variations of simflood is less than that of augment in Fig-
ure 4a. This is because simflood is a conservative matcher
and makes only confident predictions (hence the high pre-
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Figure 5. (a) and (b) show that augment performs significantly better on difficult match tasks; (c) shows
that corpus constraints are able to discover more matches at high precision; and (d) shows that a
corpus can also improve the performance of other matchers.

cision). Despite this conservative strategy, initializing with
augment increases the recall while keeping precision intact,
thereby demonstrating the utility of the corpus.

5.8 Additional experiments

We briefly mention two other experiments we performed
to better understand the utility of the corpus.

Corpus Evolution: We studied the variation in augment as
the number of schemas and mappings in the corpus are in-
creased. In general there is a steady increase in f-measure
as the number of schemas are increased and the number
of mappings are increased. In the inventory domain just
increasing the number of schemas with no mappings de-
creases the average f-measure, but increasing the number of
mappings increases it. This is because these schemas are
rather large and have a lot of ambiguity. Hence incorrect
matches made during the clustering of elements into con-
cepts lead to polluted clusters and hence the drop in perfor-
mance. Adding mappings to the corpus results in cleaner
clusters and the increase in performance.

Hand-tuned corpus: As an initial experiment into the var-
ious options of hand-tuning a corpus, we performed the fol-
lowing experiment. For each domain we designed a me-
diated schema and put it in the corpus, as well as map-
pings from each of the schemas in the corpus to the me-
diated schema. We experimented with variations of aug-
ment and pivot that used the mediated schema to define clus-
ters rather than automatically learning them. We found that
the f-measure is higher than those in Figure 4a only in the
auto domain. This is primarily due to the fact that it was
easy to define a reasonable mediated schema in that do-
main, whereas it was difficult to do so in the real estate and
invsmall domains. Since the algorithm relied on the medi-
ated schema, its performance was poor when the mediated
schema was deficient.

6 Reated Work

The use of previous schema and mapping knowledge has
been proposed in the past, but in two very restricted set-
tings. They either use previous mappings to map multi-
ple data sources to a single mediated schema [5], or com-
pose known mappings to a common schema [4]. Our goal
is significantly more ambitious: we show that a corpus of
schemas and mappings can be leveraged in many differ-
ent ways to discover matches between two as yet unseen
schemas. In mapping to a single mediated schema, the
learning is more directed: we learn classifiers for the el-
ements of that schema. In our context, we need to learn
about the entire domain, rather than a single schema.

Another use for a corpus of schemas is described in [12],
where the authors construct a mediated schema for a do-
main of web forms. They estimate the single most likely
mediated schema that could generate all the web forms in a
given collection. However, this approach to schema match-
ing can only work when the domain is simple and clearly
delimited. In [28] the authors collectively match a number
of related web forms by clustering their fields. As seen in
Section 3, we consider such clustering as one possible way
of organizing the information in our corpus.

In [29], the authors propose matching two schemas by
matching them both to a single domain ontology and then
composing the two sets of matches. Both the domain on-
tology and the rules for matching the domain ontology ele-
ments to the different schemas are manually specified. Our
corpus can be thought of as a domain ontology, however
neither the concepts nor the rules are manually created.
However, such a domain ontology when available can be
used in pivot and augment and as a source for domain con-
straints.

In [8], it is shown how a corpus of web-services can be
used to find clusters of parameter names that correspond to
concepts. These concepts can be used instead of the param-
eters to improve search for similar web-service operations.



7 Conclusion

We described corpus-based schema matching, a set
of techniques that leverages a collection of schemas and
matches to improve schema matching. In a sense, corpus-
based schema matching tries to mirror the main technique
used in Information Retrieval, where similarity of queries
to concepts are computed mostly based on analyzing large
corpora of text. However, unlike documents, that can be
abstracted as bags of words, schemas are complex artifacts
and do not typically have large amounts of evidence. So
leveraging a schema corpora requires different techniques.

Our main contribution is the Corpus-Based Augment
method, which uses the corpus to increase the evidence
taken into consideration in the matching process. In addi-
tion, we showed how we can leverage the corpus to discover
concepts in the domain and domain constraints that further
improve schema matching. Finally, we described an exten-
sive set of experiments that validated the utility of corpus-
based schema matching and studied some of the tradeoffs
involved. The most important observation is that corpus-
based schema matching is especially effective in hard-to-
match schema pairs.

As future work, we would like to extend our tech-
niques to larger schemas and complex mappings. Observe
that matching large schemas does not require a corpora of
large schemas: information extracted from smaller related
schemas can be used to match similar fragments within
larger schemas. Another direction is the incorporation of
user-feedback in maintaining schema corpora, e.g., in the
case of ambiguity in clustering elements into concepts user
input can result in better formed clusters. Finally, we be-
lieve our techniques are a first step at capturing the intuition
that schema corpora can be leveraged for several data man-
agement tasks [10].
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