
Constructing Maintainable Semantic Mappings in XQuery

Gang Qian
Dept. of Computer Science and Engineering
Southeast University, Nanjing 210096, China

qiangang@seu.edu.cn

Yisheng Dong
Dept. of Computer Science and Engineering
Southeast University, Nanjing 210096, China

ysdong@seu.edu.cn

ABSTRACT
Semantic mapping is one of the important components underlying
the data sharing systems. As is known, constructing and maintain-
ing such mappings both are necessary yet extremely hard process-
es. While many current works focus on seeking automatic tech-
niques to solve such problems, the mapping itself is still left as an
undecorated expression, and in practice it is still inevitable for the
user to directly deal with such troublesome expressions. In this
paper we address such problems by proposing a flexible and
maintainable mapping model, where atomic mapping and combi-
nation operators are the main components. Conceptually, to con-
struct global mapping for the whole target schema, we first con-
struct the atomic mappings for each single target schema element,
and then combine them using the operators. We represent such
combined mappings as mapping trees, which can be incrementally
constructed, and can be locally maintained. Also, we outline the
main issues in combining our work with the current automatic
techniques, and analyze the maintainability of the mapping tree.
Though our discussion is applicable to other models, this paper
limits the attention to the XML model and the XQuery language.

1. INTRODUCTION
Semantic mapping is one of the important components under-

lying the data sharing (e.g., data integration and data exchange)
systems. For example, the mappings may be used to translate the
user query over the target (mediated) schema into queries over the
source schemas (e.g., [8]), or translate the data resided at different
sources into the target database. To enable data sharing, the user
has to first construct the semantic mappings between the target
and the source schemas. Also, as the application requirements or
the schemas change, the user has to maintain and modify the early
constructed mappings.

As is known, constructing and maintaining such mappings both
are extremely labor-intensive and error-prone processes. Trying to
provide automated support, much recent literature has extensively
studied the techniques like schema matching, mapping discovery
and mapping adaptation. Given a pair of schemas, the technique
of schema matching focuses on discovering semantic correspond-
ences (matches) between schema elements (e.g., [11, 6, 18, 5]).
Taking these matches as input, the tools like Clio [3] then are
employed to further discover and generate the candidate semantic

mappings between the schemas, e.g., in the form of a naive SQL
or XQuery expression [10, 13]. When the schemas evolve, the
technology of mapping adaptation is responsible for adjusting the
mappings constructed originally and keeping them as consistent
as possible [19].

Despite this progress, however, it is still inevitable for the user
to directly construct and maintain the mappings. In practice there
are many factors that may require to modifying and maintaining
the mappings. For example, mapping construction is usually a
process of repeated refinement. In most case, only semantically
valid and partial mappings the automated techniques can discover.
To obtain the desired one, the user may need to further refine the
discovered mappings, or completely reconstructed it in the cases
beyond the intelligence of the automated techniques. A detailed
motivation appears in Section 2.

As the automated techniques could not completely solve these
mapping problems, we are inspired to explore other complement-
ary ways to alleviate the burden on the user. Currently, schema
mappings are mainly represented as (query) expressions, which
are troublesome for the user to deal with. In dynamic environment
like the Web, schemas and application requirements may change
frequently. We believe that a maintainable mapping represent-
ation would be more suitable than the undecorated expression.
Further, as large, complicated schemas become prevalent on the
Web, it may be more feasible to incrementally construct the
whole schema mappings, e.g., starting with simple mappings, and
then gluing them to formulate the globe ones.

In terms of the above observations, in this paper we propose a
flexible and maintainable mapping model, where atomic mapping
and combination operators are the main components. Specifically,
we limit our attention to the XML model and the mappings
expressed in XQuery, though our discussion is also applicable to
others. In our model, two atomic mappings (say M1 and M2) may
be combined using the Nest, the Join or the Merge operator, and
the resulting mapping is called combined mapping (say M3). We
say that the combined mapping M3 is maintainable, which means
that it can be combined again with others, possibly using another
combination operator, and it is also possible to reset the operator
of connecting M1 and M2, or recover M1 and M2 from M3.

