
Problems in the Maintenance of a Federated Database Schema

Regina Motz
Instituto de Computación

Universidad de la República
Montevideo - Uruguay
rmotz@fing.edu.uy

Abstract

In this paper, we characterize the problem of mainte-
nance of a federated schema to cope with local schema evo-
lution in a tightled coupled federation. By means of an ex-
ample, we present the problems that local schema changes
could cause on the federated schema and show proposed
solutions.

1. Introduction

For many organizations, federated databases [14] have
become the preferred strategy for reconciling the prolifera-
tion of private and independent databases, and for increas-
ing the productivity of their information technology invest-
ment. A federated database, or federation for short, consists
of a collection of possible heterogeneous, interoperating but
autonomous component databases. A key characteristic of
a federation is the preservation of local database autonomy,
in the sense that the component databases can not be mod-
ified for the purpose of integration, and their instances and
schemas may evolve, but independently.

One approach to building federated databases is by
building a “tightly-coupled” federated schema [5]. A crit-
ical task in this approach is that of schema integration.
Schema integration is the process by which overlapping in-
formation represented in heterogeneous forms within the
component databases of a cooperative environment is uni-
fied. However the few techniques on object oriented schema
evolution that have been developed focus on centralized
database management systems, and have not characterized
the result they should produce in the federated case with
exception of evolution of views [2, 9] and the use of knowl-
edge database or metamodelling [10, 4, 12].

In this paper, we characterize the problem of mainte-
nance of a federated schema to cope with local schema evo-
lution in a tightled coupled federation and present a directly

approach, without the use of views or metamodelling, for
the maintenance of the federated schema.

The remainder of the paper is organized as follows. Sec-
tion 2 presents a motivating example the paper is based on.
In Section 3 we review the different local schema changes
and show, by means of our running example, the prob-
lems that local schema changes could cause on the feder-
ated schema. Section 4 presents our approach to solve the
problem of maintenance of a federated schema Section 5
concludes the paper giving some final remarks.

2. A Motivating Example

In this section, we present a running example and briefly
show how a federated schema is generated. As our running
example we consider the application depicted in Figure 1.

The example model the databases of two travel agencies,
Travel Makes Fun and Easy Travel, which offer excursions.
The domain of expertise of each travel agency is different.
Easy Travel mainly concentrates on young people, with em-
phasis on individual excursions, whereas Travel Makes Fun
concentrates on business persons, with emphasis on a spe-
cial kind of excursions. Both agencies have decided to co-
operate with each other offering excursions in an integrated
way, while maintaining independence in their specialized
domains. To this end, their databases have been coupled in
a federation that maintains a global integrated database.

The Federated Schema

Apart from modelling their own specialized real world
portions, the schemas of both databases share some com-
mon situations which are modelled with different granular-
ity. In both travel agencies, excursions follow predefined
itineraries. Each itinerary consists of a set of tours and a set
of scales. While the Easy Travel schema models itineraries
as objects, in the Travel Makes Fun schema they are given
by the values of the attributes tours and scales that belong
to the class Excursion. Excursions need to be reserved in

Proceedings of the XXII International Conference of the Chilean Computer Science Society (SCCC’02)
1522-4902/02 $17.00 © 2002 IEEE

 Excursionscalesstring
stringtours

 Travel Makes Fun Schema

integer

Reservation
amount

string
data

 rese

 reserved

Client

Itinerary
 posses

 performs

scales

 Excursion

 SpecialExc

 FluvialExc

string
tours

 TrainExc AirExc

integer

Reservation
amount

string
data

 rese

 reserveed

Client

 Easy Travel Schema

ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

 Schema Integration Methodology

Correspondences

 FluvialExc�SpecialExc�Excursion
AirExc�IndivExc�Excursion

 vertex/edge from Travel Makes Fun Augmentation �TMF

Excursion Itinerary�Excursion ⇐SpecialExc

 vertex/edge from Easy Travel

 FluvialExc⇒Excursion

Excursion IndivExc ⇒Excursion
AirExc⇒Excursion AirExc ⇒IndivExc ⇒ Excursion

TrainExc⇒Excursion TrainExc ⇒IndivExc ⇒Excursion

 Excursion performs

scales

Itinerary
 posses

string
tours

 SpecialExc

 IndivExc

integer

Reservation
amount

string
data

 rese

 reserved

Client

Augmentations

TrainExc�IndivExc�Excursion

 Augmentation �ET

Excursion

tours string

Excursion tours
 string Excursion � Itinerarytours

 string

Excursion � Itineraryscales
 string Excursion scales

 string

TrainExc�Excursion
 AirExc�Excursion

FluvialExc�Excursion

 Excursion �Itinerary tours string

Excursion

scales string Excursion �Itinerary scales string
 FluvialExc ⇒SpecialExc⇒Excursion

