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Abstract. The translation of information between heterogeneous rep-
resentations is a long standing issue. With the large spreading of cooper-
ative applications fostered by the advent of the Internet the problem has
gained more and more attention but there are still few and partial solu-
tions. In general, given an information source, different translations can
be defined for the same target model. In this work, we first identify gen-
eral properties that “good” translations should fulfill. We then propose
novel techniques for the automatic generation of model translations. A
translation is obtained by combining a set of basic transformations and
the above properties are verified locally (at the transformation level)
and globally (at the translation level) without resorting to an exhaustive
search. These techniques have been implemented in a tool for the man-
agement of heterogeneous data models and some experimental results
support the effectiveness and the efficiency of the approach.

1 Introduction

1.1 Goal and Motivations

In today’s world of communication, information needs to be shared and ex-
changed continuously but organizations collect, store, and process data differ-
ently, making this fundamental process difficult and time-consuming. There is
therefore a compelling need for effective methodologies and flexible tools sup-
porting the management of heterogeneous data and the automatic translations
from one system to another.

In this scenario, we are involved into a large research project at Roma Tre
University whose goal is the development of a tool supporting the complex tasks
related to the translation of data described according to a large variety of for-
mats and data models [TI23]. These include the majority of the formats used
to represent data in current applications: semi-structured models, schema lan-
guages for XML, specific formats for, e.g., scientific data, as well as database and
conceptual data models. In this paper, we focus our attention on the problem of
the automatic generation of “good” data model translations.

We start observing that, in general, given a data source, different translations
can be defined for the same target model. To clarify this aspect, let us consider
the example in Figure[llwhere the relational schema a is translated into an XML
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Fig. 1. The translation of a relational schema into an XML based model

based structure. Actually, several solutions are possible since it is well known
that different strategies can be followed [4]. We report just three of them.

In our example, we can choose between a nested-based (schemas ¢ and d) and
a flat-based (schema b) structure. The latter can be easily generated, but the
schema we obtain is probably not desirable in a model with nesting capabilities.
Moreover, the question arises whether we want to force “model” constraints
like the presence of an order or the absence of duplicates. The second point
is that differences between translations are not only structural. For instance,
schemas ¢ and d are similar but they have significant differences in the schema
semantics, since d also includes cardinality constraints on the elements. Finally,
the efficiency of the translation is clearly an issue [5l6].

In order to tackle this problem, in this paper we first identify general properties
that the translations should fulfill and investigate the conditions under which
a translation can be considered better than another. We then propose efficient
methods for the automatic generation of schema and data translations from one
model to another. We also show experimental results obtained with a tool for
the management of heterogeneous data models in which the proposed methods
have been implemented.

1.2 Related Works and Organization

The problem of model translation is one of the issues that arises when there is
the need to combine heterogeneous sources of information. Many studies can be
found on this problem. For instance, translations between specific pairs of mod-
els have been deeply investigated [4/7] and are widely supported in commercial
products. Our goal is more general: the development of a flexible framework able
to automatically translate between data models that, in principle, are not fixed
a priori. In recent years, an aspect of the translation problem that has been
deeply studied is data exchange [8], where the focus is on the translation of data
between two fixed schemas, given a set of correspondences between the elements.
Recently, the problem has been set in the general framework of model manage-
ment [9], where a set of generic operators is introduced to cope, in a uniform
way, various metadata related problems. One of them is the ModelGen operator
that corresponds to the problem tackled in this paper. An early approach to
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ModelGen for conceptual data models was proposed by Atzeni and Torlone [2]
with a tool based on an internal metamodel and a library of transformations.
Following works [3] and similar approaches [10/T9] has been presented in the last
years. Currently, there are two active projects working on this subject. Atzeni
et. al [I] recently provided a comprehensive solution based on a relational dictio-
nary of schemas, models and translation rules. Their approach however does not
consider the automatic generation of translations. The approach of Bernstein et
al. [I1] is also rule-based and it introduces incremental regeneration of instance
mappings when source schema changes. A detailed description of their approach
has not yet appeared. Our contribution is orthogonal to both projects. In previ-
ous works of ours [3] we have focused our attention to the management of Web
information and we have proposed a general methodology for the translation of
schema and data between data models. In this paper, the focus is on the auto-
matic generation of translations based on the ranking of the possible solutions.
MOF [12] is an industry-standard framework where models can be exchanged
and transformed between different formats and provides a uniform syntax for
model transformation. Our approach is complementary: we provide methods
to automatically perform translations between models, possibly expressed in a
MOF-compliant way.

