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Abstract. As XML schemas evolve over time or as applications are in-
tegrated, it is sometimes necessary to validate an XML document known
to conform to one schema with respect to another schema. More gener-
ally, XML documents known to conform to a schema may be modified,
and then, require validation with respect to another schema. Recently,
solutions have been proposed for incremental validation of XML docu-
ments. These solutions assume that the initial schema to which a doc-
ument conforms and the final schema with which it must be validated
after modifications are the same. Moreover, they assume that the in-
put document may be preprocessed, which in certain situations, may be
computationally and memory intensive. In this paper, we describe how
knowledge of conformance to an XML Schema (or DTD) may be used
to determine conformance to another XML Schema (or DTD) efficiently.
We examine both the situation where an XML document is modified
before it is to be revalidated and the situation where it is unmodified.

1 Introduction

The ability to validate XML documents with respect to an XML Schema [21]
or DTD is central to XML’s emergence as a key technology for application
integration. As XML data flow between applications, the conformance of the
data to either a DTD or an XML schema provides applications with a guarantee
that a common vocabulary is used and that structural and integrity constraints
are met. In manipulating XML data, it is sometimes necessary to validate data
with respect to more than one schema. For example, as a schema evolves over
time, XML data known to conform to older versions of the schema may need to
be verified with respect to the new schema. An intra-company schema used by
a business might differ slightly from a standard, external schema and XML data
valid with respect to one may need to be checked for conformance to the other.

The validation of an XML document that conforms to one schema with re-
spect to another schema is analogous to the cast operator in programming lan-
guages. It is useful, at times, to access data of one type as if it were associated
with a different type. For example, XQuery [20] supports a validate operator
which converts a value of one type into an instance of another type. The type
safety of this conversion cannot always be guaranteed statically. At runtime,



XML fragments known to correspond to one type must be verified with respect
to another. As another example, in XJ [9], a language that integrates XML into
Java, XML variables of a type may be updated and then cast to another type.
A compiler for such a language does not have access to the documents that
are to be revalidated. Techniques for revalidation that rely on preprocessing the
document [3, 17] are not appropriate.

The question we ask is how can one use knowledge of conformance of a doc-
ument to one schema to determine whether the document is valid according to
another schema? We refer to this problem as the schema cast validation prob-
lem. An obvious solution is to revalidate the document with respect to the new
schema, but in doing so, one is disregarding useful information. The knowledge
of a document’s conformance to a schema can help determine its conformance to
another schema more efficiently than full validation. The more general situation,
which we refer to as schema cast with modifications validation, is where a docu-
ment conforming to a schema is modified slightly, and then, verified with respect
to a new schema. When the new schema is the same as the one to which the
document conformed originally, schema cast with modifications validation ad-
dresses the same problem as the incremental validation problem for XML [3, 17].
Our solution to this problem has different characteristics, as will be described.

The scenario we consider is that a source schema A and a target schema B
are provided and may be preprocessed statically. At runtime, documents valid
according to schema A are verified with respect to schema B. In the modification
case, inserts, updates, and deletes are performed to a document before it is
verified with respect to B. Our approach takes advantage of similarities (and
differences) between the schemas A and B to avoid validating portions of a
document if possible. Consider the two XML Schema element declarations for
purchaseOrder shown in Figure 1. The only difference between the two is that
whereas the billTo element is optional in the schema of Figure 1a, it is required
in the schema of Figure 1b. Not all XML documents valid with respect to the first
schema are valid with respect to the second — only those with a billTo element
would be valid. Given a document valid according to the schema of Figure 1a,
an ideal validator would only check the presence of a billTo element and ignore
the validation of the other components (they are guaranteed to be valid).

This paper focuses on the validation of XML documents with respect to
the structural constraints of XML schemas. We present algorithms for schema
cast validation with and without modifications that avoid traversing subtrees of
an XML document where possible. We also provide an optimal algorithm for
revalidating strings known to conform to a deterministic finite state automaton
according to another deterministic finite state automaton; this algorithm is used
to revalidate content model of elements. The fact that the content models of
XML Schema types are deterministic [6] can be used to show that our algorithm
for XML Schema cast validation is optimal as well. We describe our algorithms in
terms of an abstraction of XML Schemas, abstract XML schemas, which model
the structural constraints of XML schema. In our experiments, our algorithms
achieve 30-95% performance improvement over Xerces 2.4.



<xsd:element name=”purchaseOrder”
type=”POType1”/>

<xsd:complexType name=”POType1”>
<xsd:sequence>

<xsd:element name=”shipTo” type=”USAddress”/>
<xsd:element name=”billTo” type=”USAddress”

minOccurs=”0”/>
<xsd:element name=”items” type=”Items”/>

</xsd:sequence>
</xsd:complexType>

<xsd:element name=”purchaseOrder”
type=”POType2”/>

<xsd:complexType name=”POType2”>
<xsd:sequence>

<xsd:element name=”shipTo”
type=”USAddress”/>

<xsd:element name=”billTo”
type=”USAddress”/>

<xsd:element name=”items”
type=”Items”/>

</xsd:sequence>
</xsd:complexType>

(a) (b)

Fig. 1. Schema fragments defining a purchaseOrder element in (a) Source Schema (b)
Target Schema.

The contributions of this paper are the following:

1. An abstraction of XML Schema, abstract XML Schema, which captures
the structural constraints of XML schema more precisely than specialized
DTDs [16] and regular type expressions [11].

2. Efficient algorithms for schema cast validation (with and without updates) of
XML documents with respect to XML Schemas. We describe optimizations
for the case where the schemas are DTDs. Unlike previous algorithms, our
algorithms do not preprocess the documents that are to be revalidated.