string

 FluvialExc

string
 FluvialExc

 AirExc

 IndivExc

 TrainExc

 TrainExc AirExc

Figure 1. Integration of two schemas.

Proceedings of the XXII International Conference of the Chilean Computer Science Society (SCCC’02)
1522-4902/02 $17.00 © 2002 IEEE

 Evolved Easy Travel

integer

Reservation

amount � 0
string

 data
integer

Reservation

amount > 0

string

 data

integer

Reservation

amount � 0

string

 data

PartiallyPaid
amount = 0

amount > 0

integer
amount > 0

 Travel Makes Fun

integer

Reservation

string
 data

integer

Reservation

amount � 0

string

 data

amount > 0

 Easy Travel

integer

Reservation

string
 data amount > 0

Reservation

Reservation

 Travel Makes Fun

Propagation

Figure 2. Dynamic Maintenance when Semantic Modifications.

advance. In both schemas this fact is represented by a class
Reservations with attributes: date of the reservation and
amount already paid. The specialization hierarchies for ex-
cursions are expressed at different levels of abstraction in
each schema.

To overcome the representation differences of the same
real world portions, the integration process needs to trans-
form both schemas, so that the representations of the com-
mon situations are made equal. Declarative schema inte-
gration methodologies require as input the source schemas
and a set of equivalence correspondences between portions
of the schemas to be integrated. Suppose that the schema
correspondences for our running example are those listed in
Figure 1. The table of correspondences is formed by two
columns. Each entry stands for an equivalence correspon-
dence between a subschema coming from Travel Makes Fun
(left column) and one coming from Easy Travel (right col-
umn).

For simplicity reasons, we assume that elements with
equal names in both schemas correspond with each
other. Using these correspondences, the schema integration
methodology derives the mappings ATMF and AET (for
Travel Makes Fun and Easy Travel, respectively), listed in
Figure 1. They map the corresponding local schema to the
richer integrated one. Each entry of an augmentation table
specifies the subschema of the integrated schema which a
vertex/edge of the respective local schema is mapped to.

3. Maintenance of a Federated Schema

The aim of this section is to illustrate, by means of an
example, the impact that local schema changes may produce
on an already integrated schema. Such changes could be
automatically determined by comparing the local schema
with the evolved one, for example. Work in this direction
has been performed by Ambite and Knoblock [1] and Goñi
et al. [7]. Therefore, we assume that the specification of the
local modifications is supplied as input.

We consider two types of schema changes: semantic
and structural modifications.

Semantic Modifications: They refer to changes in the
semantic properties of the local schemas. For instance,
changes in the (semantic) properties of a class. The occur-
rence of such modifications may in turn affect the seman-
tics of the existing set of correspondences between the lo-
cal schemas. Consider the corresponding classes Reserva-
tion (Easy Travel) and Reservation (Travel Makes Fun).
Suppose that, initially, there was a constraint in the defi-
nition of both classes which stated that reservations could
only be carried out with advance the payment of an amount
(i.e. the payment of a strictly positive quantity). However,
after some time the Easy Travel agency changes its policy
allowing reservations without any payment. This modifica-
tion in the semantics of Reservation (Easy Travel) must
have the following effect on the integrated schema (see Fig-
ure 2): A new class PartiallyPaid, subclass of Reserva-
tion, must be added to the integrated schema. This class
models those reservations that have been made after paying

Proceedings of the XXII International Conference of the Chilean Computer Science Society (SCCC’02)
1522-4902/02 $17.00 © 2002 IEEE

Travel Makes Fun Easy Travel

Excursion
scales
�!!string Excursion$ Itinerary

scales
�!!string

Excursion$ Tour
tours
�!!string Excursion$ Itineray

tours
�!!string

Table 1. New correspondences.