The rest of the paper is organized as follows. In Section 2] we provide the
needed background and, in Section [3] we investigate the general properties of
model translations. In Section [ we present the algorithms for the automatic
generation of translation and, in Section[Bl we provide some experimental results.
Finally, in Section [f, some conclusions are drawn and future work is sketched.

2 Background

2.1 Translations, Metamodel and Patterns

We identify four levels of abstraction: (1) data (or instances) organized according
to a variety of (semi) structured formats (relational tables, XML documents,
HTML files, scientific data, and so on); (2) schemas, which describe the structure
of the instances (a relational schema, a DTD, an XML Schema or one of its
dialects, etc.); (3) (data) models, that is, formalisms for the definition of schemas
(e.g., the relational model, the XML Schema model or a conceptual model like the
ER model), and (4) a metamodel, that is, a general formalism for the definition
of models

In this framework, a schema translation from a source model M, to a target
model M, is a function o : S(M;) — S(M), where S(M) denotes the set of
schemas of M, and Z(S) the set of instances of S. If S € S(M;) then o(S5) is
called the o—translation of S (this corresponds to the ModelGen operator [9]).
Similarly, a data translation from a source schema S to a target schema S; is a
function 6 : Z(Ss) — Z(S:).

! We refer to a “database” terminology; in other works (e.g., [AI12]), a schema is called
model, a model is called metamodel, and a metamodel is called metametamodel.
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As others [TI2I3/T0O/TT], our approach is based on a unifying metamodel made
of a set of metaprimitives each of which captures similar constructs of different
data models. More precisely, a metaprimitive represents a set of constructs that
implement, in different data models, the same basic abstraction principle [I4].
For instance, a set of objects is represented by a class in ODL and by an entity
in the Entity-Relationship model. Clearly, metaprimitives can be combined. We
will call a specific combination of metaprimitives a pattern. In this framework,
a model is defined by means of: (i) set of primitives, each of which is classified
according to a metaprimitive of the metamodel, and (ii) a set of patterns over
the given primitives.

As an example, the table in Figureldescribes a set of models. The first column
contains a set of possible patterns over the metaprimitives of the metamodel.
Each pattern has a metaprimitive m as root and a collection of metaprimitives
that are used as components of m (“*” means 0 or more times). In the other
columns of the table different models are defined by listing the patterns used
and the names given to them in the model. For instance, the relational model
is defined by means of a set having the table pattern (which correspond to the
metaprimitive relation) which is composed by a number of attribute constructs,
one key and, possibly, a foreign key.

[ XmISchema DTD OoDL Relational ER |
Element element element/entity
Domain v R
AttributeOfElement* v v
Key v «l
Cardinality v «l
Object - - class - entity
Key - - v - v
Attribute* - - «I - \I
Relationship - - v - «l
Relation - - - table
Attribute* - - N J
Key - - - N
Foreign key - - - N
Domain type type type type type
Struct* - - v - -
Restriction v - v ) v
List v v - - -
e . N A
[ Key key key key key key |
[ Domain v v v v v |
Attribute - - attribute attribute attribute
Domain - - v v v
ForeignKey - - - V -
Cardinality - - v - «I
Relationship - - relationship - relationship
Cardinality* - - - - v
AttributeOfObject - - - - v
R hipType - - N - -

Fig. 2. A set of models described by patterns
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A pattern corresponds to a context free grammar that makes use of an alpha-
bet denoting the primitives of the metamodel. We call a string of this grammar
a structure. A schema can be obtained by associating names to the symbols
of a structure. For instance, the schema (b) in Figure [I] is obtained by adding
the nodes in bold to the rest of the tree, which corresponds to the underlying
structure.

