
On Querying Versions of Multiversion Data Warehouse ∗

Tadeusz Morzy
Poznan University of Technology
Institute of Computing Science

Poland

tmorzy@cs.put.poznan.pl

Robert Wrembel
Poznan University of Technology
Institute of Computing Science

Poland

rwrembel@cs.put.poznan.pl

ABSTRACT
A data warehouse (DW) is fed with data that come from ex-
ternal data sources that are production systems. External
data sources, which are usually autonomous, often change
not only their content but also their structure. The evolu-
tion of external data sources has to be reflected in a DW,
that uses the sources. Traditional DW systems offer a lim-
ited support for handling dynamics in their structure and
content. A promising approach to handling changes in DW
structure and content is based on a multiversion data ware-
house. In such a DW, each DW version describes a schema
and data at certain period of time or a given business sce-
nario, created for simulation purposes. In order to appro-
priately analyze multiversion data, an extension to a tradi-
tional SQL language is required. In this paper we propose
an approach to querying a multiversion DW. To this end,
we extended a SQL language and built a multiversion query
language interface with functionality that allows: (1) ex-
pressing queries that address several DW versions and (2)
presenting their results annotated with metadata informa-
tion.

Categories and Subject Descriptors
H.2 [Database Management]: Languages - query lan-
guages

General Terms
Design, Languages, Experimentation

Keywords
data warehouse, data versioning, schema versioning, multi-
version query, metadata

∗This work is partially supported by the grant no. 4 T11C
019 23 from the Polish State Committee for Scientific Re-
search (KBN), Poland

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DOLAP’04, November 12–13, 2004, Washington, DC, USA.
Copyright 2004 ACM 1-58113-977-2/04/0011 ...$5.00.

1. INTRODUCTION
A data warehouse (DW) integrates autonomous and het-

erogeneous external data sources (EDSs) and makes the
integrated information available for analytical processing,
decision making, and data mining applications. As exter-
nal data sources are autonomous, they may evolve in time
independently of each other and independently of a DW
that integrates them [22]. Changes in EDSs can be cate-
gorized as: (1) content changes, i.e. insert/update/delete
data, and (2) schema changes, i.e. add/modify/drop an at-
tribute or a table. A way to tackle the problem of content
and schema changes in EDSs is to ensure correct propaga-
tion of these changes to a DW. A DW schema adjustments
can be done in two different ways, namely schema evolution
and schema versioning. The first approach consists in up-
dating a schema and transforming data from an old schema
into a new schema. Only the current version of a schema
is present. In contrast, the second approach keeps track of
the history of all versions of a schema. Versioning can be
done implicit by temporal extension or explicit by physically
storing different versions of data.
The process of good decision making often requires fore-

casting future business behavior, based on present and his-
torical data as well as on assumptions made by decision
makers. This kind of data processing is called the what-
if analysis. In this analysis, a decision maker simulates in a
DW changes that might happen in real world, creates virtual
possible scenarios, and explores them with OLAP queries.
To this end, a DW must provide means of creating various
DW alternatives, represented by different DW versions.
A DW capable of managing its multiple versions will fur-

ther be called a multiversion data warehouse (MVDW). In
order to analyze data stored in a MVDW, new analytical
tools and an extended query language are required. Such a
query language has to be capable of extracting partial results
from versions of interest, integrate them into one consistent
result set (if possible), as well as present partial and inte-
grated results in a meaningful form to a user.

1.1 Our approach and contribution
In our approach, changes in EDSs are handled in versions

of a data warehouse. A DW administrator creates a version
of a DW explicitly and this version represents the structure
and content of EDSs within a given period of time. Main-
taining versions of the whole DW allows us:

• to manage explicitly different DW schemas and asso-
ciated data, pertinent to given periods in past;

92

• to run queries that span multiple versions and com-
pare their results often without the need of excessive
transformations of data, unlike in the case of temporal
approaches (e.g. [8, 9]);

• to create and manage various alternative virtual busi-
ness scenarios required for the what-if analysis.

In order to query a multiversion DW and present query re-
sult to a user, we propose an extension to a traditional SQL
language with functionality of traversing several versions,
comparing their results, and then merging them, if needed
and possible, to a common set of data. In our approach and
prototype system, a query on a MVDW that addresses more
than one version is processed in two following steps. In the
first step a query is decomposed into the set of independent
partial queries, each for one DW version specified in an orig-
inal query. Every partial query is executed in its own DW
version. Next, the result of every partial query is presented
to a user as a separate result, annotated with version and
metadata information. This information allows to analyze
and interpret the obtained results appropriately. In the sec-
ond step, partial results are integrated into a common set of
data, if possible. In order to support our querying technique
we have built:

• a graphical user interface for visualising MVDW ob-
jects and composing multiversion queries;

• a SQL parser for parsing multiversion queries;

• a SQL executor for executing partial queries in ap-
propriate DW versions, receiving data and combining
them into one consistent result set;

• a query result visualizer for presenting partial and in-
tegrated query results.

Our prototype software was implemented in Java and Or-
acle PL/SQL language. Data and metadata are stored in an
Oracle9i database.