Travel Makes Fun Easy Travel

Excursion$ Tour
scales
�!!string Excursion$ Itinerary

scales
�!!string

Excursion$ Tour
tours
�!!string Excursion$ Itineray

tours
�!!string

Table 2. New Correspondences (ambiguity case).

some amount. The class Reservation, in contrast, permits
to do reservations without initial payment. That is, the defi-
nition of Reservation as a generalization of PartiallyPaid
models the inclusion relationship between the extensions of
the classes Reservation (Travel Makes Fun) and Reser-
vation (Easy Travel). Note that as a consequence of local
schema changes, modifications might occur in some of the
correspondences between subschemas that led to the exist-
ing integrated schema.

Structural Modifications: These are modifications to the
structure of local schemas. Consider the attribute tours of
the class Excursion (Travel Makes Fun) and suppose that
it is transformed into a new created class Tour (with an at-
tribute tours) which holds a relationship with Excursion.
As a consequence of this modification the set of correspon-
dences between both local schemas is also affected. After
the modification the correspondences depicted in Table 1
hold. The first correspondence is the same as before, while
the second reflects the appearance of the new class Tours.
The new integrated schema is depicted in Figure 3.

Intuitively, it is the result of propagating the local struc-
tural modification to the corresponding correspondence.
However, the problem is to find the original correspon-
dences in the integrated schema. Moreover,there are some
cases in which it is not possible to automatically obtain an
evolved integrated schema due to the occurrence of ambi-
guity or inconsistency.

Modifications that lead to ambiguity: Consider the at-
tributes tours and scales of the class Excursion (Travel
Makes Fun) and suppose that they are transformed into
a new created class Tour (also with attributes tours and
scales), which holds a relationship with Excursion. The
new correspondences are depicted in Table 2.
Traditional schema integration methodologies can not auto-
matically propagate this change due the following ambigu-

ity: Is the class Tour corresponding to the class Itinerary or
not? In order to solve this ambiguity, the interaction with
the user is needed.

Modifications that lead to inconsistency: Local schema
changes may cause inconsistencies, i.e. situations in
schemas that cannot be simultaneously satisfied in the in-
tegrated schema. Consider, for instance, the evolution of
Easy Travel presented in Figure 4, where the class TrainExc
is moved through the hierarchy of classes to appear as a sub-
class of the class SpecialExc. In this case there is no pos-
sible propagation of the change because of an inconsistency
between the correspondences that represent the modifica-
tion and the initial ones, see Figure 4. The reason of the
inconsistency is that for the new set of correspondences:

Excursion(IndivExc(AirExc

� Excursion(AirExc (1)

Excursion(IndivExc(T rainExc

� Excursion(SpecialExc(T rainExc (2)

Excursion(FluvialExc

� Excursion(SpecialExc(FluvialExc (3)

there is no possibility to have an integrated schema that ful-
fills all of them simultaneously. For example, to achieve an
integrated schema it is sufficient that the paths Excursion(
IndivExc (T rainExcand Excursion (SpecialExc (

T rainExc appear intact in the integrated schema. How-
ever, observe that correspondence (2) indicates that these
two paths must be unified. Furthermore, no equivalence
correspondence between IndivExc and SpecialExc may
hold. In fact, an integration based on this correspondence
would introduce a direct relation between the classes Flu-
vialExc and IndivExc in the integrated schema, as the path
Excursion (FluvialExc from Travel Makes Fun would be
transformed into Excursion(IndivExc(FluvialExc, and

Proceedings of the XXII International Conference of the Chilean Computer Science Society (SCCC’02)
1522-4902/02 $17.00 © 2002 IEEE

 ‘‘Travel Makes Fun’’
Schema Evolution

Propagation of
Local Schema
Evolution.

 posses

 performs

scales

 Excursion Excursion scales string
string

string

Tour

 posses

 performs

tours

tours

string

tours

 Travel Makes Fun Subschema Easy Travel Subschema

 performs

scales

Itinerary
 posses

tours

 Excursion

 Excursion scales string

string

 performs
scalesItinerary

 posses

 Excursion Itinerary

Tour
tours

string

 Itinerary

stringstring

string

Correspondences
Excursion tours

 string Excursion � Itinerarytours
 string

Excursion � Itineraryscales
 string Excursion scales

 string

 Integrated Schema

Figure 3. Dynamic Maintenance when Structural Modifications.