2.2 A Transformational Approach

In [3], we have introduced a general methodology for model translation based
on three main steps: (1) the source schema S is first represented in terms of the
metamodel so that it can be compared with the target data model definition; (2)
source schema and target model may share some constructs (metaprimitives),
but others must be translated or eliminated to obtain a schema consistent with
the target data model. This operation is performed on S: the system tries to
translate the metaprimitives of S into metaprimitives of the target model or, if
the translation fail, it removes them; (3) a rewriting of the generated schema in
terms of the target model syntax is executed.

The translation step, which is the fundamental phase of the process, takes
as input a schema expressed in terms of (patterns of) metaprimitives. As the
number of metaprimitives is limited, it is possible to define a library of basic
and “generic” transformations that can be composed to build more complex
translations. These basic transformations implement rather standard transla-
tions between metaprimitives (e.g., from a relation to an element or from a
n-ary aggregation to a binary one). Representatives of such transformation have
been illustrated in [3].

Actually, each basic transformation b has two components: a schema transla-
tion o and a data translation §. Its behavior can be conveniently represented by a
signature b[P, : Py, that is, an abstract description of the set of patterns Py,
on which p operates and of the set of patterns P,,; introduced by p. Note that
this description makes the approach independent of the actual implementation
of the various transformations. As an example, the signature of an unnesting
transformation that transforms each nested element into a set of flat elements
related by foreign keys is the following:

b[{ Complex Element(ComplexElement+, AtomicElementx, Domain)} :
{ComplexElement(Key+, ForeignKeyx, AtomicElementx, Domain)}|

It turns out that the effect of a transformation with signature b[P;,, : Py, over
a structure that makes use of a set of primitives P is a structure using the
primitives (P — Pyp) U Pout-

3 Transformations and Translation

In this section, we first investigate general properties of basic transformations
and then introduce properties for complex translations.
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3.1 Properties of the Basic Transformations

Several properties characterizing the correctness, the effectiveness and the effi-
ciency of a basic transformation can be defined, and this issue has been largely
debated in the literature (see for instance [2]). Among them, we have focused
our attention into the properties that follow.

The first property states a consistency relationship between the schema trans-
lation and the data translation which compose a basic transformation.

Definition 1. A basic transformation b = (o, 6) is consistent if for each schema
S € S(My) and for each instance I of S, 6(I) is an instance of o(S).

A key aspect for a schema transformation is its “correctness”, that is, the fact
that the output schema is somehow equivalent to the input one. The equivalence
of two schemas is a widely debated topic in literature, and all the approaches
rely on the ability of the target schema to represent the same information of the
source one [I5IT6UT7]. In other words, all data associated with the input schema
can be recovered from the data associated with the output schema. This notion
has been named equivalence preserving or information preserving and have been
formalized by means of the following properties:

— a data translation ¢ from S to S; is query preserving w.r.t. a query language
L if there exists a computable function F' : £ — £ such that for any query
Q € L over S5 and any I € Z(S;), Q(I) = F(Q)(6(1));

— a data translation § from S to S; is invertible if there exists an inverse 6!
of & such that, for each instance I € Z(Ss), 6~ *(6(I)) = I.

In our context, the property that actually guarantees the equivalence depends
on the internal model used to represent the schemas. In [I] the internal model is
based on a relational dictionary, and it has been shown that calculus dominance
and query dominance are equivalent for relational settings [16]. In contrast, in-
vertibility and query preservation do not necessarily coincide for XML mappings
and query languages [I8/T5]. In the following, we will refer to a notion of “equiv-
alence preserving” that relies on query preservation.

As we have shown in the introduction, even if we assume that all the trans-
formations preserve the above properties, there are transformations that are
preferable than others. Different issues can be considered in this respect: re-
dundancy, ease of update maintenance, ease of query processing with respect to
certain workload, and so on. We therefore assume that a preference relationship
can be defined over the basic transformations according to one or more of these
aspects. One important point is that this preference relationship depends, in
many cases, on the target model. For instance, a translation to an object model
(with both relationships and generalizations) that is able to identify generaliza-
tion hierarchies between classes is preferable to a translation that only identifies
generic relationships between them. This is not true if the target is the relational
model.

First of all, we say that two basic transformations b[P;,, : Poy| and b'[P%,, : P! ]
are comparable if either P;, C P’m or Pgn C P;,.
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Definition 2. Given a set L of basic transformations and a target data model
M; a preference relationship >ps, towards M is a poset over comparable trans-
formations in L. Given two comparable basic transformations by and bs in L, we
say that by is preferable to be w.r.t. My if by >pr, bo.

Ezxample 1. Let P; be a pattern denoting an Entity, P> be a pattern denoting a
Relationship, and P; a pattern denoting a Generalization. Given the basic trans-
formations by with signature [{Ps}:{P;, P»}], which translates generalizations
into entities and relationships, and bo[{ Ps}:{ P1}|, which simply translates gen-
eralizations into entities. Then, we can state that by >u7, ba if M; is a model
with entities and relationships. The rationale under this assertion is that b1 takes
more advantage than bs of the expressiveness of the target data model.

In Sectiorf], we will concretely specify a specific preference relationship that is
suitable for our purposes.

We finally define a property for the evaluation of the performance of a basic
transformation. The best way to measure the effective cost of a transformation
would be the evaluation of its execution at runtime. Obviously we would prefer to
not actually execute basic transformations on instances to compare their perfor-
mance. Since execution time optimization is not our primary goal, an estimation
of each basic transformation complexity is a reasonable solution. In particu-
lar, we assume that the designer provides a specification of the complexity of
the algorithm with respect to the size of the database. For instance, the com-
plexity of the unnesting transformation described in the previous is linear with
respect to the database. We denote the complexity for a basic transformation b,
with ¢(by).

Definition 3. Given a set L of basic transformations an efficiency relationship
>~ is a total order over L such that b; = b; if c(b;) > c(b;). Given two basic
transformations b; and bj, we say that b; is more efficient than b; if b; >~ b;.

3.2 Properties of Translations

We have just defined some local properties of transformations, but we would like
to study also global properties of entire translations.

It has been observed that, in the transformational approach, if every transfor-
mation b; in the library is equivalence preserving, the information preservation
for the sequential application of two or more transformations is guaranteed by
construction [2/17]. The same guarantee applies for the schema validation: the
generated output schema cannot contain primitives that are not allowed in the
target data model. It turns out that a translation t = b1, ...,b, from Mg to M,
is consistent if each b; in o is consistent.

We now extend the preference property to translations.

Definition 4. Given two translations t = by,..., by and t' = b,...,b, and a
target model My, t >np, ' if: (i) there exists a transformation b; in t such that
bi >n1, b, for some transformation b in t', and (i) there is no transformation
. it such that bj, >up, by for some transformation by in t.
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It is easy to show that the above relationship is a poset over the set of all possible
translations.

Ezxample 2. Assume that L contains three basic transformations: b; with sig-
nature [{Ps}:{ Py, P»}], which translates generalizations (P3) in entities and re-
lationships (P; and P, respectively), by with [{ Py, P>}:{P4}], which translates
entities and relationships into elements (Py), and b3[{ Ps}:{ P1}], which translates
the generalizations into entities. Consider a target data model M; with just the
element pattern (a subset of DTD). If we assume the preference discussed in
Example [ (by >ps, b3), and consider the following translations: t; = bs, be,
to = bQ, bg, and ts = bl, bQ, then we have that t3 >M, to and t3 >M, ty.

The efficiency of a translation can be defined with different levels of granularity.
In [3] we proposed a preliminary evaluation based on the length of the translation,
that is, the number of basic transformations that composed the actual solution.
We now extended the definition: the efficient solution is the translation ¢ that
globally minimize the cost of the basic transformations by, ..., b, that compose t.

Definition 5. Given two schema translationst = by, ..., by, andt' =b,...,b.

s Unos
t is more efficient than t' if max7", c(b;) < maxj_, c(b}).

If we consider the data model translation problem (a translation of source schema
S into a target model M; given a library L of basic transformations {b1,...,b,}),
it turns out that the above properties lead to two different classifications of the
possible solutions for the problem based on the orthogonal notions of efficiency
and preferability.

Definition 6. A translation t is optimal if there is no other translation that is
more preferable and more efficient than t.

Note that, in general, several optimal translations can exist. We will see in the
next section how the classification of translations can be the basis for an au-
tomatic ranking of the solutions and for an efficient algorithm that retrieves
solutions without generating all the alternatives.

4 Automatic Generation of Translation

In this section we present two approaches to the problem of the automatic gen-
eration of translations. The former is based on an exhaustive search, the latter
relies on a best-first technique and is much more efficient.

4.1 Computing and Ranking all Translations

In [3], we have proposed a basic strategy that follows a greedy approach: given a
source schema S, a target model M; and a library of basic transformations L, this
method applies exhaustively the following rule over a working schema .S, which
initially coincides with S5, and an initially empty sequence of transformations ¢.
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if (a) the S makes use of a pattern P that is not allowed in the target model,
and (b) there exists a transformation b(o, §) € L whose effect is the removal
of P and (possibly) the introduction of patterns allowed in the target model,
then append b to ¢ and set S to o(S).

When condition (a) fails, the process terminates successfully and the sequence
t is a solution for the data translation problem.

This simple method can be extended to an algorithm COMPUTEALLSOLU-
TIONS that generates all the possible solutions for Ss. It is possible to show that
this algorithm is complete in the sense that every valid translation from the S;
to the target data model is in the solution set T'. This algorithm is shown in
Figure

Input: A schema S;, a target model M; and a library of basic

transformations L = {b1,...,bn}.

Output: A set of all translations T' = {t1,...,tn} of S into My (each ¢; is a
sequence of basic transformations in L = {b1,...,bn}).

begin

(1)  Set t to the empty translation and st to the structure of Ss;

(2)  Add (¢, st) to the set of possible solution Sol;

(3) while, for each s € Sol, there is a pattern P
in st s.t. P is not allowed in M; do

(4)  let B denote the set of all (by,t’, st;) branches under st such that:
(a) bp is a basic transformation whose input signature matches P,
(b) t' is a copy of the actual ¢,
(c) st; is the resulting structure after b,’s application;

(5)  for each branch (bp,t, st;) in B:

(6) if b, € t":

(7) then discard (b, t', st;);

(8) else append b, to ' and add (¢, st}) to Sol.
end while

(9)  Add the valid translation ¢ to the solution’s set T'.

(10) Return 7.

end

Fig. 3. COMPUTEALLSOLUTIONS algorithm

Observe that in step (3), we allow the search of a basic transformation to
consider any pattern of the input structure st. Since there could be basic trans-
formations that are commutative (the result of the translation could not depend
on the order of the basic transformations) we can have solutions that are different
but composed by the same basic transformations set. For example, translating to
the DTD data model, the basic transformation b, that removes a metaprimitive
that cannot be transformed, as the Namespace construct, can be added to the
translation at any place in the sequence: b;, b, by = by, b;,b; = by, by, bj.
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We can have translations in 7' that are equivalent, but notice that we only
have translations in which the same transformation does not appear more than
once. Consider steps 5-8: if a basic transformation has been already added to t,
we discard the branch. This choice prevents also loops in case of pairs of basic
transformations that add and remove the same metaprimitive (of a pattern of
them).

This algorithm captures all the possible valid translations, including optimal
ones. Consider now the efficiency and preferability issues. We can use them to
rank the solutions in 7" and expose to the user only the translations that are in the
optimal set. Given the set of solutions T = {t1, ..., t, } we can order T according
to >, and according to >: we get two ordered lists of transformations. The
optimal set is the union of the top elements in these lists. We show experimentally
next that in the optimal set there are often several solutions. This is rather
intuitive: some solutions are better in terms of efficiency, others are better in
terms of preferability.

Note that, even if the solution’s generation and ranking are efficient, an ex-
haustive exploration of the search space is required. In particular, if the set of
basic transformations is large, an exhaustive search can be expensive, since the
complexity of the algorithm depends exponentially on the size of the library.
Another approach it is introduced next to overcome this limit.

4.2 Best-First Search Algorithm

The approach we have followed to limit the search is based on the A* strategy.
This algorithm avoids the expansion of paths of the tree that are already expen-
sive and returns as first result the best solution with respect to an appropriate
function f(n) that estimates the total cost of a solution. Specifically, the value
of f(n) for a node n is obtained as the sum of g(n), the cost of the path so far,
and the estimated cost h(n) from n to a valid solution. This function is rather
difficult to define in our context. Indeed, the Ax search on a tree grants the best
solution only if h(n) is admissible, that is, only if for every node n, h(n) < h*(n),
where h*(n) is the real cost to reach the solution from n. We have followed here
a practical solution: h(n) is defined as a piecewise function that returns zero if
the current structure associated with n is empty, and it is proportional to “dis-
tance” to the target, that is, the number of patterns of the current structure not
occurring in the target model when the set is not empty.

The crucial point is the identification of some heuristics able to limit the
search space and generate efficiently good solutions. For each node we consider
two properties:

— the size, I(n), that is the length of the current translation in terms of the
number of basic transformations that compose it;

— the recall, r(n), which corresponds to the number of patterns of the target
model not occurring in the current structure associated with n.

To this end, we have defined a cost function for each node n in the search tree
as the linear combination of the two functions: g(n) = wy x I(n) + wa X r(n).
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The weights w; and wy have been chosen such that the recall is privileged to the
length of a translation. Intuitively, modifying the w; and ws we can choose a
solution with a better efficiency or a better preferability. Notice that we cannot
use the complexity values for the cost function g(n), even if it more precise than
the translation size: we must use a value that is comparable to the heuristic
h(n), that it is based on the number of patterns, since we cannot know a priori
the complexity of translation.

CurrentTranslation = { } P1
CurrentStructure = {P1, P2, P4, P5, P6}
CandidateTransformations = {B1, B4, ...} | P2 [ NestedComplexElement

P3 | FlatComplexElement

{ AtomicElement
{CurrentTranslation ={P1} P4 | Choice

CurrentStructure = {P2, P3, P4, P5, P6, P8} | ps5 OrderedSequence
CandidateTransformations = {P2, P3, ... }

""" \ P6 | Attribute
i . P7 | Relation
,~~” 7%, [CurrentTranslation = {B1, B2} - -
! \ | CurrentStructure= {P3, P4, P5, P6, P8, P8 | AttributeOfRelation
P9, P10} P9 | Key
s CandidateTransformations = {B3, BS5, ... }

P10 | ForeignKey

CurrentTranslation = {B1, B2, B3}
CurrentStructure= {P3, P4, P5, P8, P9, P10}
Moo CandidateTransformations= {B4, B10, ... }

y
\

B1 | {P1}, {P8}

_‘x-\
Ve \‘{CurrentTranslation = {B1, B2, B3, B4} B2 {P2}, {P3, P9, P10}
\_ == i{CurrentStructure= {P4, P5, P7, P8, P9, P10}
/ $ Seeee “ |CandidateTransformations = {B12, ... } B3 | {P6}, (P8}