With our model, to construct global mapping for the whole
target schema, we begin to construct the atomic mappings for
each single target schema element, and then incrementally
combine them using the operators. Such flexibility in mapping
construction makes our model adapt well to complicated
applications. We represent the combined mapping as a mapping
tree. To maintain and modify the schema mapping, we only need
to adjust the corresponding nodes of the mapping tree, while other

Copyright is held by the author/owner.
Eighth International Workshop on the Web and Databases (WebDB 2005),
June 16-17, 2005, Baltimore, Maryland

nodes and their relationships are reused. Note that our approach
would not replace, but rather complement existing techniques to
assist the user to manage the schema mappings. We analyze the
maintainability of the mapping tree, and outline the main issues in
combining our work with the current automatic techniques.

2. A MOTIVATING EXAMPLE
We start with a common example of sharing book information

and illustrate the practical requirement for a flexible, maintainable
mapping representation model. Suppose there is an online shop
that wants to collect data from other sources. Figure 1 shows the
schemas T of the shop and S1 and S2 of its two sources, which
serve as our running example for discussing schema-to-schema
mappings throughout the paper.

We model nested schemas as tree structures, where each tree
edge denotes the structural constraint, the non-tree edge like r1 of
S1 indicates the referential constraint, and the multiplicity label
associated with the tree edge represents the cardinality constraint.
In the source (of) S1, books are grouped by year, and then
categorized by the styles such as novel. The source S2 provides
reviews of books. We suppose that the book is identified by its
title. Note that it is uncertain that every novel instance of S1
must have corresponding reviews in S2.

Using XQuery, we give an example of mapping expression as
follows, which relates the source schemas S1 and S2 and the
target schema T, and indicates the correspondences between
schema elements, e.g., the novel of S1 and the book of T.
<shop>
for s in doc(“S1”)//books, $n in $bs//novel $b
return <book>

{$n/title, $bs/year}
<ca “n
for $a in doc(“S1”)//author

te>{ ovel”}</cate>{

where n/aid=$a/id $
return <author>

{$a/name, $a/intro}
</author>}
… … … … … …
</book>

</shop>

Figure 2. An example mapping expression

In practice, there are many cases where the mappings have to
be modified and maintained. First, constructing the mappings may
well be a repeated refinement process, especially for complicated
applications. For example, to construct the above mapping, the
user at the beginning might have related the book elements of S2
and T. In another case, if the referential constraint r1 of S1 did not
hold, then the above mapping may need to be refined to define the
target author instances by the aid of novel, while for those
authors not stored in S1, the related target attributes like name

may be filled with null values or Skolem functions. Second, when
the application requirements or the schemas change, the mappings
need to be maintained accordingly. For example, for some reason
the shop may want to constraint the schema element review by
“+”. Again, the shop may want to alter to share reviews from
other more economy sources.

The undecorated expression is troublesome for the user to deal
with. In contrast, we propose to represent the schema mapping as
a combined formulation, where atomic mappings and combina-
tion operators are the main constituents. The atomic mapping
defines the local view of a single schema element. Using the
combination operator, two atomic mappings can be connected,
and the result is a combined mapping, which can be further
combined with other combined or atomic mappings.

Example 2.1 For the single target elements book and title, we
respectively construct the atomic mappings as follows.