3. Efficient algorithms for revalidation of strings with and without modifica-
tions according to deterministic finite state automata. These algorithms are
essential for efficient revalidation of the content models of elements.

4. Experiments validating the utility of our solutions.

Structure of the Paper: We examine related work in Section 2. In Section 3,
we introduce abstract XML Schemas and provide an algorithm for XML schema
revalidation. The algorithm relies on an efficient solution to the problem of string
revalidation according to finite state automata, which is provided in Section 4.
We discuss the optimality of our algorithms in Section 5. We report on experi-
ments in Section 6, and conclude in Section 7.

2 Related Work

Papakonstantinou and Vianu [17] treat incremental validation of XML docu-
ments (typed according to specialized DTDs). Their algorithm keeps data struc-
tures that encode validation computations with document tree nodes and utilizes
these structures to revalidate a document. Barbosa et al. [3] present an algorithm
that also encodes validation computations within tree nodes. They take advan-
tage of the 1-unambiguity of content models of DTDs and XML Schemas [6],
and structural properties of a restricted set of DTDs, to revalidate documents.



Our algorithm is designed for the case where schemas can be preprocessed, but
the documents to be revalidated are not available a priori to be preprocessed.
Examples include message brokers, programming language and query compilers,
etc. In these situations, techniques that preprocess the document and store state
information at each node could incur unacceptable memory and computing over-
head, especially if the number of updates is small with respect to the document,
or the size of the document is large. Moreover, our algorithm handles the case
where the document must be revalidated with respect to a different schema.

Kane et al. [12] use a technique based on query modification for handling
the incremental update problem. Bouchou and Halfeld-Ferrari [5] present an
algorithm that validates each update using a technique based on tree automata.
Again, both algorithms consider only the case where the schema to which the
document must conform after modification is the same as the original schema.

The subsumption of XML schema types used in our algorithm for schema
cast validation is similar to Kuper and Siméon’s notion of type subsumption [13].
Their type system is more general than our abstract XML schema. They assume
that a subsumption mapping is provided between types such that if one schema
is subsumed by another, and if a value conforming to the subsumed schema is
annotated with types, then by applying the subsumption mapping to these type
annotations, one obtains an annotation for the subsuming schema. Our solution
is more general in that we do not require either schema to be subsumed by the
other, but do handle the case where this occurs. Furthermore, we do not require
type annotations on nodes. Finally, we consider the notion of disjoint types in
addition to subsumption in the revalidation of documents.

One approach to handling XML and XML Schema has been to express them
in terms of formal models such as tree automata. For example, Lee et al. describe
how XML Schema may be represented in terms of deterministic tree grammars
with one lookahead [15]. The formalism for XML Schema and the algorithms in
these paper are a more direct solution to the problem, which obviates some of
the practical problems of the tree automata approach, such as having to encode
unranked XML trees as ranked trees.

Programming languages with XML types [1, 4, 10, 11] define notions of types
and subtyping that are enforced statically. XDuce [10] uses tree automata as
the base model for representing XML values. One difference between our work
and XDuce is that we are interested in dynamic typing (revalidation) where
static analysis is used to reduce the amount of needed work. Moreover, unlike
XDuce’s regular expression types and specialized DTDs [17], our model for XML
values captures exactly the structural constraints of XML Schema (and is not
equivalent to regular tree automata). As a result, our subtyping algorithm is
polynomial rather than exponential in complexity.

3 XML Schema and DTD Conformance

In this section, we present the algorithm for revalidation of documents accord-
ing to XML Schemas. We first define our abstractions for XML documents,



ordered labeled trees, and for XML Schema, abstract XML Schema. Abstract
XML Schema captures precisely the structural constraints of XML Schema.

Ordered Labeled Trees We abstract XML documents as ordered labeled trees,
where an ordered labeled tree over a finite alphabet Σ is a pair T = (t, λ) where
t = (N,E) is an ordered tree consisting of a finite set of nodes, N , and a set of
edges E, and λ : N → Σ ∪ {χ} is a function that associates a label with each
node n of N . The label, χ, which can only be associated with leaves of the tree
t, represents XML Schema simple values. We use root(T ) to denote the root of
tree t. We shall abuse notation slightly to allow λ(T ) to denote the label of the
root node of the ordered labeled tree T . We use r(t1, t2, . . . , tk) to denote an
ordered tree with root r and subtrees t1 . . . tk, where r() denotes an ordered tree
with a root r that has no children. We use TΣ to represent the set of all ordered
labeled trees.

Abstract XML Schema XML Schemas, unlike DTDs, permit the decoupling
of an element tag from its type; an element may have different types depending on
context. XML Schemas are not as powerful as regular tree automata. The XML
Schema specification places restrictions on the decoupling of element tags and
types. Specifically, in validating a document according to an XML Schema, each
element of the document can be assigned a single type, based on the element’s
label and the type of the element’s parent (without considering the content of
the element). Furthermore, this type assignment is guaranteed to be unique.

We define an abstraction of XML Schema, an abstract XML Schema, as a
4-tuple, (Σ, T , ρ,R), where

– Σ is the alphabet of element labels (tags).
– T is the set of types defined in the schema.
– ρ is a set of type declarations, one for each τ ∈ T , where τ is either a

simple type of the form τ : simple, or a complex type of the form τ :
(regexpτ , typesτ ), where:
• regexpτ is a regular expression over Σ. L(regexpτ ) denotes the language

associated with regexpτ .
• Let Στ ⊆ Σ be the set of element labels used in regexpτ . Then, typesτ :

Στ → T is a function that assigns a type to each element label used
in the type declaration of τ . The function, typesτ , abstracts the notion
of XML Schema that each child of an element can be assigned a type
based on its label without considering the child’s content. It also models
the XML Schema constraint that if two children of an element have the
same label, they must be assigned the same type.