1.2 Basic Definitions
A DW takes advantage of a multidimensional data model

[10, 12, 13, 18] with facts representing elementary informa-
tion being the subject of analysis. A fact contains features,
called measures, that quantify the fact and allow to com-
pare different facts. Values of measures depend on a context
set up by dimensions. Typical examples of dimensions in-
clude Time, Location, Product, etc (cf. Figure 1). Dimen-
sions are usually organized in hierarchies, e.g. Product in
Figure 1. A schema object in a dimension hierarchy is called
a level, e.g. Product and Vat Category. A dimension hierar-
chy specifies a way measures are aggregated. A lower level
rolls-up to an upper level, yielding more aggregated data.
Values in every level are called level instances. Level in-
stances have a structure set up by level schemas. A level
schema defines the name of the level and the set of its at-
tributes with their domains. Similarly, values of a fact are
called fact instances. Fact instances have a structure set
up by a fact schema. A fact schema defines the name of
the fact and the set of its attributes and their domains.
Every dimension has its structure defined by a dimension

schema that includes: (1) the name of the dimension, (2)
the set of levels in the dimension, and (3) hierarchical assign-
ments between levels. For example, dimension Product has

the following schema {Product, Product→Vat Category},
where → represents hierarchical assignment between levels,
i.e. Product rolls-up to Vat Category.

prod_id
shop_id

SHOP

shop_id
shop_name

date
amount

SALE

TIME

day_of_year
public_holiday

PRODUCT

prod_id
prod_name

cat_id

VAT_CATEGORY

v_cat_id
v_cat_name
v_vat

Dimension PRODUCT

Dimension TIME

Dimension LOCATION

date

item_price

city_name

Figure 1: An example DW schema on sale of prod-
ucts

A dimension instance of dimension D is composed of
hierarchically assigned instances of levels in D, where the
hierarchy of level instances is set up by the hierarchy of lev-
els. For example the Product dimension instance includes
{Ytong brick �→7% vat}, where �→ represents hierarchical as-
signment between level instances. The values of dimension
instances and hierarchies they form constitute a dimension
instance structure.
The structure of information being stored in a DW is de-

scribed by a DW schema, composed of dimension schemas
and fact schemas. Whereas a DW instance consists of
dimension instances and fact instances.
Paper organization. The rest of this paper is organized

as follows. Section 2 discusses existing approaches to han-
dling changes in the structure of a DW. Section 3 overviews
our concept of a multiversion DW. Section 4 presents SQL
extensions and a prototype interface for querying a MVDW.
Section 5 outlines problems related to querying heteroge-
neous DW schema versions. Section 6 presents the meta-
model of the MVDW. Section 7 summarizes the paper.

2. RELATED WORK
The approaches to the management of changes in a DW

can be classified into the two following categories that sup-
port: (1) schema and data evolution: [5, 11, 12, 23, 16, 14],
(2) temporal and versioning extensions [7, 8, 9, 19, 15, 17,
21, 22, 2, 6, 18, 1].
The approaches in the first category support only one DW

schema and its instance. When a change is applied to a
schema all data described by the schema must be converted
to a new structure, that incurs high maintenance costs. In
these approaches data coming from different periods of time
are timestamped and stored together in the same data struc-
ture. This feature limits the set of schema changes that can
be handled.
In the approaches from the second category, in [7, 8, 9,

19] changes to a DW schema are time stamped in order
to create temporal versions. However, [7] and [19] expose
their inability to express and process queries that span or
compare several temporal versions of data. On the contrary,
the model and prototype of a temporal DW presented in

93

[8, 9] support queries for a particular temporal version of a
DW or queries that span several versions. In the latter case,
conversion functions must be applied, as data in temporal
versions are virtual.
In [15, 17, 21, 22] implicit versions of data are used for

avoiding conflicts and mutual locking between OLAP queries
and transactions refreshing a DW. As versions are implicitly
created and managed by a system, these mechanisms can not
be used in the what–if analysis. The same drawback applies
to the previously discussed temporal DW that can manage
only consecutive versions that are linearly ordered by time.
On the contrary, [2] proposes permanent user defined ver-

sions of views in order to simulate changes in a DW schema.
However, the approach supports only simple changes in
source tables and it does not deal either with typical multidi-
mensional schemas or evolution of facts or dimensions. Also
[6] supports permanent time stamped versions of data. The
proposed mechanism, however, uses one central fact table
for storing all versions of data. In a consequence, the set of
schema changes that may be applied to a DW is limited, and
only changes to dimension schema and dimension instance
structure are supported. The paper by [18] analyzes updates
to dimensions and proposes consistency criteria that every
dimension has to fulfill. It gives an overview how the criteria
can be applied to a temporal DW only.
An approach supporting the what-if analysis was pre-

sented in [1]. It may be considered as a kind of virtual
versioning. A hypothetical query is executed on a virtual
structure, called scenario. Then, the system using substi-
tution and query rewriting techniques transforms the hy-
pothetical query into an equivalent query that is run on a
real DW. As this technique computes new values of data for
every hypothetical query, based on virtual modifications, a
user will experience performance problems in large DWs.
Commercial DW systems and OLAP tools existing on

the market (e.g. Oracle9i/10g, Oracle Express Server, IBM
DB2, Sybase Adaptative Server Enterprise, Ingres Deci-
sionBase OLAP Server, NCR Teradata, Hyperion Essbase
OLAP Server, SAP Business Warehouse) support neither
managing changes of a DW structure, nor the what-if anal-
ysis functionality, nor querying multiversion data. The ex-
ception is SAP Business Warehouse, that is capable of han-
dling only simple changes in dimension data. Oracle’s what-
if analysis allows to create only the simplest hypothetical
rankings of records or expressing hypothetical analysis just
in a query using the model clause [24].