/ R B4 | {P3},{P7}

Fig. 4. The search space for the translation

Let us introduce in Figure [ a practical example to show, in more detail,
how the algorithm proceeds. In the example we refer to metaprimitives and pat-
terns with same notation PX, see for instance P2, that is a ComplexElement that
nests another ComplexElement. The example refers to the translation of an XML
Schema and its data set into the relational model. Each node of the tree corre-
sponds to a possible state reached by the execution of the algorithm. The first
observation is that for each node there could be many candidate transforma-
tions and so in principle, to find the optimal solution according to the properties
discussed in Section [3] all the possible alternatives should be evaluated. Each
node has associated three sets: (i) the set of PX (metaprimitives or patterns)
involved in the current structure, the current structure, (ii) the set of candidate
transformations, and (iii) the set of transformations collected in the preceding
states, that is the current translation. As we said, the current structure is initial-
ized to the metaprimitive used in the source schema. For each candidate basic
transformation b of a node n, there is a child whose structure is the effect of b
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on the current structure of n. A leaf of the tree corresponds to a state in which
no candidate transformation exists: if the current structure is not valid for the
target model it is a failing state. The algorithm stops when the current struc-
ture is valid for the target model definition, this would be a successful state or
a solution. In the example at hand, a successful solution is composed by the set
of following transformations.

— Atomic elements have been changed into relational attributes.

— Nested elements have been unnested.

— XML attributes have been changed into relational attributes.

— Complex flat elements have been turned into relations with keys.
— Choices have been implemented by means of separate relations.
Order of sequences have been coded into relational attributes.

The time complexity of the algorithm strictly depends on the heuristic. It
is exponential in the worst case, but is polynomial when the heuristic function
h(n) meets the condition |h(n) —h*(n)| < O(log h*(n)), where h*(n) is the exact
cost to get from n to the goal. This condition cannot be guaranteed in our con-
text, since a basic transformation could remove or transform more than just one
pattern from the input structure, but in the average case it is polynomial as we
show experimentally shortly. More problematic than time complexity can be the
memory usage for this algorithm. We have also tried variants of A* able to cope
with this issue, such as memory-bounded A*(MA™), but we never hit memory
limit even in the original implementation, since the heuristic we used removes
effectively not promising paths so that the algorithm does not expand them.

5 Testing the Approach

To evaluate the effectiveness of our approach, we have implemented the transla-
tion process within a prototype and we have conducted a series of experiments
on several schemas of different data models that vary in terms of dimension and
complexity.

In our tests, we have used a specific preference relationship. Consider again
the example in Figure [It the output schema d takes more advantage of the
expressiveness of the target model than schemas b or c. It follows that the
translation to schema d it is preferable to the other solutions because it also
includes the information on cardinalities, which is a construct available in the
target data model. For a translation ¢, on an input schema S, we denote the
number of distinct valid patterns in the target schema by |t5(S)| and we assume
that ¢ >, to if |t1(S)| > |t2(S)|

The results of these experiments are summarized in Figure Each row
presents quantitative results for a schema translated from a source model (first
column) to a target model (fourth column). The actual number of metaprimi-
tives occurring in the schema is in the second column |S|. The size complexity
is estimated by the number of distinct metaprimitives involved in the source
schema and it is reported in the third column |C|.
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Source Num. Alg. | Sol. with | Min. Sol.with | | |Numberof| A*First
ISI | ICI | Target Model | of |.. M. N max. optimal | Solution

Schema time | min. size | size . | pref. -
sol. preferabi. sol. Size | Pref
XMLSCHEMA | 16 | 4 ODL 384 | 25 2 3 16 4 18 4 4
XMLSCHEMA | 16 | 4 ER 367 | 3.4 1 1 4 4 5 2 4
XMLSCHEMA | 35 | 5 DTD 3 2.4 1 1 3 4 1 1 4
XMLSCHEMA | 35 | 5 | RELATIONAL | 352 | 2.5 2 3 176 5 2 3 5
RELATIONAL {20 | 5 | XMLSCHEMA | 8 1.4 2 3 1 5 1 4 5
RELATIONAL | 20 | 5 ER 2 0.4 1 1 6 5 1 1 5
RELATIONAL [ 20 | 5 DTD 6 1.3 2 3 16 5 18 4 5
RELATIONAL |42 | 6 | XMLSCHEMA | 24 | 4.2 1 4 24 6 1 6 6
RELATIONAL |42 | 6 ODL 8 4.2 1 3 4 6 5 3 5
DTD 27 | 6 | XMLSCHEMA | 121 | 85 1 2 89 5 1 2 5
RELATIONAL | 54 | 8 ODL 13 | 51 1 2 4 7 5 2 6
RELATIONAL | 54 | 8 DTD 6 5.4 1 6 6 6 7 7 5