Mbook(): for 1 in doc(“S1”)//novel $n
return <book></book>

Mtitle: for $n2 in doc(“S1”)//novel, $t1 in $n2/title
return $t1

Using the Nest operator (see Section 3), we combine Mbook()
with Mtitle and obtain the mapping Mbook(title) as follows.

for $n1 in doc(“S1”)//novel
return <book>{

for $n2 in doc(“S1”)//novel, $t1 in $n2/title
where $n1=$n2
return $t1}
</book>

The above combined mapping represents a more significant
view, where the initially separate title instances returned by
Mtitle, now is structurally nested within the paper instances.
Continuing to apply the operators in the same way, other instances
also can be nested within the returned paper instances. �

A mapping should be semantically valid, i.e., conforming to the
constraints contained in the target schema. Intuitively, ignoring its
contexts (i.e., the associated constraints), we think of the single
schema element as the simplest form of schema. Then the atomic
mapping represents the semantic relationship between the source
schemas and the simplest target schema. As the atomic mappings
are combined, the separated schema elements are stitched up, and
the ignored contexts are recovered. Thus, to construct the global
mappings for the whole target schema, we begin to construct the
atomic mappings for each single target schema element, and then
combine them together by applying the operators.

The combined mapping possesses a tree structure, where the
node contains a cluster of atomic mappings, and the edge denotes
the applied operator. Figure 3.a shows an example of the mapping
tree. We can insert other atomic mappings into the mapping tree

Figure 1. The target schema T (left), source schema S1 (middle) and S2 (right)

r1

record

books

novel

title

year

nameaid id intro

authors

author

* *

*

+

*+

*
shop

book

title author year review

name intro who comm

*

coun
?

cate

reviews

book

review

reviewer comm

title

*

*

cate

and construct the global mapping equaling to the one shown in
Figure 2. Besides such flexibility, compared to the naive mapping
expression, the combined mapping is also maintainable. For
example, we can update the operator type to reflect the change of
the cardinality constraint. Also, we can modify locally the atomic
mappings contained in the mapping tree, while other parts are
remained and reused.

3. MAPPING COMBINATION
Atomic mapping. We consider the FLWR [17] expression and
define atomic mapping as a restricted query formulation. In
contrast with the usual XQuery expression, which may contain
arbitrary nested queries, an atomic mapping consists of only one
FOR, one RETURN and one optional WHERE clauses, and,
specifically, has the following general form.

for $v in SP1

where φ
1(), $v2 in SP2($v1), ……, $vn in SPn($vn-1)

return () | constant | SPn+1($vj) | <tag></tag>

Here, SP is a simple path expression with no branching
predicates, and SP1() indicates that SP1 must start at a schema
root, while SPk($vk-1) denotes that SPk is relative to the variable
$vk-1. The filter φ is a conditional expression w.r.t. the variables of
the atomic mapping. The RETURN clause indicates that the atomic
mapping may be empty, constant, copy, or constructor type.

In Example 2.1, the atomic mapping Mtitle is copy type, and
Mpaper() is constructor type, while the following atomic mapping
Mcate-text is constant type.

Mcate-text: for $n4 in doc(“S1”)//novel
return “novel”

Mreview(): for $b1 in doc(“S2”)//book, $r1 in $b1/review
return <review></review>

We refer to $vk (1 ≤ k ≤ n) as the F-variable of the atomic
mapping, and $vn as the primary F-variable (PFV) and others as
the prefix F-variable. Besides binding tuples of instances, the F-
variables may also be used to filter the binding tuples, copy the
source fragments, or connect with other mappings. In the latter
case, as will be seen in Section 4, the prefix F-variables such as
$n2 in Mtitle may be inserted dynamically. In other words, the
user only needs to construct Mtitle as follows.

for $t in doc(“S1”)//novel/title return $t

In combining mappings, the F-variables sharing the same name
will be renamed.

Combination operator. In the following, M1 and M2 denote
atomic mappings with the general forms. We define a few basic
operators to combine M1 and M2. The resulting mapping is called
combined mapping, denoted by M3. Different from mapping (or
query) composition [7], where one query can be answered directly
using the results of another query, combining two mappings is a
“parallel” connection, which includes joining the bound sources
instances and combining the constructed target instances.

Mbook()

The bound sources are related by combination path, which is a
comparison expression w.r.t. the F-variables of M1 and M2, e.g.,
$n1=$n2 in Example 2.1. In Section 4 we will discuss how to
discover such combination paths in combining the mappings.

The operators are responsible for structurally relating the target
instances returned by M1 and M2. At the same time, we respective-
ly use the Nest, Join and Merge operator types to capture the
cardinality constraints contained in the target schema. Note that
[13] shows the techniques of generating mappings in the case of
referential constraints, which also apply our context and are omit-
ted here. We use the following example to explain the intuition
behind the combination operators, while a bit more rigorous for-
malism will be given when defining the combined mappings.

Example 3.1 As another example, we use the Nest operator to
combine Mbook() with Mreview(), and get a combined mapping as
follows.
for $n1 in doc(“S1”)//novel
return <book>{

for $b1 in doc(“S2”)//book, $r1 in $b1/review
where $n1/title=$b1/title
return <review></review>}
</book>

The above mapping indicates that for each novel, there will
be a new book instance returned, no matter whether there are
corresponding reviews in the source S2. In other words, the Nest
operator captures the outer-join relationship between the binding
tuples of the combined atomic mappings. With the constraints in
the schemas of Figure 1, it is valid to apply the Nest operator to
combine Mbook() with Mreview(). However, in the shop schema,
when the cardinality constraint “*” of review is replaced with
“+”, those books with no reviews should be filtered out. The Nest
operator cannot satisfy such requirement. Instead, we use the Join
operator to combine Mbook() with Mreview(), and get a combined
mapping as follows.
for $n1 in doc(“S1”)//novel
let $v:= for $b1 in doc(“S2”)//book, $r1 in $b1/review

where $n1/title=$b1/title
return <review></review>

where count($v)>0
return <book>{$v}</book> �

Let ψ denote the combination path. For both the Nest and the
Join operators, we constrain M1 to be constructor type. Figure 4
respectively shows the resulting combined mapping M3, which
specifies that the target instances returned by M2 would be nested
within those returned by M1. Syntactically, for the Nest operator,
the resulting mapping M3 is obtained by nesting M1 within the
RETURN clause of M2, while for the Join operator, M3 is obtained
by introducing a new LET-variable $v to bind the sequences
returned by M2, and a condition count($v)>0 to filter out those
unsatisfied binding tuples.

Figure 3. The global mapping between the target and
the source schemas is represented as a mapping tree.

(i) (Nest, $n1=$n2) (iii) (Nest, $n1/title=$b1/title)

Mtitle

Mcate-text

Mreview()

Mwho()

Mcate()

(i) (iii) (ii)

(v) (iv)

 In addition, the application may need to express the “product”
relationship between the binding tuples of M1 and M2. When the
target schema is a default XML view over the relational database
[15], for example, the flattened instances may be required to be
returned. We use the Merge operator to satisfy such demands. In
this case, if M1 is constant or copy type, then M2 must be empty
type; if M1 is constructor type, then M2 must also be constructor
type and with the same <tag>. For the latter Figure 4 shows the
general form of the resulting combined mapping M3, where the
returned instances are merged.

Combined mapping. In defining the above operators, we
present the combined mapping M3 as an equivalent expression.
Now, to define the general combined mappings, we first model M3
as a mapping tree. Specifically, the atomic mapping is considered
as a node. If M1 and M2 are combined using the Nest or the Join
operator, then M2 is a child node of M1, and the edge is labeled
with (Op, ψ). If they are combined using the Merge operator, then
the nodes are united into one, which contains both M1 and M2, and
is associated with ψ.

For example, the following mapping tree T1 corresponds to the
combined mapping Mbook(title) (see Example 2.1), while the tree
T2 means a combined mapping obtained by combining Mauthor()
with Mname() using the Nest operator.

Being a query, the atomic mapping returns a forest of data
(DOM) tree. Specifically, for each binding tuple t, if the filter φ
holds, then the atomic mapping will construct a data tree d. In this
case we also say that t→d holds. Corresponding to the types, the
data tree d may be an empty node, a text node, a copied subtree,
or an element node. The Nest operator applied between Mbook()
and Mtitle indicates that, for each binding tuple t (t→d holds) of
Mbook(), if there are n binding tuples tn (tn→dn holds) of Mtitle
satisfying the combination path (i.e., $n1=$n2), then the com-
bined mapping tree T1 will return the data tree d with dn (n≥0)
nested within its root node. In our running example, n=1.