– R : Σ → T is a partial function which states which element labels can occur
as the root element of a valid tree according to the schema, and the type
this root element is assigned.

Consider the XML Schema fragment of Figure 1a. The function R maps global
element declarations to their appropriate types, that is, R(purchaseOrder) = PO-

Type1. Table 1 shows the type declaration for POType1 in our formalism.



Table 1. Abstract XML Schema type for XML Schema type POType1 of Figure 1a.

Type Στ regexpτ typesτ

POType1 shipTo
billTo
items

(shipTo billTo? items) shipTo → USAddress
billTo → USAddress
items → Items

Abstract XML Schemas do not explicitly represent atomic types, such as
xsd:integer. For simplicity of exposition, we have assumed that all XML Schema
atomic and simple types are represented by a single simple type. Handling atomic
and simple types, restrictions on these types and relationships between the values
denoted by these types is a straightforward extension. We do not address the
identity constraints (such as key and keyref constraints) of XML Schema in
this paper. This is an area of future work. Other features of XML Schema such
as substitution groups, subtyping, and namespaces can be integrated into our
model. A discussion of these issues is beyond the scope of the paper.

We define the validity of an ordered, labeled tree with respect to an abstract
XML Schema as follows:

Definition 1. The set of ordered labeled trees that are valid with respect to a
type is defined in terms of the least solution to a set of equations, one for each
τ ∈ ρ, of the form (n, n1, n2 are nodes):

valid(τ) =



{(t, λ) ∈ TΣ |t = n1(n2()), λ(n1) ∈ Σ,λ(n2) = χ} if τ is simple

{(t, λ) ∈ TΣ |t = n(), λ(n) ∈ Σ, ε ∈ L(regexpτ )}∪
{(t, λ) ∈ TΣ |t = n(t1, t2, . . . , tk)

λ(n), λ(t1), . . . , λ(tk) ∈ Σ, k > 0
λ(t1) · λ(t2) · . . . · λ(tk) ∈ L(regexpτ )
ti ∈ valid(typesτ (λ(ti))), 1 ≤ i ≤ k}

otherwise

An ordered labeled tree, T , is valid with respect to a schema S = (Σ, T , ρ,R)
if R(λ(T )) is defined and T ∈ valid(R(λ(T ))). If τ is a complex type, and
L(regexpτ ) contains the empty string ε, valid(τ) contains all trees of height 0,
where the root node has a label from Σ, that is, τ may have an empty content
model.

We are interested only in productive types, that is types, τ , where valid(τ) 6=
∅. We assume that for a schema S = (Σ, T , ρ,R), all τ ∈ T are productive.
Whether a type is productive can be verified easily as follows:

1. Mark all simple types as productive since by the definition of valid, they
contain trees of height 1 with labels from Σ.

2. For complex types, τ , compute the set ProdLabelsτ ⊆ Σ defined as {σ ∈
Σ | typesτ (σ) is productive}.



3. Mark τ as productive if ProdLabels∗τ ∩ L(regexpτ ) 6= ∅. In other words, a
type τ is productive if ε ∈ L(regexpτ ) or there is a string in L(regexpτ ) that
uses only labels from ProdLabelsτ .

4. Repeat Steps 2 and 3 until no more types can be marked as productive.

This procedure identifies all productive types defined in a schema. There is
a straightforward algorithm for converting a schema with types that are non-
productive into one that contains only productive types. The basic idea is to
modify regexpτ for each productive τ so that the language of the new regular
expression is L(regexpτ ) ∩ ProdLabels∗τ .

Pseudocode for validating an ordered, labeled tree with respect to an abstract
XML Schema is provided below. constructstring is a utility method (not shown)
that creates a string from the labels of the root nodes of a sequence of trees (it
returns ε if the sequence is empty). Note that if a node has no children, the body
of the foreach loop will not be executed.

boolean validate(τ : type, e : node)
if (τ is a simple type)

if (children(e) = {n()}, λ(n) = χ) return true
else return false

if (¬constructstring(children(e)) ∈ L(regexpτ ))
return false

foreach child e′ of e
if (¬validate(typesτ (λ(e′)), e′))

return false
return true

boolean doV alidate(S : schema, T : tree)
return validate(R(λ(T )), root(T ))

A DTD can be viewed as an abstract XML Schema, D = (Σ, T , ρ,R), where
each σ ∈ Σ is assigned a unique type irrespective of the context in which it
is used. In other words, for all σ ∈ Σ, there exists τ ′ ∈ T such that for all
τ : (regexpτ , typesτ ) ∈ ρ, typesτ (σ) is either not defined or typesτ (σ) = τ ′. If
R(σ) is defined, then R(σ) = τ ′ as well.

3.1 Algorithm Overview

Given two abstract XML Schemas, S = (Σ, T , ρ,R) and S′ = (Σ, T ′, ρ′,R′), and
an ordered labeled tree, T , that is valid according to S, our algorithm validates
T with respect to S and S′ in parallel. Suppose that during the validation of T
with respect to S′ we wish to validate a subtree of T , T ′, with respect to a type
τ ′. Let τ be the type assigned to T ′ during the validation of T with respect to
S. If one can assert that every ordered labeled tree that is valid according to
τ is also valid according to τ ′, then one can immediately deduce the validity of
T ′ according to τ ′. Conversely, if no ordered labeled tree that is valid according



to τ is also valid according to τ ′, then one can stop the validation immediately
since T ′ will not be valid according to τ ′.

We use subsumed type and disjoint type relationships to avoid traversals of
subtrees of T where possible:

Definition 2. A type τ is subsumed by a type τ ′, denoted τ � τ ′ if valid(τ) ⊆
valid(τ ′). Note that τ and τ ′ can belong to different schemas.

Definition 3. Two types τ and τ ′ are disjoint, denoted τ � τ ′, if valid(τ) ∩
valid(τ ′) = ∅. Again, note that τ and τ ′ can belong to different schemas.

In the following sections, we present algorithms for determining whether an
abstract XML Schema type is subsumed by another or is disjoint from another.
We present an algorithm for efficient schema cast validation of an ordered la-
beled tree, with and without updates. Finally, in the case where the abstract
XML Schemas represent DTDs, we describe optimizations that are possible if
additional indexing information is available on ordered labeled trees.

3.2 Schema Cast Validation

Our algorithm relies on relations, Rsub and Rdis, that capture precisely all sub-
sumed type and disjoint type information with respect to the types defined in T
and T ′. We first describe how these relations are computed, and then, present
our algorithm for schema cast validation.

Computing the Rsub relation

Definition 4. Given two schemas, S = (Σ, T , ρ,R) and S′ = (Σ, T ′, ρ′,R′),
let Rsub ⊆ T × T ′ be the largest relation such that for all (τ, τ ′) ∈ Rsub one of
the following two conditions hold:

i. τ, τ ′ are both simple types.
ii. τ, τ ′ are both complex types, L(regexpτ ) ⊆ L(regexpτ ′), and ∀σ ∈ Σ, where

typesτ (σ) is defined, (typesτ (σ), typesτ ′(σ)) ∈ Rsub.

As mentioned before, for exposition reasons, we have chosen to merge all simple
types into one common simple type. It is straightforward to extend the definition
above so that the various XML Schema atomic and simple types, and their
derivations are used to bootstrap the definition of the subsumption relationship.
Also, observe that Rsub is a finite relation since there are finitely many types.

The following theorem states that the Rsub relation captures precisely the
notion of subsumption defined earlier:

Theorem 1. (τ, τ ′) ∈ Rsub if and only if τ � τ ′. ut

We now present an algorithm for computing the Rsub relation. The algorithm
starts with a subset of T × T ′ and refines it successively until Rsub is obtained.



1. Let Rsub ⊆ T × T ′, such that (τ, τ ′) ∈ Rsub implies that both τ and τ ′ are
simple types, or both of them are complex types.

2. For (τ, τ ′) ∈ Rsub, if L(regexpτ ) 6⊆ L(regexpτ ′), remove (τ, τ ′) from Rsub.
3. For each (τ, τ ′) if there exists σ ∈ Σ, typesτ (σ) = ω and typesτ ′(σ) = ν and

(ω, ν) 6∈ Rsub, remove (τ, τ ′) from Rsub.
4. Repeat Step 3 until no more tuples can be removed from the relation Rsub.

Computing the Rdis relation Rather than computing Rdis directly, we com-
pute its complement. Formally:

Definition 5. Given two schemas, S = (Σ, T , ρ,R) and S′ = (Σ, T ′, ρ′,R′),
let Rnondis ⊆ T ×T ′ be defined as the smallest relation (least fixpoint) such that
(τ, τ ′) ∈ Rnondis if:

i. τ and τ ′ are both simple types.
ii. τ and τ ′ are both complex types, P = {σ ∈ Σ | (typesτ (σ), typesτ ′(σ)) ∈

Rnondis}, L(regexpτ ) ∩ L(regexpτ ′) ∩ P ∗ 6= ∅.

To compute the Rnondis relation, the algorithm begins with an empty relation
and adds tuples until Rnondis is obtained.

1. Let Rnondis = ∅.
2. Add all (τ, τ ′) to Rnondis such that τ : simple ∈ ρ, τ ′ : simple ∈ ρ′.
3. For each (τ, τ ′) ∈ T × T ′, let P = {σ ∈ Σ | (typesτ (σ), typesτ ′(σ)) ∈

Rnondis}. If L(regexpτ ) ∩ L(regexpτ ′) ∩ P ∗ 6= ∅ add (τ, τ ′) to Rnondis.
4. Repeat Step 3 until no more tuples can be added to Rnondis.

Theorem 2. τ � τ ′ if and only if (τ, τ ′) 6∈ Rnondis. ut

Algorithm for Schema Cast Validation Given the relations Rsub and Rdis,
if at any time, a subtree of the document that is valid with respect to τ from S is
being validated with respect to τ ′ from S′, and τ � τ ′, then the subtree need not
be examined (since by definition, the subtree belongs to valid(τ ′)). On the other
hand, if τ � τ ′, the document can be determined to be invalid with respect to S′

immediately. Pseudocode for incremental validation of the document is provided
below. Again, constructstring is a utility method (not shown) that creates a
string from the labels of the root nodes of a sequence of trees (returning ε if the
sequence is empty). We can efficiently verify the content model of e with respect
to regexpτ ′ by using techniques for finite automata schema cast validation, as
will be described in the Section 4.

boolean validate(τ : type, τ ′ : type, e : node)
if τ � τ ′ return true
if τ � τ ′ return false
if (τ is a simple type)

if (children(e) = {n()}, λ(n) = χ) return true
else return false



if (¬constructstring(children(e)) ∈ L(regexpτ ′))
return false

foreach child e′ of e, in order,
if (¬validate(typesτ (λ(e′)), typesτ ′(λ(e′)), e′))

return false
return true

boolean doV alidate(S : schema, S′ : schema, T : tree)
return validate(R(λ(T )),R′(λ(T )), root(T ))

3.3 Schema Cast Validation with Modifications

Given an ordered, labeled tree, T , that is valid with respect to an abstract XML
Schema S, and a sequence of insertions and deletions of nodes, and modifications
of element tags, we discuss how the tree may be validated efficiently with respect
to a new abstract XML Schema S′. The updates permitted are the following:

1. Modify the label of a specified node with a new label.
2. Insert a new leaf node before, or after, or as the first child of a node.
3. Delete a specified leaf node.