Fig. 5. Experimental results

The first result we report for each translation is the total number of valid
possible solutions. It turns out that even for a simple source schema (e.g. a DTD
with a few distinct metaprimitives) there are a lot of possible solutions. For in-
stance, valid translations from an XML schema into ODL, as well as into the
ER or the relational model, are hundreds. As we said, many of these solutions
differ only by the order in which basic transformations occur in the translation,
but we still want a criterium to limit the search as discussed in the previous
section. Following columns report: (i) the number of solutions with minimal size
and the corresponding size value, and (ii) the number of preferable solutions and
the corresponding value. We reported the size results instead of the complexity
ones to compare them with the A* results. The optimal solutions are those both
efficient and preferable. It turns out that in several cases optimal solutions do
not exists and this confirms the intuition that longer solutions may be more
“accurate”. We also report the overall time (in minutes) the exhaustive search
algorithm took to find all the possible solutions for a translation. Notice that this
value increases with the number of distinct metaprimitives of the source schema,
but in a rather irregular way, since it depends also on the library of transfor-
mations and the target model complexity. Indeed, the problem depends on the
complexity of the models involved. The required time to find all the solutions
becomes critic with models that present more than five distinct metaprimitives.
Conversely, the translations involving a restricted number of metaprimitives re-
quire a rather limited effort and increase linearly with the complexity of the
source schema. Finally, notice in the last two columns the results for the A*
implementation. The first column reports the size of the first solution returned
and the second one its preferability. The solution coincides with the optimal for
translations between XML based models, whereas in the other cases preferability
is close or equal to the best value. We expected this result, since we have tuned
the heuristics to maximize the preferability of the solution.

We further evaluated the performance of our best-first search algorithm ag-
gregating results under four main scenarios: (i) translations between database
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models (Relational, ER, ODL), (ii) between XML based models (XSD, DTD),
(iii) from XML based models to database ones and (iv) vice versa. Figure
shows the performance of the A* algorithm on the four scenarios with increasing
schema complexity on the x-axis. We ran several examples for each scenario,
using schemas with different structures, and reporting average results on the
charts. The chart with the size analysis is on the left hand side of the figure. As
expected, the number of transformations increases with the number of distinct
metaprimitives in the source schema. The linearity in (iii) and (iv) represents the
heterogeneity between the two classes of models: for almost each metaprimitive
the system uses a transformation from the library. Lines (i) and (ii), instead,
show that translations between models that share many metaprimitives require
only few basic transformations: this fact strongly depends on the quality of the
metamodel implemented in the system. The chart on the right hand side of the
figure shows the results of the preferability analysis. The algorithm scales well for
the four scenarios: the number of metaprimitives in the target schemas increases
with the increasing complexity of the input schemas. In particular, in scenarios
(i) and (iv) the system translates with almost linear results: these performances
depend on the low complexity of the considered source models, that is, it is easier
to find a preferable solution translating a schema from a database model, which
presents less constructs and less patterns than an XML data model.

Size -

© 8 o8 Preferability
& 7 |[—e—() FromDBto DB S 5 . °
k= —=— (i) From XML to XML = v
g 61— (ii) From XML to DB L 256
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- ©
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Fig. 6. A™ search strategy analysis

6 Conclusions

In this paper, we have presented new techniques, and supporting results, for
the automatic generation of data model translations. We have defined a number
of properties for evaluating the quality of the translations and we have exper-
imented them evaluating the translations generated by a prototype. It turned
out that the system can generate all the optimal solutions with respect to these
properties, but this usually requires significant effort. However, by adopting a
best-first search algorithm and appropriate heuristics, a solution can be retrieved
efficiently and it is usually optimal in terms of preferability.

In the future, we plan to investigate and develop supporting tools for the
design of information preserving transformations. Our work is now focusing on a
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formal language to express transformation between data models definitions and
a graph-based, high-level notation to easily define them.
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