Further, we use the Nest operator to combine the Mbook() of T1

with the Mauthor() of T2, which means inserting T2 into the root of
T1. Figure 5 shows the obtained mapping tree T3, where the new
edge “(iii)” is associated with the applied operator and combina-
tion path. In another case, we first combine M’book() (see Figure
5) with the Mauthor() contained in T2, and obtain a mapping tree
(say T’4). Then we use the Merge operator to combine the
Mbook() contained in T1 with the M’book() contained in T’4,
which means merging the root nodes of T1 and T’4. The obtained
mapping tree T4 is shown in Figure 5.

Let t1 and t2 respectively denote the binding tuples of Mbook()
and M’book(), and let d1 and d2 respectively denote the data trees
returned by T1 and T’4. The Merge operator applied above
indicates that, for each pair of the binding tuples (t1, t2), where
both t1→d1 and t2→d2 hold, if the combination path holds, then
the mapping tree T4 will return a data tree which merges the root
nodes of d1 and d2. Intuitively, the mapping tree T4 defines
flattening author instances.

As can be seen, in a general mapping tree, each node contains
atomic mappings, which are combined using the Merge operator,
and each edge corresponds to the Nest or the Join operator, which
relates the atomic mappings contained in the parent and in the
child nodes. Note that there are no the possibilities where both the
Nest and the Join operators are simultaneously applied in the
same edge, since the atomic mappings contained in the same node
contribute to the same target instances. But now the combination
path may be a conjunctive formulation.

Let a node in the mapping tree contain i atomic mappings. We
can define the semantics of the general mapping tree in terms of
the tuple (t1, t2, …, ti), where each ti denotes the binding tuple of
the corresponding atomic mapping. We omit the details here. In
terms of the rules of formulating the combined mapping M3 as
shown in Figure 4, we write the equivalent mapping expression
for the mapping tree T3 as follows.
for $n1 in doc(“S1”)//novel
return <book>{

for n2 in doc(“S1”)//novel, $t1 in $n2/title $
where $n1=$n2 return $t1}{
for $a1 in doc(“S1”)//author
where $n1/aid=$a1/id return <author>… … …</author>}
</book>

Using the normalization rules such as shown in [8], the above
mapping may be minimized into the expression fragment of the

(i) (Nest, $n1=$n2)

(ii) (Nest, $a1=$a2) (i)

Mtitle

Mbook()

T1

(ii)

Mauthor()

Mname T2

for $v1, 1 in SP1, 1(), ……, $v1, n in SP1, n($v1, n-1)
where φ1
return <tag>

for $v2, 1 in SP2, 1(), ……, $v2, m in SP2, m($v2, m-1)
where φ2 and ψ
return exp </tag>

for $v1, 1 in SP1, 1(), ……, $v1, n in SP1, n($v1, n-1)
let $v:= for $v2, 1 in SP2, 1(), ……, $v2, m in SP2, m($v2, m-1)

where φ2 and ψ
return exp

where count($v)>0 and φ1
return <tag>{$v}</tag>
for $v1, 1 in SP1, 1(), ……, $v1, n in SP1, n($v1, n-1)
for $v2, 1 in SP2, 1(), ……, $v2, m in SP2, m($v2, m-1)
where φ1 and φ2 and ψ
return <tag></tag>

Figure 4. The Nest, Join and Merge operators

(i)

Mtitle

Mbook()

(ii)

Mauthor()

Mname

(iii)

T3

Mau
for $a1 in doc(“S1”)//author return <author></author>

thor():

M’b
for $a3 in doc(“S1”)//author return <book></book>

ook():

(i) (Nest, $n1=$n2) (ii) (Nest, $a1=$a2) (iv) (Nest, $a3=$a1)
(iii) (Nest, $n1/aid=$a1/id) (v) (Merge, $n1/aid=$a3/id)

(i)

Mtitle

(ii)

Mauthor()

Mname

(iv)

Mbook() M’book() (v)

T4

Figure 5. Constructing the general mapping tree

one in Figure 2. The ways to construct the mapping tree are mul-
tiple. Alternatively, for example, to obtain the mapping tree T4,
we can first merge T1 with M’book(), and then insert T2. We
believe that such flexibility would be popular in constructing the
global mapping, especially for the complicated applications. Note
that the sibling nodes are order sensitive in the mapping tree.