Proceedings of the XXII International Conference of the Chilean Computer Science Society (SCCC’02)
1522-4902/02 $17.00 © 2002 IEEE

 Excursion

 SpecialExc

 FluvialExc

 TrainExc AirExc

 Easy Travel Subschema

 Excursion

 SpecialExc

 FluvialExc

 AirExc

 TrainExc

 Excursion

 TrainExc AirExc

 IndivExc SpecialExc

 FluvialExc

 ‘‘Easy Travel’’
 Evolution

 Integrated Subschema

Propagation of
Local Schema
Evolution

 Invalid set of correspondences:

Excursion ⇐ IndivExc ⇐ AirExc Excursion ⇐ AirExc
Excursion ⇐ IndivExc ⇐ TrainExc

 Excursion ⇐ SpecialExc ⇐ FluvialExc

 Excursion

 IndivExc FluvialExc

 TrainExc AirExc

 Travel Makes Fun Subschema

Correspondences

Excursion ⇐ SpecialExc ⇐ TrainExc
Excursion ⇐ FluvialExc

 FluvialExc�SpecialExc�Excursion
AirExc�IndivExc�Excursion

TrainExc�IndivExc�Excursion TrainExc�Excursion

 AirExc�Excursion
FluvialExc�Excursion

Figure 4. Structural Modification that leads to inconsistency.

Proceedings of the XXII International Conference of the Chilean Computer Science Society (SCCC’02)
1522-4902/02 $17.00 © 2002 IEEE

this is incompatibe with the semantics these classes possess
in Travel Makes Fun.

Some powerfull schema integration methodologies (i.e.
[6]), are able to warn the user about the inconsistency prob-
lem but are not powerfull enough to present the invalid cor-
respondences in order to dismiss one of them.

4. Our Approach

A detailed examination of local schema evolution, as
the cases depicted in the previous section, shows us that a
great amount of schema changes may also be expressed by
means of correspondences between local schemas. How-
ever, a particular challenge of our approach to maintenance
of an integrated schema is the fact that a local schema
evolution may invalidate correspondences established in
some previous integration steps. Moreover, we aim at
an efficient propagation of local schema evolution to an
integrated schema. This means that we would like to avoid
as much as possible reintegration steps in the propagation
process.

We observe that, in general, the propagation of local
structural modifications to the integrated schema can be ac-
complished by adopting one of the following solutions:

1. Re-integrate from the beginning using the whole set of
schema correspondences; or

2. Identify the augmentations affected by the evolution
and modify them directly without any new integration
step.

Solution (1) amounts to a brute force strategy, as it implies
to redo the whole integration process each time a local
schema change is produced. Solution (2) is clearly the most
desirable solution, as it does no imply any extra integration
step. However, it is applicable only in case of modifications
that do not generate inconsistent or ambiguous correspon-
dences.

We adopt a combination of both solutions. We identify
the augmentations affected by the local structural modifica-
tion and either modify them directly or deduce from them
the involved corresponding subschemas. Then, re-integrate
only on these subschemas.
This solution reduces the number of correspondences
used for re-integration, since only those correspondences
deducible from the affected schema augmentations are
considered.
The crucial point is then how to identify the augmentations
that an evolution affects and then deduce from them the
affected overlapping subschemas (which are presented in
the form of a set of path correspondences). In other words,

we regard the process of propagating local schema changes
as a form of incremental schema integration.

Investigation on this approach requires a theoretical
framework. In this sense we choose an existing schema
integration methodology as the universe of discourse.
Our work is based on a schema integration methodology,
henceforth called SIM, developed by Fankhauser [6],
which presents a novel and concisely defined treatment of
schema integration. SIM operates with a formal notion
of schema transformations, called schema augmentations,
which are automatically derived from a set of “equivalence
correspondences” between (arbitrary) subschemas of the
component databases. Schema augmentations map, without
information loss and in a non-redundant manner, corre-
sponding information between two component schemas to
a unified representation in the integrated schema.