3. MULTIVERSION DATA WAREHOUSE
This section informally overviews our concept of a mul-

tiversion DW. Its formal description was presented in [20].
In our approach, changes to a schema may be applied to a
new version of a DW. This version, called a child version, is
derived from a previous version, called a parent version. Ver-
sions of a DW form a version derivation graph. Each node
of this graph represents one version, whereas edges repre-
sent derived–from relationships between two consecutive
versions. A version derivation graph is a DAG. Amultiver-
sion data warehouse is composed of the set of its versions.
Every version DWVi of a MVDW is in turn composed of a
schema version Si and an instance version Ii that stores data
described by Si.

3.1 Types of Versions
We distinguish two following kinds of DW versions: real

versions and alternative versions. A real version reflects
changes in the real world. Real versions are created in order
to keep up with the changes in a real business environment,
like for example: changing organizational structure of a com-
pany, changing geographical borders of regions, opening and
closing shops, changing prices/taxes of products. Real ver-
sions are linearly ordered by the time they are valid within.
The main purpose of maintaining alternative versions is
to support the what-if analysis, i.e. they are used for sim-
ulation purposes. An alternative version is created from a
real version or from an alternative one. Several alternative
versions may be created from the same parent version.

time

t1

A2.1

t2

R1

t3

R2 R3

A2.2

past present

A1.1

Figure 2: Real and alternative data warehouse ver-
sions ordered by time and derivation relationships

Figure 2 schematically shows real versions and alternative
versions. R1 is an initial real version of a DW. Based on
R1, a new real version R2 was created. Similarly, R3 was
derived from R2. A1.1 is an alternative DW version derived
from R1, whereas A2.1 and A2.2 are alternative versions de-
rived from R2. Note that real versions are linearly ordered,
whereas alternative versions may branch.
Every version is valid within certain period of time. In or-

der to check a version validity, every real and alternative DW
version has associated, so called validity time, represented by
two timestamps, i.e. begin validity time (BVT) and end va-
lidity time (EVT) (cf. [3] for details). For example, real
version R1 (from Figure 2) is valid within time t1 (BVT)
and t2 (EVT), R2 is valid within t2 and t3, whereas R3 is
valid within t3 until present. Alternative versions A2.1 and
A2.2 are valid within the same time period as their parent
real version R2.

3.2 Changes to a DW schema
We distinguish two following groups of elementary op-

erations that modify a data warehouse schema: (1) op-
erations that change the schema of a DW (further called
schema change operations) and (2) operations that change
the structure of dimensions (further called dimension struc-
ture change operations). All the above operations address
one particular version of a data warehouse. We will outline
the operations in the context of a ROLAP server, which is
our implementation environment.
Schema change operations include: (1) creating a new

level table with a given structure, (2) connecting a given
level table with its sub- and superlevel tables, (3) discon-
necting a given level table from its dimension hierarchy, (4)
removing a previously disconnected level from a schema, (5)
adding a new attribute to a level, (6) dropping an attribute
from a level, (7) changing a domain of a level attribute, (8)
creating a new fact table, (9) adding a new attribute into a

94

fact table, (10) associating a given fact table with a given
dimension, (11) removing a non primary key or non foreign
key attribute from a given fact table, (12) removing an asso-
ciation (a foreign key) between a fact table and a dimension,
(13) removing a fact table, previously disconnected from a
schema, (14) renaming an attribute, (15) renaming a table.
Operations: 2, 3, 9, 10, 11, 12, 13, 14, 15 cause that:

either (1) user analytical queries need to be modified in or-
der to be applicable to a DW schema after change or (2)
previous data are lost or have to be transformed to a new
structure. Therefore, our prototype system suggests apply-
ing the operations to a new DW version and, if accepted
by a DW administrator, a new DW version is automatically
created. Other operations can be applied either to an exist-
ing DW version or to a newly created one, depending on an
administrator’s decision.
Dimension instance structure change operators in-

clude: (1) inserting a new level instance into a given level,
(2) deleting an instance of either a top, or an intermediate,
or a bottom level, (3) changing the association between a
sublevel instance and its superlevel instance, (4) merging
several instances of a given level into one instance of the
same level, (5) splitting a given instance of a given level into
several instances of the same level.
Since the operations have an impact on results obtained

form analytical queries, c.f. [4] they are applied to a new
DW version.
Based on the concept described above, we have imple-

mented a MVDW that manages versions of its schemas and
instances, as shortly presented in [3]. An administrator uses
a graphical interface implemented in Java for deriving and
modifying DW versions.

4. QUERYING MULTIVERSION DATA
In a MVDWdata of interest are usually distributed among

several versions. A user may not be aware of data location
and he/she can query the whole multiversion DW or a par-
ticular version or the set of versions, either real or an alter-
native ones. In our approach and prototype system, at the
system level, querying a MVDW is done in two steps. In the
first step:

• a multiversion query expressed by a user is decomposed
to the set of independent partial queries, each one for
a separate DW version specified in an original query;

• every partial query is then executed in its appropriate
DW version;

• the result of every partial query is then presented to a
user as a separate partial result annotated with version
information and metadata information. The metadata
information attached to partial query results allows to
analyze and interpret the obtained results appropri-
ately (c.f. Section 5).