4. AUTOMATED SUPPORT
Besides the flexibility, the combined mapping is also maintain-

able. In this section we further combine our work with the current
automated techniques. Specifically, we show how to generate the
atomic mappings and discover the combination paths. Also, we
analyze the maintainability of the combined mappings.

Given the target and the source schemas, the atomic mappings
are first generated in terms of the matches produced by a tool of
schema matching (e.g., LSD [6]). Interestingly, due to the main-
tainability of the combined mapping, our model does not require
that all the produced matches should be desired. Next, keeping the
target schema in mind, the user incrementally combine the atomic
mappings using the operators, i.e., inserting and merging the
mapping trees. In this process, a tool may be used to suggest the
candidate combination paths.

Maintainability. As motivated in Section 2, the requirements
of modifying and maintaining the mappings may result from the
way of incrementally constructing the mappings, the refinement
of the mappings, or the evolution of the schemas. With our
mapping model, they are all reduced to maintaining the mapping
trees, e.g., inserting and merging subtrees. In the mapping trees,
the atomic mapping may be related through the combination paths
with other atomic mappings contained in the same, parent, or
child nodes. As the modifications occur in the mapping tree, these
combination paths would need to be discovered or adjusted, while
other parts of the mapping trees would be remained and reused.

Modifying the combination operators (Nest and Join) will not
affect the combination paths that relate the atomic mappings. For
example, consider the Example 3.1 and the mapping tree in Figure
3, if in the target schema the cardinality constraint “*” of
review is replaced with “+”, then we only need to modify the
operator type in the edge “(iii)” from Nest to Join.

On the other hand, for the following modifications, we find out
those pairs of atomic mappings (M1, M2) between which the com-
bination paths would need to be discovered or adjusted. In the
following, S represents the set of (M1, M2), Tr corresponds to the
mapping trees and r is its root node, and atoms(n) denotes the set
of atomic mappings contained in the node n of the mapping tree.
We also use p and ci to respectively denote the parent and the
children nodes of the node n.

Inserting Tr1 into the node n of Tr2.
S←(M1, M2), where M1∈atoms(r1) and M2∈atoms(n).

Merging Tr1 into the node n of Tr2.
S←(M1, M2), where M1∈atoms(r1) and M2∈atoms(n) ∪
atoms(p) ∪ atoms(ci).

Updating the atomic mapping M contained in the node n.
S←(M1, M2), where M1∈{M} and M2∈atoms(n) ∪
atoms(p) ∪ atoms(ci) − {M}.

Removing the atomic mapping M from the node n.
S←(M1, M2), where M1, M2∈atoms(n) ∪ atoms(p) ∪
atoms(ci) − {M} and M1 ≠ M2.

Consider the mapping tree T4 shown in Figure 5. The atomic
mappings M’book() and Mauthor() contained in the tree are
related by the combination path $a3=$a1. The modification of
removing M’book() from the root of T4 would affect the atomic
mapping pairs {(Mbook(), Mtitle), (Mbook(), Mauthor())},
which are respectively taken to discover the candidate
combination paths (discussed in a moment). Guided by these
candidate paths, the user then may adjust the above path to
$n1/aid=$a1/id.

Note that such adjustment is not additionally introduced by our
mapping model. In contrast, such maintainability inherent in our
model provides the opportunities for automating the process of
mapping maintenance, be it caused by schema evolution, mapping
refinement, or other factors. In our going work, we are developing
methods to assign priorities to the discovered combination paths,
and to heuristically reduce the amount of the potentially affected
atomic mapping pairs. Additionally, our first experiment in the
book domain shows that there are averaged 1.2 atomic mappings
contained in each node of the mapping trees.