Based on this observation, we work out an extension
of SIM that permits to deal with flexibility with the set
of correspondences. Flexibility in the integration process
is accomplished by basing the process on a complete
independence of the ordering in which correspondences
occur.
An essential aspect of our approach is that, from the
augmentation mappings for the already acquired in-
tegrated schema and the local schema changes, we
semi-automatically derive a new state for the augmenta-
tions. The user is guided in the process of propagating the
schema changes, only requiring his assistance in case of
ambiguity or inconsistency in the set of given correspon-
dences.

In case of ambiguity, all possible alternatives are
presented to the user in order to select or dismiss one.
Our approach is to adopt the complete schema level as
the granularity of change, allowing changes to involve
multiple classes or relationships in the local schemas. This
is achieved by regarding the propagation of local schema
evolutions from an integration point of view.

In case of inconsistency, the user is presented with the
minimal set of correspondences that produce the inconsis-
tency. Our approach is to make SIM incremental. That is,
correspondences between the local schemas can be added
or deleted at any time. In this sense, we provide SIM
with a procedure able to treat ambiguities or inconsisten-
cies incrementally. Essentially, such a procedure consists
of two phases: (i) it identifies the subschema of the inte-
grated schema affected by the given correspondence, and
(ii) it treats this subschema so that it becomes consistent.

Figure 5 shows the integrated schema that results from
each set of accepted correspondences presented to the user

Proceedings of the XXII International Conference of the Chilean Computer Science Society (SCCC’02)
1522-4902/02 $17.00 © 2002 IEEE

 Excursion

 SpecialExc IndivExc

 AirExc FluvialExc TrainExc

 Excursion

 SpecialExc

 FluvialExc IndivExc

 AirExc TrainExc

 Excursion

 IndivExc

 SpecialExc

FluvialExc

 AirExc

 TrainExc

Excursion⇐ IndivExc⇐ AirExc Excursion ⇐ AirExc

Excursion⇐FluvialExc Excursion⇐SpecialExc⇐FluvialExc

 Excursion ⇐ AirExc

 Excursion⇐IndivExc⇐TrainExc

 Excursion⇐IndivExc⇐TrainExc Excursion ⇐ SpecialExc⇐ TrainExc

 Excursion⇐ IndivExc⇐ AirExc Excursion ⇐ AirExc

Excursion ⇐ SpecialExc⇐ TrainExc

Excursion⇐ IndivExc⇐ AirExc

Figure 5. Integrated Schema for different correspondences.

for the inconsistent example depicted in Figure 4.
Apart from using SIM, our methodology performs the

identification of the local subschemas affected by the lo-
cal modification in order to derive the affected corre-
spondences. Essentially, this process consists of walking
through the augmentation corresponding to the schema aug-
mentations that refer to the schema change (either as argu-
ment or as part of its result). This can be done because
augmentations are injective functions. Once the schema
correspondences are identified, the associated augmenta-
tions are replaced by the trivial ones, preserving that way
schema consistency. Then, new correspondences are de-
rived to cope with the schema change and re-integration on
these new correspondences is eventually performed by us-
ing SIM.

5. Final Remarks

One of the main difficulties associated with tightly cou-
pled federated databases is to mantain the federation in a
consistent state after its initial integration. This is due to
the considerable effort required for detecting and reconcil-
ing discrepancies that arise as a result of the evolution of

the local sources [13, 4, 12]. The structure of the feder-
ated schema depends directly on the correspondences be-
tween the local schemas and the integration method used
[3]. Structural or semantic schema changes in the local
schemas may affect some of the correspondences between
the local subschemas that led to the existing integrated
schema. Therefore, the problem is how to translate the
schema changes to the integrated schema without the ne-
cessity of re-integrating all from the beginning.

While capturing local schema modifications is some-
thing that we are not aiming to automate, our goal has been,
at the first phase, the semi-automatic propagation of local
structural modifications to the integrated schema. This is
achieved by a procedure that permits the automatic iden-
tification of subschemas affected by local structural mod-
ifications and their semi-automatic reconciliation. Local
structural modification are regarded as a new set of corre-
spondences between local schemas, which are then used
for re-integration. This issue is addressed by extended a
schema integration methodology (SIM) with incremetal ca-
pabilities.

At the moment, we have a prototype, developed in Java,
that recognizes the minimal set of inconsistent correspon-

Proceedings of the XXII International Conference of the Chilean Computer Science Society (SCCC’02)
1522-4902/02 $17.00 © 2002 IEEE

dences [8]. We plan to extend this implementation in order
to incorporate an undo mechanism on augmentations so that
the corresponding affected subschemas become consistent.
The specification of such a mechanism can be found in [11].

References

[1] J. L. Ambite and C. A. Knoblock. Reconciling Distributed
Information Sources. In Working Notes of the AAAI Spring
Symposium on Information Gathering in Distributed Het-
erogeneous Environments, Palo Alto, CA, 1995.

[2] Z. Bellahsene. Extending a View Mechanism to Sup-
port Schema Evolution in Federated Database Systems. In
A. Hameurlain and A. M. Tjoa, editors, 8th. Int. Conf.
on Database and Expert Systems Applications (DEXA),
Toulouse, France, September 1997. Springer Verlag, Lec-
tures Notes in Computer Science Nro. 1308.

[3] S. Busse, R.-D. Kutsche, and U. Leser. Strategies for the
Conceptual Design of Federated Information Systems . In
Proc. of the Engeneering Federated Information Systems
(EFIS 2000),Berlin, 2000.

[4] S. Busse and C. Pons. Schema Evolution in Federated In-
formation Systems . In A. Heuer, F. Leymann, D. Priebe
(eds.) Datenbanksysteme in Büro, Technik und Wissenschaft
(BTW2001). Springer, 2001.

[5] U. Dayal and H. Hwang. View definition and Generalization
for Database Integration in Multibase: a System for Hetero-
geneous Distributed Databases. IEEE Transactions on Soft-
ware Engineering, 10(6), 1984.

[6] P. Fankauser. Methodology for Knowledge-Based Schema
Integration. PhD thesis, University of Vienna, Austria, De-
cember 1997.

[7] A. Goñi, A. Illarramendi, E. Mena, and J. M. Blanco. Mon-
itoring the Evolution of Databases in Federated Relational
Database Systems. In CAiSE’97 Workshop on Engineering
Federated database Systems (EFDBS’97), June 1997.

[8] C. Herrera, S. Capretti, and F. Jacques. Una herramienta
para la construccin de una base de datos generada a partir de
datos extrados de la Web. Graduate Proyect, InCo, Facultad
de Ingenieria, UdelaR,Montevideo, Uruguay, 2001.

[9] R. Kaushal and B. Eaglestone. View-Based Support for
Transparent Schema Evolution in Federated Database Sys-
tems. In Int. Workshop on Issues and Applications of
Database Technology, Berlin, Germany, July 1998.

[10] S. Kolmschlag and G. Engels. Unterstützung der Flexibilität
eines Ele Workshop Integration heterogener Softwaresys-
teme (IHS98) im Rahmen der GI-Jahrestagung Informatik
’ 98, Magdeburctronic Commerce Systems durch Evolu-
tionstechniken. In Workshop Integration heterogener Soft-
waresysteme (IHS98) im Rahmen der GI-Jahrestagung In-
formatik ’ 98, Magdeburg, 1998.

[11] R. Motz. Dynamic Maintenance of an Integrated Schema.
In PhD Thesis, To forthcomming, 2002.

[12] N. Pittas, A. C. Jones, and W. A. Gray. Metadata Exploita-
tion in Support of Federated Database Systems Evolution .
In Proc. of the Engeneering Federated Information Systems
(EFIS 2001),Berlin, 2001.

[13] M. Roantree, W. Hasselbring, and S. Conrad. Proc. of the
Engineering Federated Information Systems (EFIS’2000).).
In IOS Press (ISBN 1-58603-075-2), 1998.

[14] A. Sheth and J. Larson. Federated Database Systems
for Managing Distributed, Heterogeneous and Autonomous
Databases. ACM Computing Surveys, 22(3), 1990.

Proceedings of the XXII International Conference of the Chilean Computer Science Society (SCCC’02)
1522-4902/02 $17.00 © 2002 IEEE