In the second step, the module responsible for executing
multiversion queries can combine the independent results, if
possible, into a common set of data (one cube, for example).

4.1 SQL Extensions
While querying a MVDW a user has three following pos-

sibilities: either to query the current version, or to query the
set of real DW versions, or to query the set of selected al-
ternative DW versions. A query that addresses a single DW

Figure 3: User interface for querying a MVDW

version will further be called a monoversion query, whereas
a query that addresses the set of versions, either real or alter-
native, will be called a multiversion query. In order to query
a MVDW and present query results to a user, we propose
an extension to traditional SQL language with functionality
of traversing several versions, comparing their results, and
then merging them, if needed and possible, into a common
result set.

4.1.1 Querying current DW version
By default, a user issues monoversion queries addressing

the current (latest) real DW version. In this case, from a
user point of view, no extension to a SQL query language is
required. However, from the implementation point of view, a
query parser must be capable of finding all data belonging to
the current version, since in the prototype implementation
common data are shared by several DW versions (cf. [3]).

4.1.2 Querying the set of real DW versions
Multiversion queries on the set of real DW versions are

defined by specifying time period of interest, real versions
are valid within. To this end, the select command was
extended with the version from date ’begin date’ to

date ’end date’ clause. As pointed in Section 3.1, every
version has its begin validity time as well as end validity time.
These two times are used for selecting appropriate versions
of interest, according to the dates specified in the version

from .. to clause. A query is decomposed by our query
parser into the set of partial queries, each for one DW ver-
sion that is valid within in the specified period of time.

4.1.3 Querying the set of alternative DW versions
Since alternative versions are not linearly ordered by time

and may branch, a user has to explicitly provide a set of
alternative versions of interest. To this end, the select

command was extended with the alternative version in

({ver_id | ver_name},...,) clause, where ver_id and
ver_name represent a DW version identifier and name, re-
spectively.

95

Figure 4: Query results visualizer - an example multiversion query result annotated with metadata informa-
tion

4.1.4 Querying a single DW version
Monoversion queries on either a real or an alternative DW

version, are treated as special cases of queries discussed in
Sections 4.1.2 and 4.1.3 and are defined by specifying in
the version clause either dates that a real version is validi
within or an alternative version identifier/name.

4.1.5 Merging results of partial queries
By default, every result set of a partial query is presented

to a user separately. In some cases, however, partial queries
can be merged into one result set (one cube), cf. Section 5.3.
Merging the results obtained by partial queries is defined
by including the merge into {ver_id | ver_name} clause,
where ver_id or ver_name point to a DW version whose
schema will be used as a destination schema for all the ob-
tained partial query results. Since original partial results
have to be transformed into a common schema, transforma-
tion methods have to exist in the MVDW data dictionary.
These methods, defined by a DW administrator, are respon-
sible for transforming data between adjacent DW versions.

4.2 Query interface and results visualizer
Our prototype system has a query interface that allows to

construct queries for a multiversion DW and present their re-
sults. The prototype is written in Java and Oracle PL/SQL
languages, whereas data and metadata are stored in an Or-
acle9i database. Its main management window is shown in
Figure 3. The left hand side panel - an object navigator al-
lows browsing through versions of a MVDW. The schema of
every DW version can be explored there. The left hand side
panel is used for constructing queries as well as for presenting
their results. In the current beta version of the prototype, a
multiversion query is constructed by a user by writing it di-

rectly in an interpreter window, as shown in Figure 3. In the
next release we are going to replace it with a graphical mul-
tiversion query builder. The results of multiversion queries
are presented in the results visualizer as: (1) partial result
sets of every partial query, and (2) an integrated result, if an
integration is possible (cf. Section 5.3). Additionally every
partial result set is annotated with version informatin and
metadata information about schema and instance structure
changes in a DW version being addressed by a query. An
example output of the query results visualizer is shown in
Figure 4. Every result set is displayed in its own window. In
the example window, two result sets are presented, one from
version RV2 and one from RV3. Additionally result set from
RV3 is annotated with metadata information describing a
change of the Product dimension instance structure. The
Common results tab allows browsing through an integrated
result set.

4.3 Prototype limitations
The current beta version of the prototype multiversion

query interface has the following limitations:

• all predicates of the select command apply to all DW
versions pointed to in the version from and version

in clauses, i.e. it is not possible to express a predicate
on a single DW version;

• the query parser is unable to infer appropriate versions
of interest from the where clause;

• a query parser is able to compute an integrated re-
sult set of a multiversion query using simple aggre-
gate functions (sum, min, max, avg), but not using the
advanced OLAP functions, like for example window
functions (cf. [24]).