Schema matching. Schema matching [6, 18, 5] produces a set
of semantic correspondences (matches) between the elements of
the schemas, from which atomic mappings can be generated. For
example, a 1-1 match would specify that the element name in S2
match who in the shop schema T. Then, an atomic mapping Mwho
could be generated via specifying its PFV (see section 3) by the
element name. As to complex type (e.g., 1-n) matches, several at-
omic mappings may be generated, which then are combined using
the operators. In practical mapping construction, it is often the
case where the matches initially used to obtain the mappings are
not the desired. Fortunately, as shown above, our model is able to
make it local to update the corresponding atomic mappings.

Discovering combination path. Combination path ψ is used to
relate the bound source instances of the atomic mappings, and can
be heuristically discovered in terms of the semantic relationships
between the source schema elements. As presented in [10, 13, 19],
such relationships are captured by the structural, user and logical
associations, which respectively describe a set of associated
schema elements.

Consider the source schema S1. For example, the elements
such as novel and title are in a structural association, while
the elements such as novel, title, author and name are in a
logical association. To relate the novel with the book reviews, the
user may explicitly relate the title elements. Then the elements
such as novel and title of S1, and book and title of S2
are in a user association.

Let e1 and e2 respectively denote the source schema elements
specifying the PFVs of the atomic mappings M1 and M2. If the
elements e1 and e2 are in a structural association, then ψ may be
formulated in terms of their common path. Consider to combine
the atomic mappings Mbook() and Mtitle. Their PFVs (i.e., $n1
and $t1, see Example 2.1) are respectively specified by the ele-
ments novel and title of S1, which are in a structural asso-
ciation. In terms of the common element, i.e., novel, the path
$n1=$n2 is generated, where, as a prefix F-variable, $n2 may
be dynamically inserted into Mtitle, if it does not exist.

If e1 and e2 are in a structural but in a user association, then ψ
may be formulated with the path assigned by the user. Lastly, if
they are neither in a structural nor in a user, but in a logical
association, then ψ may be formulated in terms of the referential
path between the schema elements e1 and e2. For example, the
combination path, $n1/aid=$a1/id, of relating Mbook() and
Mauthor() is generated in terms of the logical relationship
between the elements novel and author. In a similar way, the
prefix F-variables can also be introduced dynamically, if they are
not defined in constructing the atomic mappings.

5. RELATED WORK
Schema mappings are extensively used in many modern applic-

ations such as the data integration and data exchange systems. To
alleviate the burden on the user for constructing and maintaining
such semantic mapping, many efforts have been made to pursue
maximum automatic support, which can be classified into works
on schema matching and mapping discovery. The former focuses
on discovering semantic correspondences between the elements of
a pair of schemas (e.g., [11, 6, 18, 5], see also [14] for a recent
survey). Among these, [18, 5] discussed how to obtain complex
type matches, based on the domain ontology and the multi-
matcher mechanism. Under the assumption that the desired
matches have been given, [10, 13] proposed to further discover
candidate schema-to-schema mappings. In their approach, the
matches are related using the chase technique [1, 12] to search the
semantic relationships between the source or target schema ele-
ments. In terms of such semantic relationship, [19] proposed to
compute the matches affected by schema evolution, and then re-
employ the mapping discovery system to adjust the mappings.

In contrast, we propose a flexible and maintainable model to
represent XML mappings. We think that the global mapping can
be constructed in a piecemeal fashion, where, to some extent, the
partial mappings resemble subgoals in datalog programs. Also,
the XML-QL language [4] allow for defining partial mappings.
Yet we provide a richer scheme for combining the results of the
different partial mappings. In our model, mappings are considered
as the first-class citizens that can be operated. Such idea also was
used in [2, 9] to deal with the management of meta data. Yet the
subjects these works focused on are not the mappings but the
matches between the schema elements. Additionally, there have
been many GUI-style tools developed to assist the user to
construct the mappings (queries) in XQuery, where the queries are
formulated in terms of the syntax ingredients such as the FOR,
LET, WHERE and RETURN blocks [16]. Differently, our mapping
model is based on the semantic relationships between mappings to
be connected.