Given a sequence of updates, we perform the updates on T , and at each step,
we encode the modifications on T to obtain T ′ by extending Σ with special
element tags of the form ∆a

b , where a, b ∈ Σ ∪ {ε, χ}. A node in T ′ with label
∆a

b represents the modification of the element tag a in T with the element tag
b in T ′. Similarly, a node in T ′ with label ∆ε

b represents a newly inserted node
with tag b, and a label ∆a

ε denotes a node deleted from T . Nodes that have not
been modified have their labels unchanged. By discarding all nodes with label
∆a

ε and converting the labels of all other nodes labeled ∆∗
b into b, one obtains

the tree that is the result of performing the modifications on T .
We assume the availability of a function modified on the nodes of T ′, that re-

turns for each node whether any part of the subtree rooted at that node has been
modified. The function modified can be implemented efficiently as follows. We
assume we have the Dewey decimal number of the node (generated dynamically
as we process). Whenever a node is updated we keep it in a trie [7] according
to its Dewey decimal number. To determine whether a descendant of a node v
was modified, the trie is searched according to the Dewey decimal number of v.
Note that we can navigate the trie in parallel to navigating the XML tree.

The algorithm for efficient validation of schema casts with modifications val-
idates T ′ = (t′, λ′) with respect to S and S′ in parallel. While processing a
subtree of T ′, t′′, with respect to types τ from S and τ ′ from S′, one of the
following cases apply:

1. If modified(t′′) is false, we can run the algorithm described in the previous
subsection on this subtree. Since the subtree t′′ is unchanged and we know
that t′′ ∈ valid(τ) when checked with respect to S, we can treat the vali-
dation of t′′ as an instance of the schema cast validation problem (without
modifications) described in Section 3.2.



2. Otherwise, if λ′(t′′) = ∆a
ε , we do not need to validate the subtree with

respect to any τ ′ since that subtree has been deleted.
3. Otherwise, if λ′(t′′) = ∆ε

b, since the label denotes that t′′ is a newly in-
serted subtree, we have no knowledge of its validity with respect to any
other schema. Therefore, we must validate the whole subtree explicitly.

4. Otherwise, if λ′(t′′) = ∆a
b , a, b ∈ Σ ∪ {χ}, or λ′(t′′) = σ, σ ∈ Σ ∪ {χ},

since elements may have been added or deleted from the original content
model of the node, we must ensure that the content of t′′ is valid with
respect to τ ′. If τ ′ is a simple type, the content model must satisfy (1) of
Definition 1. Otherwise, if t′′ = n(t1, . . . , tk), one must check that t1, . . . , tk fit
into the content model of τ ′ as specified by regexpτ ′ . In verifying the content
model, we check whether Projnew(t1) . . . P rojnew(tk) ∈ L(regexpτ ′), where
Projnew(ti) is defined as:

σ , if λ′(ti) = σ, σ ∈ Σ ∪ {χ} (1)
b , if λ′(ti) = ∆a

b , a, b ∈ Σ ∪ {ε, χ} (2)

Projold is defined analogously. If the content model check succeeds, and τ
is also a complex type, then we continue recursively validating ti, 1 ≤ i ≤ k
with respect to typesτ (Projold(ti)) from S and typesτ ′(Projnew(ti)) from
S′ (note that if Projnew(ti) is ε, we do not have to validate that ti since it
has been deleted in T ′). If τ is not a complex type, we must validate each ti
explicitly.

3.4 DTDs

Since the type of an element in an XML Schema may depend on the context in
which it appears, in general, it is necessary to process the document in a top-
down manner to determine the type with which one must validate an element
(and its subtree). For DTDs, however, an element label determines uniquely the
element’s type. As a result, there are optimizations that apply to the DTD case
that cannot be applied to the general XML Schema case. If one can access all
instances of an element label in an ordered labeled tree directly, one need only
visit those elements e where the types of e in S and S′ are neither subsumed nor
disjoint from each other and verify their immediate content model.

4 Finite Automata Conformance

In this section, we examine the schema cast validation problem (with and without
modifications) for strings verified with respect to finite automata. The algorithms
described in this section support efficient content model checking for DTDs and
XML Schemas (for example, in the statement of the method validate of Sec-
tion 3.2: if (¬constructstring(children(e)) ∈ L(regexpτ ′))). Since XML Schema
content models correspond directly to deterministic finite state automata, we
only address that case. Similar techniques can be applied to non-deterministic
finite state automata, though the optimality results do not hold. For reasons of
space, we omit details regarding non-deterministic finite state automata.



4.1 Definitions

A deterministic finite automaton is a 5-tuple (Q,Σ, δ, q0, F ), where Q is a finite
set of states, Σ is a finite alphabet of symbols, q0 ∈ Q is the start state, F ⊆ Q
is a set of final, or accepting, states, and δ is the transition relation. δ is a map
from Q×Σ to Q. Without loss of generality, we assume that for all q ∈ Q, σ ∈
Σ, δ(q, σ) is defined. We use δ(q, σ) → q′, where q, q′ ∈ Q, σ ∈ Σ to denote that
δ maps (q, σ) to q′. For string s and state q, δ(q, s) → q′ denotes the state q′

reached by operating on s one symbol at a time. A string s is accepted by a finite
state automaton if δ(q0, s) → q′, q′ ∈ F ; s is rejected by the automaton if s is
not accepted by it.

The language accepted (or recognized) by a finite automaton a, denoted L(a),
is the set of strings accepted by a. We also define La(q), q ∈ Q, as {s | δ(q, s) →
q′, q′ ∈ F}. Note that for a finite state automaton a, if a string s = s0 ·s1 · . . . ·sn

is in L(a), and δ(q0, s0 · s1 · . . . · si) = q′, 1 ≤ i < n, then si+1 · . . . · sn is in La(q′).
We shall drop the subscript a from La when the automaton is clear from the
context.