96

5. HETEROGENEOUS SCHEMA
VERSIONS - CASE STUDIES

Merging results of partial queries into a common DW ver-
sion will be possible if a multiversion query addresses at-
tributes that are present in all versions of interest and if
there exist transformation methods between adjacent DW
versions (if needed). For example, it will not be possible to
merge the result sets of a multiversion query on DW version
1 and 2, computing the sum of products sold, if in version 1
attribute amount (cf. Figure 1) exists and in version 2 the
attribute was dropped.
Two or more tables, either fact or dimension level, may

have identical schemas (i.e. identical table names, identical
number of attributes, their names, and domains, identical
integrity constraints), in some DW versions. Such tables
will be called homogeneous in these versions. Tables that
differ with respect to their schemas in some DW versions
will be called heterogeneous in these versions. Furthermore,
two dimension instances diV 1 and djV 2 will be called homo-
geneous in DW versions V1 and V2 if: (1) their dimension
level tables are homogeneous in V1 and V2 and (2) they the
have identical their dimension instance structure (c.f. Sec-
tion 1.2) in these DW versions. For example, the following
instance of the Product dimension {Ytong brick �→7% vat}
in DW version V1 and the instance {Ytong brick �→22% vat}
in DW version V2 are heterogeneous since their dimension
instance structure (classification to vat categories) is differ-
ent in these versions. Dimensions that differ with respect to
their instance structure and/or use heterogeneous dimension
level tables in some DW versions will be called heterogeneous
in these versions.
The fact that tables and whole DW schemas are homo-

geneous or not, has an impact on query parsing as well as
on the possibility of merging the results of partial queries.
While parsing and executing multiversion queries and and
merging partial result sets, the query interpreter and execu-
tor have to consider several cases including heterogeneous
and homogeneous schemas. In the paper we outline here two
cases when: (1) fact tables are homogeneous and dimension
instance structure is heterogeneous and (2) fact tables are
heterogeneous and dimension instance structure is homoge-
neous.

5.1 Homogeneous fact tables and heteroge-
neous dimension instance structures

In order to illustrate changes to dimensions resulting in
heterogeneous dimension instance structures, let us consider
a DW schema from Figure 1 and let us assume that initially,
in February 2003 in real version RV2, there existed 3 shops,
namely Castorama, Praktiker, and Marx Pipes. These shops
were selling Ytong bricks with 7% of VAT.
Case 1: Reclassifying level instances. Let us assume

that in March, Ytong bricks were reclassified to 22% VAT
categoriy (which is a real case of Poland after joining the
European Union). This reclassification was reflected in a
new real DW version RV3.
The discussed changes are shown in Table 1 presenting

the content of the Product table in version RV2 and RV3.
The sys id attribute is a system record identified used at
the implementation level and not visible to a user. It is used
for managing changes in dimension instances structure, e.g.
reclassification, splitting, and merging.

Table 1: An example content of the Product table in
version RV2 and RV3

Product RV2

sys id prod id prod name prod cat id

700 1 Ytong bricks vat 7

Product RV3

sys id prod id prod name prod cat id

800 1 Ytong bricks vat 22

Every change to a DW schema is registered in the multi-
version data warehouse data dictionary (cf. Section 6 and
Figure 5) whose entries are used for multiversion query pro-
cessing as well as for annotating query results. An infor-
mation about all levels is stored in the Levels data dictio-
nary table. Attribute lev map tab name stores the name
of a table whose content provides mappings between a di-
mension level instance in a parent DW version Vi and re-
lated to it dimension level instance in a child DW ver-
sion Vj , directly derived from Vi. The mapping table is
generated and maintained automatically by the prototype
system for every level table whose instance changed be-
tween two adjacent versions. The structure of this table is
as follows: {old_tab_name, old_sys_id, new_tab_name,

new_sys_id}. Attributes old_tab_name and new_tab_name

store the names of a level table in a parent and a child
DW version, respectively. These attributes allow to handle
changes in the names of level tables between DW versions.
Attributes old_sys_id and new_sys_id store system iden-
tifiers of level instances being mapped form a parent to a
child DW version, respectively.
In our example, level Product in version RV3 will have

associtated Product RV3 RV2 Map Table with the content
shown in Table 2, which means that: a product identified by
700 in version RV2 is represented by product 800 in version
RV3, cf. Table 1. The name of this Map Table will be
stored in a record describing level Product in DW version
RV3, inserted into the Levels dictionary table.

Table 2: An example content of the Product level
mapping table (Product RV3 RV2 Map Table)

old tab name old sys id new tab name new sys id

Product 700 Product 800

Now we may consider a user query that addresses DW
versions from January till March, i.e. RV1, RV2, and RV3
and computes net and gross total sale of products. The
query is decomposed into three queries: one query for one
DW version. Then the partial results are returned to a user
with metadata information describing changes in dimension
instance structures. In the current implementation of our
prototype, the metadata information is presented in a text
form. For example, the partial result of a query addressing
version RV3 will be annotated with:
Dimension PRODUCT: Level PRODUCT:
change association:

Ytong bricks(vat 7% → vat 22%)
as shown in Figure 4. This way a sale analyst will know that

97

a gross sale increase form February to March was at least
partially caused by VAT increase.
Case 2: Merging or splitting level instances. In

order to illustrate this case, let us assume that in June,
shops Castorama and Marx Pipes were merged into one shop
Castorama in a new real DW version RV6. The discussed
changes are shown in Table 3 presenting the content of the
Shop table in version RV5 and RV6.

Table 3: An example content of the Shop table in
versions RV5 and RV6

Shop RV5

sys id shop id shop name city name

100 1 Castorama Poznan

200 2 Praktiker Warsaw

300 3 Marx Pipes Poznan

Shop RV6

sys id shop id shop name city name

400 1 Castorama Poznan

200 2 Praktiker Warsaw

In our example, level Shop in version RV6 will have associ-
ated the Shop RV6 RV5 Map Table with the content shown
in Table 4, which means that: (1) a shop identified by 200
has not changed between versions RV5 and RV6, (2) two
shops, namely those identified by 100 and 300 in version
RV5, constitute a shop identified by 400 in version RV6.
While querying version RV6 a user will obtain a partial

result set annotated with the following metadata informa-
tion informing about merging shops:
Merge(Castorama, Marx Pipes) → Castorama
Splitting level instances will be handled similarly as

merging, by registering splitted instance in an appropriate
Map Table.

Table 4: An example content of the Shop level map-
ping table (Shop RV6 RV5 Map Table)

old tab name old sys id new tab name new sys id

Shop 200 Shop 200

Shop 100 Shop 400

Shop 300 Shop 400

Case 3: Level detachment or inclusion. In order to
illustrate this operation let us consider a DW schema from
Figure 1, existing in version RV6 and having two records,
as shown in Table 3. Let us further assume that in version
RV7 a new level, named City was created as a superlevel
of Shop by moving attribute Shop.city name out from the
Shop table.
In order to handle this case, firstly an information about

level detachment has to be registered in the data dictio-
nary, and secondly, appropriate Shop level instances from
version RV6 have to be mapped to their corresponding level
instances in version RV7.
The data dictionary has to register information about: (1)

newly created level City and modified level Shop in version
RV7 - it is stored in the Levels data dictionary table (cf. Sec-
tion 5), (2) attributes of levels City and Shop - it is stored in

the Attributes table, (3) a mapping between the Shop level
in version RV6 and RV7 - it is stored in the Levels Mappings
table, (4) mappings between attributes of level Shop in ver-
sion RV6 and levels Shop and City in version RV7 - it is
stored in the Attr Mappings table. An example content of
the Levels table representing the discussed modifications are
shown in Table 5. The entries to the Levels Mappings table
contain two following records: (1) a record mapping Shop in
version RV6 to Shop in version RV7, (2) a record mapping
Shop in version RV6 to City in version RV7, since attribute
Shop.city name was moved to level City.

Table 5: An example content of the Levels data dic-
tionary table

lev id lev name lev map tab name

shop v6 shop

shop v7 shop Shop RV7 RV6 Map Table

city v7 city City RV7 RV6 Map Table

The entries to the Attr Mappings table will be as fol-
lows. Firstly, attributes Shop.shop id and Shop.shop name
from version RV6 are mapped to Shop.shop id and
Shop.shop name in version RV7, respectively. Secondly,
attribute Shop.city name in version RV6 is mapped to
City.city name in version RV7.
The instances of modified levels have also to be mapped

from version RV6 to RV7. To this end, two map-
ping tables are used. Their names are stored as val-
ues of attribute Levels.lev map tab name, as shown in Ta-
ble 5. Shop RV7 RV6 Map Table stores mappings be-
tween Shop instances in version V7 and V6, whereas
City RV7 RV6 Map Table stores mappings between in-
stances of Cities. Their contents are shown in Table 6 and
have the following meaning. Shops from version RV6 identi-
fied by 400 and 200 are represented in version RV7 by shops
identified by 500 and 600, respectively. The last two shops
are newly created in version RV7 and they do not contain
the value of attribute city name. Shops from version RV6
identified by 400 and 200 are mapped in version RV7 to
instances of City, identified by 10 and 20 respectively. It
is because values of Shop.city name were moved into these
instances.

Table 6: An example content of the Shop and City
level mapping tables

Shop V7 V6 Map Table

old tab name old sys id new tab name new sys id

Shop 400 Shop 500

Shop 200 Shop 600

City V7 V6 Map Table

old tab name old sys id new tab name new sys id

Shop 400 City 10

Shop 200 City 20

While executing a query that computes sale of products
by shops, for example, the query parser will search the dis-
cussed dictionary tables and will construct appropriate par-
tial queries, depending whether city name is stored in the

98

Shop or City level. In this case, partial query result will be
annotated with the following metadata information:
Dimension Shop: level detached City
Dimension Shop: source attribute:

Shop.city name → City.city name

5.2 Heterogeneous fact tables and homoge-
neous dimension instance structures

Fact tables may differ form version to version with respect
to their schemas. Let us consider three cases including ta-
ble name changing, attribute name changing, and attribute
domain changing.
Case 1: Different fact table names. In this case

a table in a parent DW version and its corresponding ta-
ble in a child DW version differ only with respect to their
names. The change of a table name is registered in the
Facts Mappings data dictionary table, cf. Figure 5. Records
in this table map an old fact table (attribute fm old id)
to a new fact table (attribute fm new id). While pars-
ing a multiversion query the parser searches the content of
Facts Mappings and puts a right table name into every par-
tial query. Then, appropriate query result set is annotated
with metadata information about changing table name. If
for example, table Sale is renamed to Poland Sale in version
RV8 then the result set of partial query addressing RV8 is
annotated with:
Table name changing: Sale → Poland Sale
Case 2: Different attribute names. In this case a

table in a parent DW version and its corresponding table in
a child DW version differ only with respect to their attribute
names. The change of an attribute name is registered in
the Attr Mappings data dictionary table, similarly as in the
above case. The query parser puts appropriate attribute
names to appropriate partial queries. Then, results of partial
queries are annotated with:
Attribute name changing:

old attribute name → new attribute name
Case 3: Different attribute domains. Corresponding

attributes of two tables in two adjacent versions may differ
with respect to their domains. In order to process a mul-
tiversion query and compare partial result sets the values
of this attributes have to be mapped to each other. In our
approach and prototype system, domain mappings are ex-
pressed by means of user defined functions. These functions
are registered in attribute mapping records, as discussed ear-
lier, in the Attr Mappings data dictionary table. The name
of a forward mapping function, i.e. from a parent to a child
DW version is stored as the value of am forward meth name,
whereas the name of a backward mapping function is stored
in am backward meth name. As an example let us consider
a high school information system with a fact table storing
grades of students. In one version grades are represented in
the US standard, with values A, B, C, D, and F. Whereas
in another version grades are stored in the Polish standard,
with values 5, 4, 3, and 2. In such a case, partial results
of a user query will be returned, but the integration of this
partial results will not be possible unless appropriate grade
conversion methods are available in a DW dictionary.
Yet another example may consider changing prices of

products from Polish zloty to euro. Appropriately defined
conversion method from PLN to EUR and vice versa will
allow to compare sales of products.

5.3 Integrating partial queries
Ideally, integration of partial queries is possible if every

version of a table, either fact of dimension level, has the
same schema. However, in some DW versions an attribute of
a fact or dimension level table may exist while in some others
may not. Such attributes will be called missing attributes.
Using missing attributes in the select, where, group by,
and having SQL clauses causes that integration of partial
result sets is not possible.
At the implementation level, the integration is done as

follows. Firstly, the query parser finds out a common set of
attributes/expressions used in the select clause of partial
queries. Tables that changed their names and attributes that
changed their names and/or domains from version to version
are also included and handled, as discussed in the previous
section. Secondly, a temporary table is being created for
holding partial results. Next, partial queries are executed
and all partial result sets being integrated are stored in this
temporary table. While loading partial result sets, data are
transformed by conversion functions, if needed, in order to
form a homogeneous result. Then an integrated result is
returned to a user by a query on the temporal table.
Missing attributes in the select clause. In order to

illustrate this case, let us assume that in January, February,
and March DW versions, there is no attribute total price in
the Sale fact table. The attribute was added in the April
version and exists in May and June versions. If a user spec-
ified a query computing not only sum(amount) but also the
sum (total_price) of respective products sold by existing
shops in the period from 1st January, 2004 until 30th June,
2004, then the query could be answered only in the last three
DW versions. In this case the parser module removes the
sum(total_price) expression from queries passed to ver-
sions from January till March. The parser module consults
the MVDW data dictionary in order to check schemas of
versions of interest. The results which are possible for com-
putation in these versions are then returned to a user. In
this case, the second step, i.e. the integration of partial re-
sults will not be possible, as data from January, February,
and March have different structure than data from April,
May, and June.
Missing attributes in the where, group by, and hav-

ing clauses. Missing attributes used in the the where,
group by, and having clauses cause that only those par-
tial queries that address versions having these attributes are
executed. In a consequence, only the results of these partial
queries will be integrated. Taking into account the above
example, if a user limited a query result to only products
having sum(total_price) grater than 30000, then partial
queries would address versions from April until June only.

6. METAMODEL OF A MVDW
The metamodel of a MVDW is shown in Figure 5 using

the Oracle notation. The Versions dictionary table stores
the information about existing DW versions: version identi-
fier, name, parent-child dependencies, validity times, status
(whether a version is committed or under development). Ev-
ery DW version is composed of fact tables (dictionary table
Facts) and dimensions (dictionary tables Dimensions and
Dimensions Versions). Dimensions, in turn, have levels rep-
resented by dictionary tables Levels. Associations between
a dimension and its levels are stored in Dimensions Levels.

99

Figure 5: A metamodel of the multiversion data warehouse

Level hierarchies are stored in Levels Hierarchies. Associa-
tions between fact tables and dimensions are via levels and
are stored in Facts Levels. The Facts Mappings dictionary
table is used for storing mappings between a given fact ta-
ble in DW version Vi and the corresponding fact table in
version Vj , directly derived from Vi, as discussed in Section
5.2.
Every fact and level table has the set of its attributes, that

are stored in Attributes and Attr Types. Every attribute
may have integrity constraints defined, that are stored in
Constraints and Const Attrs. Table Attr Mappings is used
for storing mappings between an attribute existing in DW
version Vi and the same attribute in a child version Vj , as
discussed in Section 5.2. The Levels Mappings table repre-
sents mappings between levels in consecutive DW versions,
as discussed in Section 5.1. The Transactions table stores
the information about transactions used for creating new
versions of a DW, whereas Transactions Objects stores in-
formation about DW objects created, modified, or dropped
by transactions.