6. CONCLUSION
Semantic mappings are key for enabling a variety of data

sharing scenarios. This paper described the flexible and maintain-
able mapping model, where the atomic mapping and the combi-
nation operator are the main components. Conceptually, to con-
struct the global mapping for the whole target schema, we first
construct the local atomic mappings for the single target schema
element, and then combine them using the operators. We repre-
sented the combined mappings as the mapping trees. Then the
mapping problem is reduced to the problem of constructing and
maintaining the mapping trees. We analyzed the maintainability

of the mapping tree, and presented how to combine our work with
the current automated techniques.

7. ACKNOWLEDGEMENTS
We would like to thank the anonymous referees for their

insightful comments.

8. REFERENCES
[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of

Databases. Addison-Wesley, 1995.
[2] P. A. Bernstein. Applying Model Management to Classical

Meta Data Problems. In Proc. of CIDR, 2003.
[3] Clio. http://www.cs.toronto.edu/db/clio/
[4] A. Deutsch, M. Fernandez, D. Florescu, A. Levy, and D.

Suciu. A Query Language for XML. In proc. of WWW, 1999.
[5] R. Dhamankar, Y. Lee, A. Doan, A. Halevy, and P.

Domingos. iMAP: Discovering Complex Semantic Matches
between Database Schemas. In proc. of SIGMOD, 2004.

[6] A. Doan, P. Domingos, and A. Halevy. Reconciling schemas
of disparate data sources: A machine learning approach. In
proc. of SIGMOD, 2001.

[7] J. Madhavan and A. Halevy. Composing mappings among
data sources. In Proc. of VLDB, 2003.

[8] I. Manolescu, D. Florescu, and D. Kossman. Answering
XML Queries on Heterogeneous Data Sources. In proc. of
VLDB, 2001.

[9] S. Melnik, E. Rahm, P. A. Bernstein. Rondo: A
Programming Platform for Generic Model Management. In
proc. of SIGMOD, 2003.

[10] R. Miller, L. Haas, and M. Hernández. Schema Mapping as
Query Discovery. In Proc. of VLDB, 2000.

[11] T. Milo and S. Zohar. Using schema matching to simplify
heterogeneous data translation. In proc. of VLDB, 1998.

[12] L. Popa and T. Val. An Equational Chase for Path-
Conjunctive Queries, Constraints, and Views. In proc. of
ICDT, 1999.

[13] L. Popa, Y. Velegrakis, R Miller, M. A. Hernandez, and R.
Fagin. Translating Web Data. In Proc. of VLDB, 2002.

[14] E. Rahm and P.A. Bernstein. A survey of approaches to
automatic schema matching. The VLDB Journal, 10(4): 334–
350, 2001.

[15] J. Shanmugasundaram, J. Kiernan, E. J. Shekita, C. Fan, and
J. Funderburk. Querying XML views of relational data. In
proc. of VLDB, 2001.

[16] Stylus Studio. http://www.stylusstudio.com
[17] XQuery. http://www.w3.org/XML/Query
[18] L. Xu and D Embley. Using domain ontologies to discover

direct and indirect matches for schema elements. In Proc. of
the Semantic Integration Workshop at ISWC, 2003.

[19] Y. Velegrakis, R. J. Miller, and L. Popa. Preserving mapping
consistency under schema changes. The VLDB Journal,
13(3): 274-293, 2004.

	INTRODUCTION
	A MOTIVATING EXAMPLE
	MAPPING COMBINATION
	AUTOMATED SUPPORT
	RELATED WORK
	CONCLUSION
	ACKNOWLEDGEMENTS
	REFERENCES