A state q ∈ Q is a dead state if either:

1. ∀s ∈ Σ∗, if δ(q0, s) → q′ then q 6= q′, or
2. ∀s ∈ Σ∗, if δ(q, s) → q′ then q′ 6∈ F .

In other words, either the state is not reachable from the start state or no
final state is reachable from it. We can identify all dead states in a finite state
automaton in time linear in the size of the automaton via a simple graph search.

Intersection Automata Given two automata, a = (Qa, Σa, δa, q0
a, Fa) and

b = (Qb, Σb, δb, q
0
b , Fb), one can derive an intersection automaton c, such that c

accepts exactly the language L(a)∩L(b). The intersection automaton evaluates
a string on both a and b in parallel and accepts only if both would. Formally,
c = (Qc, Σ, δc, q

0
c , Fc), where q0

c = (q0
a, q0

b ), Qc = Qa × Qb, Fc = Fa × Fb, and
δc((q1, q2), σ) → q′, where q′ = (δa(q1, σ), δb(q2, σ)). Note that if a and b are
deterministic, c is deterministic as well.

Immediate Decision Automata We introduce immediate decision automata
as modified finite state automata that accept or reject strings as early as pos-
sible. Immediate decision automata can accept or reject a string when certain
conditions are met, without scanning the entire string. Formally, an immediate
decision automaton dimmed is a 7-tuple, (Q,Σ, δ, q0, F, IA, IR), where IA, IR
are disjoint sets and IA, IR ⊆ Q (each member of IA and IR is a state). As
with ordinary finite state automata, a string s is accepted by the automaton
if δ(q0, s) → q′, q′ ∈ F . Furthermore, dimmed also accepts s after evaluating a
strict prefix x of s (that is x 6= s) if δ(q0, x) → q′, q′ ∈ IA. dimmed rejects s
after evaluating a strict prefix x of s if δ(q0, x) → q′, q′ ∈ IR. We can derive
an immediate decision automaton from a finite state automaton so that both
automata accept the same language.



Definition 6. Let d = (Qd, Σ, δd, q
0
d, Fd) be a finite state automaton. The de-

rived immediate decision automaton is dimmed = (Qd, Σ, δd, q
0
d, Fd, IAd, IRd),

where:

– IAd = {q′ | q′ ∈ Qd ∧ Ld(q′) = Σ∗}, and
– IRd = {q′ | q′ ∈ Qd ∧ Ld(q′) = ∅}.

It can be easily shown that dimmed and d accept the same language.
For deterministic automata, we can determine all states that belong to IAd

and IRd efficiently in time linear in the number of states of the automaton. The
members of IRd can be derived easily from the dead states of d.

4.2 Schema Cast Validation

The problem that we address is the following: Given two deterministic finite-
state automata, a = (Qa, Σa, δa, q0

a, Fa), and b = (Qb, Σb, δb, q
0
b , Fb), and a string

s ∈ L(a), does s ∈ L(b)? One could, of course, scan s using b to determine
acceptance by b. When many strings that belong to L(a) are to be validated
with respect to L(b), it can be more efficient to prepreprocess a and b so that
the knowledge of s’s acceptance by a can be used to determine its membership
in L(b). Without loss of generality, we assume that Σa = Σb = Σ.

Our method for the efficient validation of a string s = s1 · s2 · . . . · sn in L(a)
with respect to b relies on evaluating s on a and b in parallel. Assume that after
parsing a prefix s1 · . . . ·si of s, we are in a state q1 ∈ Qa in a, and a state q2 ∈ Qb

in b. Then, we can:

1. Accept s immediately if L(q1) ⊆ L(q2), because si+1 · . . . · sn is guaranteed
to be in L(q1) (since a accepts s), which implies that si+1 · . . . · sn will be in
L(q2). By definition of L(q), b will accept s.

2. Reject s immediately if L(q1)∩L(q2) = ∅. Then, si+1 · . . . · sn is guaranteed
not to be in L(b), and therefore, b will not accept s.

We construct an immediate decision automaton, cimmed from the intersection
automaton c of a and b, with IRc and IAc based on the two conditions above:

Definition 7. Let c = (Qc, Σ, δc, q
0
c , Fc) be the intersection automaton derived

from two finite state automata a and b. The derived immediate decision automa-
ton is cimmed = (Qc, Σ, δc, q

0
c , Fc, IAc, IRc), where:

– IAc = { (qa, qb) | ((qa, qb) ∈ Qc) ∧ L(qa) ⊆ L(qb)}.
– IRc = { (qa, qb) | ((qa, qb) ∈ Qc) ∧ (qa, qb) is a dead state }.

Theorem 3. For all s ∈ L(a), cimmed accepts s if and only if s ∈ L(b). ut

The determination of the members of IAc can be done efficiently for deter-
ministic finite state automata. The following proposition is useful to this end.

Proposition 1. For any state, (qa, qb) ∈ Qc, L(qa) ⊆ L(qb) if and only if ∀s ∈
Σ∗, there exist states q1 and q2 such that δc((qa, qb), s) → (q1, q2) and if q1 ∈ Fa

then q2 ∈ Fb. ut



We now present an alternative, equivalent definition of IAc.

Definition 8. For all q′ = (qa, qb), q′ ∈ IAc if ∀s ∈ Σ∗, there exist states
(q1, q2), such that δc((qa, qb), s) → (q1, q2) and if q1 ∈ Fa then q2 ∈ Fb.

In other words, a state (qa, qb) ∈ IAc if for all states (q′a, q′b) reachable from
(qa, qb), if q′a is a final state of a, then q′b is a final state of b. It can be shown
that the two definitions, 7 and 8, of IAc are equivalent.

Theorem 4. For deterministic immediate decision automata, Definition 7 and
Definition 8 of IAc are equivalent, that is, they produce the same set IAc. ut

Given two automata a and b, we can preprocess a and b to efficiently con-
struct the immediate automaton cimmed, as defined by Definition 7, by finding
all dead states in the intersection automaton of a and b to determine IRc. The
set of states, IAc, as defined by Definition 8, can also be determined, in linear
time, using an algorithm similar to that for the identification of dead states. At
runtime, an efficient algorithm for schema cast validation without modifications
is to process each string s ∈ L(a) for membership in L(b) using cimmed.

4.3 Schema Casts with Modifications

Consider the following variation of the schema cast problem. Given two au-
tomata, a and b, a string s ∈ L(a), s = s1 · s1 · . . . · sn, is modified through inser-
tions, deletions, and the renaming of symbols to obtain a string s′ = s′1·s′1·. . .·s′m.
The question is does s′ ∈ L(b)? We also consider the special case of this problem
where b = a. This is the single schema update problem, that is, verifying whether
a string is still in the language of an automaton after a sequence of updates.

As the updates are performed, it is straightforward to keep track of the
leftmost location at which, and beyond, no updates have been performed, that
is, the least i, 1 ≤ i ≤ m such that s′i · . . . · s′m = sn−m+i · . . . · sn. The knowledge
that s ∈ L(a) is generally of no utility in evaluating s′0 · . . . · s′i−1 since the string
might have changed drastically. The validation of the substring, s′i · . . . · s′m,
however, reduces to the schema cast problem without modifications.

Specifically, to determine the validity of s′ according to b, we first process b to
generate an immediate decision automaton, bimmed. We also process a and b to
generate an immediate decision automata, cimmed as described in the previous
section. Now, given a string s′ where the leftmost unmodified position is i, we:

1. Evaluate s′1 ·. . . s′i−1 using bimmed. That is, determine qb = δb(q0
a, s′1 ·. . .·s′i−1).

While scanning, bimmed may immediately accept or reject, at which time, we
stop scanning and return the appropriate answer.

2. Evaluate s1 · . . . · sn−m+i−1 using a. That is, determine qa = δa(q0
a, s1 · . . . ·

sn−m+i−1).
3. If bimmed scans i−1 symbols of s′ and does not immediately accept or reject,

we proceed scanning s′i · . . . · s′m using cimmed starting in state q′ = (qa, qb).
4. If cimmed accepts, either immediately or by scanning all of s′, then s′ ∈ L(b),

otherwise the string is rejected, possibly by entering an immediate reject
state.



Proposition 2. Given automata a and b, an immediate decision automaton
constructed from the intersection automaton of a and b, and strings s = s1 · . . . ·
sn ∈ L(a) and s′ = s′1 · . . . · s′m such that s′i · . . . · s′m = sn−m+i · . . . · sn. If
δa(q0

a, s1 · . . . · sn−m+i−1) = qa and δb(q0
b , s′1 · . . . · s′i−1) = qb, then s′ ∈ L(b) if

and only if cimmed, starting in the state (qa, qb) recognizes s′i · . . . · s′m.

The algorithm presented above functions well when most of the updates are
in the beginning of the string, since all portions of the string up to the start
of the unmodified portion must be processed by bimmed. In situations where
appends are the most likely update operation, the algorithm as stated will not
have any performance benefit. One can, however, apply a similar algorithm to
the reverse automata3 of a and b by noting the fact that a string belongs to L(b)
if and only if the reversed string belongs to the language that is recognized by
the reverse automaton of b. Depending on where the modifications are located in
the provided input string, one can choose to process it in the forward direction or
in the reverse direction using an immediate decision automaton derived from the
reverse automata for a and b. In case there is no advantage in scanning forward
or backward, the string should simply be scanned with bimmed.

5 Optimality

An immediate decision automaton cimmed derived from deterministic finite state
automata a and b as described previously, and with IAc and IRc as defined in
Definition 7 is optimal in the sense that there can be no other deterministic
immediate decision automaton dimmed that can determine whether a string s
belongs to L(b) earlier than cimmed.

Proposition 3. Let dimmed be an arbitrary immediate decision automaton that
recognizes exactly the set L(a) ∩ L(b). For every string s = s1 · s2 · . . . · sn in
Σ∗, if dimmed accepts or rejects s after scanning i symbols of s, 1 ≤ i ≤ n, then
cimmed will scan at the most i symbols to make the same determination. ut

Since we can efficiently construct IAc as defined in Definition 7, our algorithm
is optimal. For the case with modifications, our mechanism is optimal in that
there exists no immediate decision automaton that can accept, or reject, s′ while
scanning fewer symbols than our mechanism.

For XML Schema, as with finite state automata, our solution is optimal in
that there can be no other algorithm, which preprocesses only the XML Schemas,
that validates a tree faster than the algorithm we have provided. Note that this
optimality result assumes that the document is not preprocessed.

Proposition 4. Let T = (t, λ) be an ordered, labeled tree valid with respect to
an abstract XML Schema S. If the schema cast validation algorithm accepts or
rejects T after processing node n, then no other deterministic algorithm that:

– Accepts precisely valid(S) ∩ valid(S′).
3 The reverse automata of a deterministic automata may be non-deterministic.



– Traverses T in a depth-first fashion.
– Uses an immediate decision automaton to validate content models.

can accept or reject T before visiting node n. ut

6 Experiments

We demonstrate the performance benefits of our schema cast validation algo-
rithm by comparing our algorithm’s performance to that of Xerces [2]. We have
modified Xerces 2.4 to perform schema cast validation as described in Section 3.2.
The modified Xerces validator receives a DOM [19] representation of an XML
document that conforms to a schema S1. At each stage of the validation process,
while validating a subtree of the DOM tree with respect to a schema S2, the
validator consults hash tables to determine if it may skip validation of that sub-
tree. There is a hash table that stores pairs of types that are in the subsumed
relationship, and another that stores the disjoint types. The unmodified Xerces
validates the entire document.

Due to the complexity of modifying the Xerces code base and to perform a fair
comparison with Xerces, we do not use the algorithms mentioned in Section 4
to optimize the checking of whether the labels of the children of a node fit
the node’s content model. In both the modified Xerces and the original Xerces
implementation, the content model of a node is checked by executing a finite
state automaton on the labels of the node’s children.

We provide results for two experiments. In the first experiment, a document
known to be valid with respect to the schema of Figure 1a is validated with
respect to the schema of Figure 1b. The complete schema of Figure 1b is provided
in Figure 2. In the second experiment, we modify the quantity element declaration
(in items) in the schema of Figure 2 to set xsd:maxExclusive to “200” (instead
of “100”). Given a document conforming to this modified schema, we check
whether it belongs to the schema of Figure 2. In the first experiment, with our
algorithm, the time complexity of validation does not depend on the size of the
input document — the document is valid if it contains a billTo element. In the
second experiment, the quantity element in every item element must be checked
to ensure that it is less than “100”. Therefore, our algorithm scales linearly with
the number of item elements in the document. All experiments were executed
on a 3.0Ghz IBM Intellistation running Linux 2.4, with 512MB of memory.

We provide results for input documents that conform to the schema of Fig-
ure 2. We vary the number of item elements from 2 to 1000. Table 2 lists the
file size of each document. Figure 3a plots the time taken to validate the docu-
ment versus the number of item elements in the document for both the modified
and the unmodified Xerces validators for the first experiment. As expected, our
implementation has constant processing time, irrespective of the size of the doc-
ument, whereas Xerces has a linear cost curve. Figure 3b shows the results of the
second experiment. The schema cast validation algorithm is about 30% faster
than the unmodified Xerces algorithm. Table 3 lists the number of nodes visited
by both algorithms. By only traversing the quantity child of item and not the other



<xsd:schema xmlns:xsd=”. . . ”>
<xsd:element name=”purchaseOrder” type=”POType2”/>
<xsd:element name=”comment” type=”xsd:string”/>

<xsd:complexType name=”POType2”>
<xsd:sequence>

<xsd:element name=”shipTo” type=”USAddress”/>
<xsd:element name=”billTo” type=”USAddress”/>
<xsd:element name=”items” type=”Items”/>

</xsd:sequence>
</xsd:complexType>

<xsd:complexType name=”USAddress”>
<xsd:sequence>

<xsd:element name=”name” type=”xsd:string”/>
<xsd:element name=”street” type=”xsd:string”/>
<xsd:element name=”city” type=”xsd:string”/>
<xsd:element name=”state” type=”xsd:string”/>
<xsd:element name=”zip” type=”xsd:decimal”/>
<xsd:element name=”country” type=”xsd:string”/>

</xsd:sequence>
</xsd:complexType>

<xsd:complexType name=”Items”>
<xsd:sequence>

<xsd:element name=”item” type=”Item”
minOccurs=”0” maxOccurs=”unbounded”>

</xsd:element>
</xsd:sequence>

</xsd:complexType>
<xsd:complexType name=”Item”>

<xsd:sequence>
<xsd:element name=”productName”

type=”xsd:string”/>
<xsd:element name=”quantity”>

<xsd:simpleType>
<xsd:restriction base=”xsd:positiveInteger”>
<xsd:maxExclusive value=”100”/>
</xsd:restriction>
</xsd:simpleType>

</xsd:element>
<xsd:element name=”USPrice”

type=”xsd:decimal”/>
<xsd:element name=”shipDate”

type=”xsd:date” minOccurs=”0”/>
</xsd:sequence>

</xsd:complexType>
</xsd:schema>

Fig. 2. Target XML Schema.

children of item, our algorithm visits about 20% fewer nodes than the unmodified
Xerces validator. For larger files, especially when the data are out-of-core, the
performance benefits of our algorithms would be even more significant.

Table 2. File sizes for input documents.

# Item Nodes Size (Bytes)

2 990
50 11,358

100 22,158
200 43,758
500 108,558

1000 216,558

7 Conclusions

We have presented efficient solutions to the problem of enforcing the validity of
a document with respect to a schema given the knowledge that it conforms to
another schema. We examine both the case where the document is not modified
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Fig. 3. (a) Validation times from first experiment. (b) Validation times from second
experiment.

Table 3. Number of nodes traversed during validation in Experiment 2.

# Item Nodes Schema Cast Xerces 2.4

2 35 74
50 611 794

100 1,211 1,544
200 2,411 3,044
500 6,011 7,544

1000 12,011 15,044

before revalidation, and the case where insertions, updates and deletions are
applied to the document before revalidation. We have provided an algorithm
for the case where validation is defined in terms of XML Schemas (with DTDs
as a special case). The algorithm relies on a subalgorithm to revalidate content
models efficiently, which addresses the problem of revalidation with respect to
deterministic finite state automata. The solution to this schema cast problem is
useful in many contexts ranging from the compilation of programming languages
with XML types, to handling XML messages and Web Services interactions.

The practicality and the efficiency of our algorithms has been demonstrated
through experiments. Unlike schemes that preprocess documents (that handle a
subset of our schema cast validation problem), the memory requirement of our
algorithm does not vary with the size of the document, but depends solely on the
sizes of the schemas. We are currently extending our algorithms to handle key
constraints, and exploring how a system may automatically correct a document
valid according to one schema so that it conforms to a new schema.
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