7. SUMMARY
Handling changes in external data sources, supplying data

to a data warehouse, and applying the changes to a DW
became important research and technological issues. Struc-
tural changes to a DW schema applied inappropriately may

result in wrong analytical results. Most of commercial DW
systems existing on the market have static structure of their
schemas and relationships between data. In a consequence,
they are not well suited for handling of any changes that
occur in a real world. Moreover, the existing systems do
no support the creation of alternative business scenarios for
the purpose of the what-if analysis. Research prototypes
and solutions to this problem are mainly based on temporal
extensions that limit their use.
Our approach to this problem is based on a multiversion

data warehouse, where a DW version represents the struc-
ture and content of a DW at a certain time period. In order
to be able to analyze the content of a multiversion DW, a
query language was extended. The presented approach and
prototype MVDW system allows to query several DW ver-
sions, present their partial results annotated with version
and metadata information and, if possible, it allows to in-
tegrate partial results into a single homogeneous result set.
The metadata information allows to appropriately analyze
the results under schema changes and dimension instance
structure changes in DW versions.
The current implementation of our MVDW query inter-

face has several limitations (cf. Section 4.3) that are going
to be removed in the next release of the system. Future
work will also concentrate on designing and implementing a
buffering layer between a MVDW and external data sources

100

for automatic discovery of structural changes in EDSs, that
have an impact on a DW schema, and automatically apply-
ing those changes to a MVDW.

8. REFERENCES
[1] Balmin, A., Papadimitriou, T., Papakonstanitnou, Y.:

Hypothetical Queries in an OLAP Environment. Proc.
of the VLDB Conf., Egypt, 2000

[2] Bellahsene, Z.: View Adaptation in Data Warehousing
Systems. Proc. of the DEXA Conf., 1998

[3] Bebel B., Eder J., Konicilia C., Morzy T., Wrembel
R.: Creation and Management of Versions in
Multiversion Data Warehouse. Proc. of the ACM
Symposium on Applied Computing (SAC’2004),
Cyprus, 2004

[4] Bebel B., Królikowski Z., Morzy T., Wrembel R.:
Transaction Concepts for Supporting Changes in Data
Warehouses. Proc. of the Int. Conf. on Enterprise
Information Systems, Portugal, 2004

[5] Blaschka, M. Sapia, C., Hofling, G.: On Schema
Evolution in Multidimensional Databases. Proc. of the
DaWak99 Conference, Italy, 1999

[6] Body, M., Miquel, M., Bédard, Y., Tchounikine A.: A
Multidimensional and Multiversion Structure for
OLAP Applications. Proc. of the DOLAP’2002 Conf.,
USA, 2002

[7] Chamoni, P., Stock, S.: Temporal Structures in Data
Warehousing. Proc. of the DaWaK99, Italy, 1999

[8] Eder, J., Koncilia, C.: Changes of Dimension Data in
Temporal Data Warehouses. Proc. of the DaWaK 2001
Conference, Germany, 2001

[9] Eder, J., Koncilia, C., Morzy, T.: The COMET
Metamodel for Temporal Data Warehouses. Proc. of
the 14th CAISE02 Conference, Canada, 2002

[10] Gyssens M., Lakshmanan L.V.S.: A Foundation for
Multi-Dimensional Databases. Proc. of the 23rd
VLDB Conference, Grece, 1997

[11] Hurtado, C.A., Mendelzon, A.O.: Vaisman, A.A.:
Maintaining Data Cubes under Dimension Updates.
Proc. of the ICDE Conference, Australia, 1999

[12] Hurtado, C.A., Mendelzon, A.O.: Vaisman, A.A.:
Updating OLAP Dimensions. Proc. of the DOLAP
Conference, 1999

[13] Jarke, M., Lenzerini, M., Vassiliou, Y., Vassiliadis, P.:
Fundamentals of Data Warehouses. Springer-Verlag,
2000, ISBN 3-540-65365-1

[14] Kaas C.E., Pedersen T.B., Rasmussen B.D.: Schema
Evolution for Stars and Snowflakes. Proc. of the
Intern. Conf. on Enterprise Information Systems
(ICEIS2004), Portugal, 2004

[15] Kang, H.G., Chung, C.W.: Exploiting Versions for
On–line Data Warehouse Maintenance in MOLAP
Servers. Proc. of the VLDB Conference, China, 2002

[16] Koeller, A., Rundensteiner, E.A., Hachem, N.:
Integrating the Rewriting and Ranking Phases of
View Synchronization. Proc. of the DOLAP98
Workshop, USA, 1998

[17] Kulkarni, S., Mohania, M.: Concurrent Maintenance
of Views Using Multiple Versions. Proc. of the Intern.
Database Engineering and Application Symposium,
1999

[18] Letz C., Henn E.T., Vossen G.: Consistency in Data
Warehouse Dimensions. Proc. of the Intern. Database
Engineering and Applications Symposium
(IDEAS’02), 2002

[19] Mendelzon, A.O., Vaisman, A.A.: Temporal Queries
in OLAP. Proc. of the VLDB Conference, Egypt, 2000

[20] Morzy, T., Wrembel, R.: Modeling a Multiversion
Data Warehouse: A Formal Approach. Proc. of the
Int. Conf. on Enterprise Information Systems, France,
2003

[21] Quass, D., Widom, J.: On–Line Warehouse View
Maintenance. Proc. of the SIGMOD Conference, 1997

[22] Rundensteiner E., Koeller A., and Zhang X.:
Maintaining Data Warehouses over Changing
Information Sources. Communications of the ACM,
vol. 43, No. 6, 2000

[23] Vaisman A.A., Mendelzon A.O., Ruaro W.,
Cymerman S.G.: Supporting Dimension Updates in
an OLAP Server. Proc. of the CAISE02 Conference,
Canada, 2002

[24] Oracle Database. Data Warehousing Guide. 10g
Release 1.

101

