
A Uniform Approach to Inter�Model

Transformations

Peter Mc�Brien and Alexandra Poulovassilis

Dept� of Computer Science� King�s College London�
Strand� London WC�R �LS
falex�pjmg�dcs�kcl�ac�uk

Abstract� Whilst it is a common task in systems integration to have
to transform between di�erent semantic data models� such inter�model
transformations are often speci�ed in an ad hoc manner� Further� they
are usually based on transforming all data into one common data model�
which may not contain suitable data constructs to model directly all
aspects of the data models being integrated� Our approach is to de�ne
each of these data models in terms of a lower�level hypergraph�based data
model� We show how such de�nitions can be used to automatically derive
schema transformation operators for the higher�level data models� We
also show how these higher�level transformations can be used to perform
inter�model transformations� and to de�ne inter�model links�

� Introduction

Common to many areas of system integration is the requirement to extract data
associated with a particular universe of discourse �UoD� represented in one
modelling language� and to use that data in another modelling language� Current
approaches to mapping between such modelling languages usually choose one of
them as the common data model �CDM� ���� and convert all the other
modelling languages into that CDM�

Using a �higher�level	 CDM such as the ER model or the relational model
greatly complicates the mapping process� which requires that one high�level mod�
elling language be speci
ed in terms of another such language� This is because
there is rarely a simple correspondence between their modelling constructs� For
example� if we use the relational model to represent ER models� a many�many
relationship in the ER model must be represented as a relation in the relational
model� whilst a one�many relationship can be represented as a foreign key at�
tribute ���� In the relational model� an attribute that forms part of a foreign
key will be represented as a relationship in the ER model� whilst other relation
attributes will be represented as ER attributes ����

Our approach is to de
ne a more �elemental	� low�level modelling language
which is based on a hypergraph data structure together with a set of associated
constraints � what we call the hypergraph data model �HDM�� We de
ne
a small set of primitive transformation operations on schemas expressed in the
HDM� Higher�level modelling languages are handled by de
ning their constructs



� P�J� Mc�Brien and A� Poulovassilis

and transformations in terms of those of the HDM� In common with description
logics �
� �� we can form a union of di�erent modelling languages to model a
certain UoD� However� our approach has the advantage that it clearly separates
the modelling of data structure from the modelling of constraints on the data� We
note also that our HDM di�ers from graph�based conceptual modelling languages
such as Telos ���� by supporting a very small set of low�level� elemental modelling
primitives �nodes� edges and constraints�� This makes the HDM better suited for
use as a CDM than higher�level modelling languages� for the reasons discused in
the previous paragraph�

Our previous work ���� ��� has de
ned a framework for performing semantic
intra�model transformations� where the original and transformed schema are
represented in the same modelling language� In ���� we de
ned the notions of
schemas and schema equivalence for the low�level HDM� We gave a set of primi�
tive transformations on HDM schemas that preserve schema equivalence� and we
showed how more complex transformations may be formulated as sequences of
these primitive transformations� We illustrated the expressiveness and practical
usefulness of the framework by showing how a practical ER modelling language
may be de
ned in terms of the HDM� and primitive transformations on ER
schemas de
ned in terms of composite transformations on the equivalent HDM
schemas� In ���� we showed how schema transformations that are automatically
reversible can be used as the basis for the automatic migration of data and appli�
cation logic between schemas expressed in the HDM or in higher�level languages�

SHDM

A

E

B

Srel

E�A�B�

E�A � E�B

Suml

E

A
B

Ser

E
A
B

Fig� �� Multiple models based on the HDM

Here we extend our previous work by providing a generic approach to de
ning
the semantics of modelling languages in terms of the HDM� which in turn allows
the automatic derivation of transformation rules� These rules may be applied
by a user to map between semantically equivalent schemas expressed in the
same or di�erent modelling languages� In combination with the work in �����
this allows us to automatically transform queries between schemas de
ned in
di�erent modelling languages� Also� our use of a unifying underlying data model
allows for the de
nition of inter�model links� which support the development
of stronger coupling between di�erent modelling languages than is provided by
current approaches�

The concept is illustrated in Figure � which shows three high�level schemas
each of which is represented by the same underlying HDM schema� The con�
structs of each of the three higher�level modelling languages �UML� ER and
relational� are reduced to nodes associated by edges in the underlying HDM
schema� In particular� the three schemas illustrated have a common HDM rep�



Lecture Notes in Computer Science �

resentation as a graph with three nodes and two edges� as well as some �unillus�
trated� constraints on the possible instances this graph may have�

The remainder of the paper is as follows� We begin with an overview of our
low�level framework and the HDM in Section �� In Section � we describe our
general methodology for de
ning high�level modelling languages� and transfor�
mations for them� in terms of the low�level framework�We illustrate the approach
by de
ning four speci
c modelling languages � an ER model� a relational model�
UML static structure diagrams� and WWW documents� In Section � we show
how to perform inter�model transformations� leading to Section 
 where we
demonstrate how to use our approach to handle combinations of existing mod�
elling languages� enhanced with inter�model links� A summary of the paper
and our conclusions are given in Section ��

� Overview of the Hypergraph Data Model

In this section we give a brief overview of those aspects of our previous work
that are necessary for the purposes of this paper� We refer the reader to ���� ���
for full details and formal de
nitions�

A schema in the Hypergraph Data Model �HDM� is a triple hNodes� Edges�
Constraintsi� A query q over a schema S � hNodes� Edges� Constraintsi
is an expression whose variables are members of Nodes � Edges�� Nodes and
Edges de
ne a labelled� directed� nested hypergraph� It is nested in the sense
that edges can link any number of both nodes and other edges� Constraints is
a set of boolean�valued queries over S� Nodes are uniquely identi
ed by their
names� Edges and constraints have an optional name associated with them�

An instance I of a schema S � hNodes� Edges� Constraintsi is a set of sets
satisfying the following�

�i� each construct c � Nodes�Edges has an extent� denoted by ExtS�I�c�� that
can be derived from I �

�ii� conversely� each set in I can be derived from the set of extents fExtS�I�c� j c �
Nodes � Edgesg�

�iii� for each e � Edge� ExtS�I�e� contains only values that appear within the
extents of the constructs linked by e �domain integrity��

�iv� the value of every constraint c � Constraints is true� the value of a query q
being given by q�c��ExtS�I�c��� � � � � cn�ExtS�I�cn�� where c�� � � � � cn are the
constructs in Nodes � Edges�

We call the function ExtS�I an extension mapping� A model is a triple
hS� I� ExtS�Ii� Two schemas are equivalent if they have the same set of in�
stances� Given a condition f � a schema S conditionally subsumes a schema
S� w�r�t� f if any instance of S� satisfying f is also an instance of S� Two schemas

� Since what we provide is a framework� the query language is not �xed but will vary
between di�erent implementation architectures� In our examples in this paper� we
assume that it is the relational calculus�



	 P�J� Mc�Brien and A� Poulovassilis

S and S� are conditionally equivalent w�r�t f if they each conditionally sub�
sume each other w�r�t� f � We 
rst developed these de
nitions of schemas� in�
stances� and schema equivalence in the context of an ER common data model�
in earlier work ��� ���� A comparison with other approaches to schema equiva�
lence and schema transformation can be found in ����� which also discusses how
our framework can be applied to schema integration�

We now list the primitive transformations of the HDM� Each transformation
is a function that when applied to a model returns a new model� Each transfor�
mation has a proviso associated with it which states when the transformation is
successful� Unsuccessful transformations return an �unde
ned� model� denoted
by �� Any transformation applied to � returns ��

�� renameNode hfromName� toNamei renames a node� Proviso� toName is
not already the name of some node�

�� renameEdge hhfromName� c�� � � � � cmi� toNamei renames an edge� Proviso�
toName is not already the name of some edge�

�� addConstraint c adds a new constraint c� Proviso� c evaluates to true�
�� delConstraint c deletes a constraint� Proviso� c exists�

� addNode hname� qi adds a node named name whose extent is given by the

value of the query q� Proviso� a node of that name does not already exist�
�� delNode hname� qi deletes a node� Here� q is a query that states how the

extent of the deleted node could be recovered from the extents of the re�
maining schema constructs �thus� not violating property �ii� of an instance��
Proviso� the node exists and participates in no edges�

�� addEdge hhname� c�� � � � � cmi� qi adds a new edge between a sequence of ex�
isting schema constructs c�� � � � � cm� The extent of the edge is given by the
value of the query q� Proviso� the edge does not already exist� c�� � � � � cm
exist� and q satis
es the appropriate domain constraints�

�� delEdge hhname� c�� � � � � cmi� qi deletes an edge� q states how the extent of
the deleted edge could be recovered from the extents of the remaining schema
constructs� Proviso� the edge exists and participates in no edges�

For each of these transformations� there is a ��ary version which takes as
an extra argument a condition which must be satis
ed in order for the trans�
formation to be successful� A composite transformation is a sequence of
n � � primitive transformations� A transformation t is schema�dependent �s�
d� w�r�t� a schema S if t does not return � for any model of S� otherwise t is
instance�dependent �i�d� w�r�t� S� It is easy to see that if a schema S can be
transformed to a schema S� by means of a s�d transformation� and vice versa�
then S and S� are equivalent� If a schema S can be transformed to a schema S�

by means of an i�d transformation with proviso f � and vice versa� then S and S�

are conditionally equivalent w�r�t f �
It is also easy to see that every successful primitive transformation t is re�

versible by another successful primitive transformation t��� e�g� addNode hn� qi
can be reversed by delNode hn� qi� etc� This reversibility generalises to success�
ful composite transformations� the reverse of a transformation t�� � � � � tn being
t��n � � � � � t��

�
�



Lecture Notes in Computer Science 


� Supporting Richer Semantic Modelling Languages

In this section we show how schemas expressed in higher�level semantic mod�
elling languages� and the set of primitive transformations on such schemas� can
be de
ned in terms of the hypergraph data model and its primitive transforma�
tions� We begin with a general discussion of how this is done for an arbitrary
modelling language� M � We then illustrate the process for three speci
c mod�
elling languages � an ER model� a relational model� and UML static structure
diagrams� We conclude the section by also de
ning the conceptual elements of
WWW documents� namely URLs� resources and links� and showing how these
too can be represented in the HDM�

In general the constructs of any semantic modelling language M may be
classi
ed as either extensional constructs� or constraint constructs� or both� Ex�
tentional constructs represent sets of data values from some domain� Each
such construct in M must be built using the extentional constructs of the HDM
i�e� nodes and edges� There are three kinds of extentional constructs�

� nodal constructs may be present in a model independent of any other con�
structs� The scheme of each construct uniquely identi
es the construct in
M � For example� ER model entities may be present without requiring the
presence of any other particular constructs� and their scheme is the entity
name� A nodal construct maps into a node in the HDM�

� linking constructs can only exist in a model when certain other nodal con�
structs exist� The extent of a linking construct is a subset of the cartesian
product of the extents of these nodal constructs� For example� relationships
in ER models are linking constructs� Linking constructs map into edges in
the HDM�

� nodal�linking constructs are nodal constructs that can only exist when
certain other nodal constructs exist� and that are linked to these constructs�
Attributes in ER models are an example� Nodal�linking constructs map into
a combination of a node and an edge in the HDM�

Constraint constructs represent restrictions on the extents of the exten�
tional constructs of M � For example� ER generalisation hierarchies restrict the
extent of each subclass entity to be a subset of the extent of the superclass entity�
and ER relationships and attributes have cardinality constraints� Constraints are
directly supported by the HDM� but if a constraint construct of M is also an
extentional construct� then the appropriate extensional HDM constructs must
also be included in its de
nition�

Table � illustrates this classi
cation of schema constructs by de
ning the
main constructs of ER Models and giving their equivalent HDM representation�
We discuss this representation in greater detail in Section ��� below�

The general method for constructing the set of primitive transformations for
some modelling language M is as follows�

�i� For every construct of M we need an add transformation to add to the un�
derlying HDM schema the corresponding set of nodes� edges and constraints�



� P�J� Mc�Brien and A� Poulovassilis

This transformation thus consists of zero or one addNode transformations�
the operand being taken from the Node 
eld of the construct de
nition �if
any�� followed by zero or one addEdge transformations taken from the Edge

eld� followed by a sequence of zero or more addConstraint transformations
taken from the Cons�traint� 
eld�

�ii� For every construct of M we need a del transformation which reverses its
add transformation� This therefore consists of a sequence of delConstraint
transformations� followed possibly by a delEdge transformation� followed
possibly by a delNode transformation�

�iii� For those constructs of M which have textual names� we also de
ne a
rename transformation in terms of the corresponding set of renameNode
and renameEdge transformations�

Once a high�level construct has been de
ned in the HDM� the necessary add�
del and rename transformations on it can be automatically derived from its
HDM de
nition� For example� Table � shows the result of this automatic process
for the ER model de
nition of Table ��

Table �� De�nition of ER Model constructs

Higher Level Construct Equivalent HDM Representation

Construct entity �E�

Class nodal

Scheme hei
Node her�ei

Construct attribute �A�

Class nodal�linking�
constraint

Scheme he� a� s�� s�i

Node her�e�ai
Edge h � er�e� er�e�ai
Links her�ei
Cons makeCard
h � er�e� er�e�ai� s�� s��

Construct relationship �R�

Class linking�
constraint

Scheme hr� e�� e�� s�� s�i

Edge her�r� er�e�� er�e�i
Links her�e�i� her�e�i
Cons makeCard
her�r� er�e�� er�e�i� s�� s��

Construct generalisation �G�

Class constraint

Scheme hpt� e� g� e�� � � � � eni

Links her�ei� her�e�i� � � � � her�eni

Cons
e�g��� � i � j � n � ei � ej � ���
e�g��� � i � n � ei � e��
if pt � total then e�g�e �

Sn

i��
ei�

��� An ER Model

We now look more closely at how our HDM framework can support an ER
model with binary relationships and generalisation hierarchies ����� shows how
the framework can support ER models with n�ary relations� attributes on rela�
tions� and complex attributes�� The representation is summarised in Table �� We
use some short�hand notation for expressing cardinality constraints on edges� in
that makeCard�hname� c�� � � � � cmi� s�� � � � � sm� denotes the following constraint
on the edge hname� c�� � � � � cmi�Vm
i����x � ci � jfhv�� � � � � vmi j hv�� � � � � vmi � hname� c�� � � � � cmi � vi � xgj � si�

Here� each si is a set of integers representing the possible values for the cardi�
nality of the participating construct ci e�g� f�� ������ ����Ng� N denoting in
nity�



Lecture Notes in Computer Science �

Table �� Derived transformations on ER models

Transformation on er Equivalent Transformation on HDM

renameerE he� e
�i renameNode her�e� er�e�i

adderE he� qi addNode her�e� qi
delerE he� qi delNode her�e� qi

renameerA ha� a
�i renameNode her�e�a� er�e�a�i

adderA he� a� s�� s�� qatt� qassoci addNode her�e�a� qatti� addEdge hh � er�e� er�e�ai� qassoci�
addConstraint makeCard
h � er�e� er�e�ai� s�� s��

delerA he� a� s�� s�� qatt� qassoci delConstraint makeCard
h � er�e� er�e�ai� s�� s���
delEdge hh � er�e� er�e�ai� qassoci� delNode her�e�a� qatti

renameerR hhr� e�� e�i� r
�i renameEdge hher�r� er�e�� er�e�i� er�r

�i
adderR hr� e�� e�� s�� s�� qi addEdge hher�r� er�e�� er�e�i� qi�

addConstraint makeCard
her�r� er�e�� er�e�i� s�� s��
delerR hr� e�� e�� s�� s�� qi delConstraint makeCard
her�r� er�e�� er�e�i� s�� s���

delEdge hher�r� er�e�� er�e�i� qi

renameerG he� g� g
�i renameConstraint her�e�g� er�e�g�i

adderG hpt� e� g� e�� � � � � eni if pt � total then addConstraint e�g�e �
Sn

i��
ei��

addConstraint e�g��� � i � n � ei � e��
addConstraint e�g��� � i � j � n � ei � ej � ��

delerG hpt� e� g� e�� � � � � eni if pt � total then delConstraint e�g�e �
Sn

i��
ei��

delConstraint e�g��� � i � j � n � ei � ej � ���
delConstraint e�g��� � i � n � ei � e�

This notation was identi
ed by ��� as the most expressive method for specifying
cardinality constraints�

Entity classes in ER schemas map to nodes in the underlying HDM schema�
Because we will later be mixing schema constructs from schemas that may be
expressed in di�erent modelling notations� we disambiguate these constructs at
the HDM level by adding a pre
x to their name� This pre
x is er� rel� uml or
www for each of the four modelling notations that we will be considering�

Attributes in ER schemas also map to nodes in the HDM� since they have
an extent� However� attributes must always be linked to entities� and hence are
classi
ed as nodal�linking� The cardinality constraints on attributes lead to them
being classi
ed also as constraint constructs� Note that in the HDM schema we
pre
x the name of the attribute by its entity	s name� so that we can regard as
distinct two attributes with the same name if they are are attached to di�erent
entities� The association between an entity and an attribute is un�named� hence
the occurrence of in the equivalent HDM edge construct�

Relationships in ER schemas map to edges in the HDM and are as clas�
si
ed linking constructs� As with attributes� the cardinality constraints on rela�
tionships lead to them being classi
ed also as constraint constructs� ER model
generalisations are constraints on the instances of entity classes� which we
give a textual name to� We use the notation label�cons� to denote a labelled
constraint in the HDM� and provide the additional primitive transformation
renameConstrainthlabel� label�i� Several constraints may have the same label�
indicating that they are associated with the same higher�level schema construct�



� P�J� Mc�Brien and A� Poulovassilis

Generalisations in ER models are uniquely identi
ed by the combination
of the superclass entity name� e� and the generalisation name� g� so we use the
pair e�g as the label for the constraints associated with a generalisation� General�
isations may be partial or total� To simplify the speci
cation of di�erent variants
of the same transformation� we use a conditional template transformation
of the form �if qcond then t	� where qcond is a query over the schema component
of the model that the transformation is being applied to� qcond may contain free
variables that are instantiated by the transformation	s arguments� If qcond eval�
uates to true� then those instantiations substitute for the same free variables in
t� which forms the result of the template� Otherwise the result of the template
is the identity transformation� Templates may be extended with an else clause�
of the form �if qcond then t else t�	� where if qcond is false then the result is t��

Table �� De�nition of relational model constructs

Higher Level Construct Equivalent HDM Representation

Construct relation �R�

Class nodal

Scheme hri
Node hrel�ri

Construct attribute �A�

Class nodal�linking�
constraint

Scheme hr� a� ni

Node hrel�r�ai
Edge h � rel�r� rel�r�ai
Links hrel�ri

Cons
if 
n � null�
then makeCard
h � rel�r� rel�r�ai� f�� �g� f���Ng�
else makeCard
h � rel�r� rel�r�ai� f�g� f���Ng�

Construct primary key �P �

Class constraint

Scheme hr� a�� � � � � ani

Links hrel�r�a�i� � � � � hrel�r�ani

Cons
x � hrel�ri � x � hx�� � � � � xni
	 hx� x�i � h � rel�r� rel�r�a�i 	 � � �

	 hx� xni � h � rel�r� rel�r�ani
Construct foreign key �F �

Class constraint

Scheme hr� rf � a�� � � � � ani

Links hrel�r�a�i� � � � � hrel�r�ani

Cons
hx� x�i � h � rel�r� rel�r�a�i 	 � � �

hx� xni � h � rel�r� rel�r�ani � hx�� � � � � xni � rf

��� The Relational Model

We de
ne in Table � how the basic relational data model can be represented in
the HDM� We take the relational model to consist of relations� attributes �which
may be null�� a primary key for each relation� and foreign keys� Our descriptions
for this model� and for the following ones� omit the de
nitions of the primitive
transformation operations since these are automatically derivable�

Relations may exist independently of each other and are nodal constructs�
Normally� relational languages do not allow the user to query the extent of a
relation �but rather the attributes of the relation� so we de
ne the extent of the
relation to be that of its primary key� Attributes in the relational model are
similar to attributes of entity classes in the ER model� However� the cardinality
constraint is now a simple choice between the attribute being optional �null �
f�� �g� or mandatory �notnull � f�g�� A primary key is a constraint that
checks whether the extent of r is the same as the extents of the key attributes



Lecture Notes in Computer Science �

a�� � � � � an� A foreign key is a set of attributes a�� � � � � an appearing in r that
are the primary key of another relation rf �

Table �� De�nition of UML static structure constructs

Higher Level Construct Equivalent HDM Representation

Construct class �C�

Class nodal

Scheme hci
Node huml�ci

Construct meta class �M�

Class nodal�
constraint

Scheme hmi

Node huml�mi
Cons c � huml�mi � hci

Construct attribute �A�

Class nodal�linking�
constraint

Scheme hc� a� si

Node huml�c�ai
Edge h � uml�c� uml�c�ai
Links huml�ci
Cons makeCard
h � uml�c� uml�c�ai� s� f���Ng�

Construct object �O�

Class constraint

Scheme
hc� o� a�� � � � � an�
v�� � � � � vni

Links huml�ci� huml�c� uml�a�i� � � � � huml�c� uml�ani

Cons c�o�

i � uml�c � hi� v�i � huml�c� uml�a�i
	 � � � 	 hi� vni � huml�c� uml�ani

�

Construct association �Assoc�

Class linking�
constraint

Scheme
hr� c�� � � � � cn�

l�� � � � � ln� s�� � � � � sni

Edge huml�r�l��� � � �ln� uml�c�� � � � � uml�cni
Links huml�c�i� � � � � huml�cni

Cons
makecard
huml�r�l��� � � �ln�
uml�c�� � � � � uml�cni� s�� � � � � sn�

Construct generalisation �G�

Class constraint

Scheme hcs� c� g� c�� � � � � cni

Links huml�ci� huml�c�i� � � � � huml�cni

Cons

if disjoint � cs

then c�g��� � i � j � n � ci � cj � ���
if complete � cs then c�g�c �

Sn

i��
ci��

c�g��� � i � n � ci � c�

��� UML Static Structure Diagrams

We de
ne in Table � those elements of UML class diagrams that model static
aspects of the UoD� Elements of class diagrams that are identi
ed as dynamic in
the UML Notation Guide ��� e�g� operations� are beyond the scope of this paper�

UML classes are de
ned in a similar manner to ER entities� Metaclasses
are de
ned like classes� with the additional constraint that the instances of a
metaclass must themselves be classes� Attributes have a multiplicity asso�
ciated with them� This is a single range of integers which shows how many
instances of the attribute each instance of the entity may be associated with�
We represent this by a single cardinality constraint� s� The cardinality constraint
on the attribute is by de
nition f���Ng� Note that we do not restrict the domain
of a in any way� so we can support attributes which have either simple types
or entity classes as their domain� A more elaborate implementation could add a

eld to the scheme of each attribute to indicate the domain from which values
of the attribute are drawn� An object in UML constrains the instances of some
class� in the sense that the class must have an instance where the attributes



�� P�J� Mc�Brien and A� Poulovassilis

a�� � � � � an take speci
ed values v�� � � � � vn� We model this an HDM constraint�
labelled with the name of the object� o� and the class� c� it is an instance of�

UML supports both binary and n�ary associations� Since the former is just
a special case of the latter ���� we only consider here the general case of n�ary
associations� in which an association� r� links classes c�� � � � � cn� with role names
l�� � � � � ln and cardinalities of each role s�� � � � � sn� We identify the association
in the HDM by concatenating the association name with the role names� The
composition construct is special case of an association� It has f�g cardinality on
the number of instances of the parent class that each instance of the child class
is associated with �and further restrictions on the dynamic behaviour of these
classes�� Finally� UML generalisations may be either incomplete or complete�
and overlapping or disjoint � giving two template transformations to handle
these distinctions�

��	 WWW Documents

Before describing how WWW Documents are represented in the HDM� we 
rst
identify how they can be structured as conceptual elements� URLs ��� for Internet
resources fetched using the IP protocol from speci
c hosts take the general form
hschemei���huseri�hpasswordi�hhosti�hporti�hurl�pathi�

We can therefore characterise a URL as an HDM node� formed of sextuples
consisting of these six elements of the URL �with used for missing values of
optional elements�� A WWW document resource can be modelled as another
node� Each resource must be identi
ed by a URL� but a URL may exist without
its corresponding resource existing� Each resource may link to any number of
URLs� Thus we have a single HDM schema for the WWW which is constructed
as follows�

addNode hwww�url�fgi�
addNode hwww�resource�fgi�
addEdge hhwww�identify�www�url�www�resourcei�f����g�f�g�fgi�
addEdge hhwww�link�www�resource�www�urli�f���Ng�f���Ng�fgi�
Notice that we have assigned an empty extent to each of the four extensional

constructs of the WWW schema� This is because we model each URL� resource�
or link in the WWW as a constraint construct � see Table 
 � enforcing the
existence of this instance in the extension of the WWW schema�

Table 	� De�nition of WWW Constructs

Higher Level Construct Equivalent HDM Representation

Construct url �u�

Class constraint

Scheme hs� us� pw� h� pt� upi

Links hwww�urli
Cons hs� us� pw� h� pt� upi � hwww�urli

Construct resource �r�

Class constraint

Scheme hhs� us� pw� h� pt� upi� ri

Links hwww�urli

Cons
hhs� us� pw� h� pt� upi� ri �
hwww�identify�www�url�www�resourcei

Construct link �l�

Class constraint

Scheme hr� hs� us� pw� h� pt� upii

Links hwww�urli

Cons
hr� hs� us� pw� h� pt� upii �
hwww�link�www�resource�www�urli



Lecture Notes in Computer Science ��

� Inter�Model Transformations

Our HDM representation of higher�level modelling languages is such that it
is possible to unambiguously represent the constructs of multiple higher�level
schemas in one HDM schema� This brings several important bene
ts�

�a� An HDM schema can be used as a unifying repository for several higher�level
schemas�

�b� Add and delete transformations can be carried out for constructs of a mod�
elling languageM� where the extent of the construct is de
ned in terms of the
extents of constructs of some other modelling languages� M��M�� � � �� This
allows inter�model transformations to be applied� where the constructs
of one modelling language are replaced with those of another�

�c� Such inter�model transformations form the basis for automatic inter�model
translation of data and queries� This allows data and queries to be trans�
lated between di�erent schemas in interoperating database architectures such
as database federations ���� and mediators �����

�d� New inter�model edges which do not belong to any single higher�level
modelling language can be de
ned� This allows associations to be built be�
tween constructs in di�erent modelling languages� and navigation between
them� This facility is of particular use when no single higher�level modelling
language can adequately capture the UoD� as is invariably the case with any
large complex application domain�

Items �a� and �d� are discussed further in Section 
� Item �c� follows from
our work in ���� which shows how schema transformations can be used to auto�
matically migrate data and queries� We further elaborate on item �b� here� We
use the syntax M�q� to indicate that a query q should be evaluated with respect
to the schema constructs of the higher�level model M � where M can be rel� er�
uml� www and so forth� If q appears in the argument list of a transformation
on a construct of M � then it may be written simply as q� and M�q� is inferred�
For example� addumlC hman�malei is equivalent to addumlC hman� uml�male�i� mean�
ing add a UML class man whose extent is the same as that of the UML class
male� while addumlC hman� er�male�i would populate the instances of UML class
man with the instances of ER entity male�

Example � A Relational to ER inter�model transformation
The following composite transformation transforms the relational schema

Srel in Figure � to the ER schema Ser� rel�q� indicates that the query q should
be evaluated with respect to the relational schema constructs� and er�q� that
q should be evaluated with respect to the ER schema constructs� getCard�c�
denotes the cardinality constraint associated with a construct c�

�� add
er

E hE� rel�fy j �x�hx� yi � h �E�Aig�i
�� adderA hE�A� getCard�h � rel�E� rel�E�Ai�� rel�fy j �x�hx� yi � h �E�Aig�� rel�h �E�Ai�i
�� adderA hE�B� getCard�h � rel�E� rel�E�Bi�� rel�fy j �x�hx� yi � h �E�Big�� rel�h �E�Bi�i
�� delrelP hE�Ai



�� P�J� Mc�Brien and A� Poulovassilis


� delrelA hE�B� getCard�h � er�E� er�E�Bi�� er�fy j �x�hx� yi � h �E�Big�� er�h �E�Bi�i
�� delrelA hE�A� getCard�h � er�E� er�E�Ai�� er�fy j �x�hx� yi � h �E�Aig�� er�h �E�Ai�i
�� delrelR hE� er�fy j �x�hx� yi � h �E�Aig�i

Notice that the reverse transformation from Ser back to Srel is automatically
derivable from this transformation� as discussed at the end of Section �� and con�
sists of a sequence of transformations addrelR � addrelA � addrelA � addrelP � delerA � delerA �
delerE whose arguments are the same as those of their counterparts in the for�
ward direction�

Whilst it is possible to write inter�model transformations such as this one for
each speci
c transformation as it arises� this can be tedious and repetitive� and
in practice we will want to automate the process� We can use template trans�
formations to specify in a generic way how constructs in a modelling language
M� should be transformed to constructs in a modelling language M�� thus en�
abling transformations on speci
c constructs to be automatically generated� The
following guidelines can be followed in preparing these template transformations�

�� Ensure that every possible instance of a construct in M� appears in the
query part of a transformation that adds a construct to M�� Occasionally it
might be possible to consider these instances individually� such as in the 
rst
transformation step of Example � below� However� usually it is combinations
of instances of constructs in M� that map to instances of constructs in M��
as the remaining transformation steps in Example � illustrate�

�� Ensure that every construct c ofM� appears in a transformation that deletes
c� recovering the extent of c from the extents of constructs in M� that were
created in the addition transformations during Step � above�

We illustrate Step � in Example � by showing how the constructs of any
relational model can be mapped to constructs of an ER model�

Example � Mapping Relational Models to ER Models

�� Each relation r can be represented as a entity class with the same name in
the ER model� using its primary key to identify the instances of the class�
if hr� � � � � � i � primarykey then adderE hr� rel�hri�i

�� An attribute set of r which is its primary key and is also a foreign key which
is the primary key of rf � can be represented in the ER Model as a partial
generalisation hierarchy with rf as the superclass of r�
if hr� a�� � � � � ani � primarykey� hr� rf � a�� � � � � ani � foreignkey
then adderG hpartial� rf � ri

�� An attribute set of r which is not its primary key but which is a foreign
key that is the primary key of rf � can be presented in the ER Model as a
relationship between r and rf �
if hr� b�� � � � � bni � primarykey � hr� rf � a�� � � � � ani � foreignkey �
fa�� � � � � ang �� fb�� � � � � bng

then adderR ha��� � ��an� r� rf � f�� �g� f���Ng� fhhy�� � � � � yni� hx�� � � � � xnii j �x �
hx� y�i � rel�hr� b�i� � � � � � hx� yni � rel�hr� bni� �
hx� x�i � rel�hr� a�i� � � � � � hx� xni � rel�hr� ani�gi



Lecture Notes in Computer Science ��

�� Any attribute of r that is not part of a foreign key can be represented as an
ER Model attribute�
if hr� ai � attribute � 	�a�� � � � � an � �hr� � a�� � � � � ani � foreignkey �
a � fa�� � � � � ang�

then adderA hr� a� f�� �g� f���Ng� fx j �y � hy� xi � rel�hr� ai�g� rel�hr� ai�i

� Mixed Models

Our framework opens up the possibility of creating special�purpose CDMs which
mix constructs from di�erent modelling languages� This will be particularly use�
ful in integration situations where there is not a single already existing CDM
that can fully represent the constructs of the various data sources� To allow the
user to navigate between the constructs of di�erent modelling languages� we can
specify inter�model edges that connect associated constructs� For example� we
may want to associate entity classes in an ER model with UML classes in a
UML model� using a certain attribute in the UML model to correspond with the
primary key attribute of the ER class� Based on this principle� we could de
ne
the new construct common class shown in Table ��

This technique is particularly powerful when a data model contains semi�
structured data which we wish to view and associate with data in a structured
data model� For example� we may want to associate a URL held as an attribute
in a UML model� with the web page resource in the WWW model that the URL
references� In Figure � we illustrate how information on people in a UML model
can be linked to the person	s WWW home page� For this link to be established�
we de
ne an inter�model link which associates textual URLs with url constructs
in the WWW model� This is achieved by the web page inter�model link in
Table �� which associates a resource in the WWW model to the person entity
class in the UML model by the constraint that we must be able to construct the
UML url attribute from the string concatenation �denoted by the �
	 operator�
of the url instance in the WWW model that identi
es the resource�

Table 
� Two Examples of Inter�model Constructs

Higher Level Construct Equivalent HDM Representation

Construct common class

Class linking�
constraint

Scheme he� c� ai

Edge h � er�e� uml�ci
Links her�ei� huml�ci

Cons
h � er�e� uml�ci �
fhx� xi j x � er�e 	 
y�hy� xi � h � uml�c� uml�aig

Construct web page

Class linking�
constraint

Scheme hr� c� ai

Edge h �www�r� uml�ai
Links hwww�ri� huml�ai

Cons

h �www�r� uml�ai � fhr� ai j 
z� s� us� pw� h� pt� up�
hhs� us� pw� h� pt� upi� ri �

hwww�identity�www�url�www�resourcei 	
a � s�������us�����pw�����h�����pt�����up 	
hz� ai � h � uml�c� uml�aig

We may use such inter�model links to write inter�model queries� For example�
if we want to retrieve the WWW pages of all people that work in the computing

department� we can ask the query�



�	 P�J� Mc�Brien and A� Poulovassilis

dept

dname

person

name
url
keywords

worksin

�
�
�
�url

�
�
�
�resource

web page

link

identify

UML
Model

WWW
Model

Fig� �� Linking a semantic data model with the WWW

�d� p� u � hd� �computing�i � hdept� dnamei � hd� pi � hworksin� person� depti �
hp� ui � hperson� urli � hr� ui � inter�hresource� person� urli�

We may also use the inter�model links to derive constructs in one model
based on information held in another model� For example� we could populate the
keywords attribute of person in the UML model by using the HTMLGetMeta�r�n�
utility which extracts the CONTENT part of a HTML META tag in resource r�
where the HTTP�EQUIV or NAME 
eld matches n �����
adduml

A hperson� keywords� f���Ng� f���Ng� fhp� ki j �u� r � hp� ui � hperson� urli �
hr� ui � inter�hresource� person� urli� � k � HTMLGetMeta�r� �Keywords��gi

� Conclusions

We have presented a method for specifying semantic data models in terms of
the constructs of a low�level hypergraph data model �HDM�� We showed how
these speci
cations can be used to automatically derive the transformation op�
erations for the higher�level data models in terms of the operations of the HDM�
and how these higher�level transformations can be used to perform inter�model
transformations� Finally� we showed how to use the hypergraph data structure
to de
ne inter�model links� hence allowing queries which span multiple models�

Our approach clearly distinguishes between the structural and the constraint
aspects of a data model� This has the practical advantage that constraint check�
ing need only be performed when it is required to ensure consistency between
models� whilst data�query access can use the structural information to translate
data and queries between models�

Combined with our previous work on intra�model transformation ��� ��� ����
we have provided a complete formal framework in which to describe the seman�
tic transformation of data and queries from almost any data source� including
those containing semi�structured data� Our framework thus 
ts well into the var�
ious database integration architectures� such as Garlic ��
� and TSIMMIS ���� It
complements these existing approaches by handling multiple data models in a
more �exible manner than simply converting them all into some high level CDM
such as an ER Model� It does this by representing all models in terms of their
elemental nodes� edges and constraints� and allows the free mixing of di�erent
models by the de
nition of inter�model links� Indeed� by itself� our framework



Lecture Notes in Computer Science �


forms a useful method for the formal comparison of the semantics of various
data modelling languages�

Our method has in part been implemented in a simple prototype tool� We
plan now to develop a full�strength tool supporting the graphical display and
manipulation of model de
nitions� and the de
nition of templates for composite
transformations� We also plan to extend our approach to model dynamic aspects
of conceptual modelling languages and to support temporal data models�

References

�� M� Andersson� Extracting an entity relationship schema from a relational database
through reverse engineering� In Proceedings of ER���� LNCS� pages 	���	���
Springer�Verlag� ���	�

�� T� Berners�Lee� L� Masinter� and M� McCahill� Uniform resource locators 
URL��
Technical Report RFC ����� Internet� December ���	�

�� S�S� Chawathe� H� Garcia�Molina� J� Hammer� K� Ireland� Y� Papakonstantinou�
J�D� Ullman� and J� Widom� The TSIMMIS project� Integration of heterogeneous
information sources� In Proceedings of the ��th Meeting of the Information Pro�

cessing Society of Japan� pages ����� October ���	�
	� UML Consortium� UML notation guide� version ���� Technical report� Rational

Software� September �����

� G� DeGiacomo and M� Lenzerini� A uniform framework for concept de�nitions in

description logics� Journal of Arti	cial Intelligence Research� �� �����
�� P� Devanbu and M�A� Jones� The use of description logics in KBSE systems� ACM

Transactions on Software Engineering and Methodology� �
����	������ �����
�� R� Elmasri and S� Navathe� Fundamentals of Database Systems� The Ben�

jamin�Cummings Publishing Company� Inc�� �nd edition� ���	�
�� S�W� Liddle� D�W� Embley� and S�N� Wood�eld� Cardinality constraints in seman�

tic data models� Data 
 Knowledge Engineering� ��
�����
����� �����
�� P�J� McBrien and A� Poulovassilis� A formal framework for ER schema transfor�

mation� In Proceedings of ER���� volume ���� of LNCS� pages 	���	��� �����
��� P�J� McBrien and A� Poulovassilis� Automatic migration and wrapping of database

applications � a schema transformation approach� Technical Report TR������
King�s College London� �����

��� P�J� McBrien and A� Poulovassilis� A formalisation of semantic schema integration�
Information Systems� ��

��������	� �����

��� C� Musciano and B� Kennedy� HTML� The De	nitive Guide� O�Reilly � Associates�
�����

��� J� Mylopoulos� A� Borgida� M� Jarke� and M� Koubarakis� Telos� Representing
knowledge about information systems� ACM Transactions on Information Systems�
�
	����
����� October �����

�	� A� Poulovassilis and P�J� McBrien� A general formal framework for schema trans�
formation� Data and Knowledge Engineering� ��
���	����� �����

�
� M�T� Roth and P� Schwarz� Don�t scrap it� wrap it� A wrapper architecture for
data sources� In Proceedings of the �
rd VLDB Conference� pages ������
� Athens�
Greece� �����

��� A� Sheth and J� Larson� Federated database systems� ACM Computing Surveys�
��
����������� �����

��� G� Wiederhold� Forward to special issue on intelligent integration of information�
Journal on Intelligent Information Systems� �
����������� �����


