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Abstract

Schema matching is a problem of finding corre-
spondences, particularly equivalence relationships across
schemas. The problem has a particular significance in in-
tegrating web repositories, as distributed databases over
the web becomes increasingly popular. Most of the existing
prototypes use schema level lexical information for schema
matching. However, most of them perform rather poorly on
real-world problems due to the abundance of abbreviations
in real-world schemas. For example, none of the lexical
matchers we tested would recommend a mapping of "cnum’
to ’cid’, while ’customer number’ and ’customer ID’ are
matching entities. In this work we propose a method for
abbreviation expansion in schemas that facilitates lexical
schema matching.

1 Introduction

Schema matching [3, 1, 2, 4, 5] is a problem of find-
ing correspondences, particularly equivalence relationships
across schemas. Originally motivated by relational database
integration problem, schema matching became increasingly
significant in the last decade, having applications in E-
business, semantic query processing and query interfaces
integration on the web. For example, in [3], Schema Match-
ing was used to integrate databases held by many inde-
pendent contractors that worked for the U.S. Air Force.
Many of the contractor development-teams no longer ex-
isted, the databases were poorly documented, and there
were several different data models in the database collec-
tion. Some databases were relational, some were extended
entity-relational, and some were hierarchal. This lead to
problems of redundant data capture and inconsistency, mak-
ing the maintenance of the data increasingly expensive.
Since the schema of the U.S. Air Force databases is con-
stantly changing, an automatic integrating tool is clearly
needed.
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More formally, schema matching is performed with a
Match operator that finds similarity relationships between
powersets of elements of the two schemas. For example
the Match operator applied on the schemas: Cust( cnum,
cname, address) and Customer( CustName, CustID, st.,
city) results in:

{Cust.cnum} =
{Cust.cname} =
{Cust.address} =

Most of the existing prototypes ([3, 4, 5]) perform rather
poorly on real-world problems due to the abundance of
abbreviations in real-world schemas. For example, CU-
PID, a schema matching tool developed under Microsoft
research [5], used the following methodology for lexical
similarity. (1)7okenization: the names were parsed into to-
kens using different heuristic methods, such as upper-lower
case transitions. For example, the lexeme ’CustID’ should
be tokenized into {Cust,ID}. (2)Expansion: the abbrevia-
tion were expanded. For example, {Cust,ID} turned into
{Customer, Identity}. (3)Elimination: ’stop tokens’ are
eliminated. (4)Tagging: tokens known to be related to one
of the predefined categories were tagged with that category.
For example, tokens such as ’Cost’ and *Value’ were tagged
with the concept "Money’. The tagging scheme is used as a
sort of thesaurus for measuring semantic similarity between
the tokens.

Like most of the existing prototypes, CUPID relies on
the availability of a complete thesaurus or a tool for abbre-
viation expansion. In the case of CUPID, the prototype as-
sumes existence of an XML file with a list of abbreviations
and their expansions. Likewise, it assumes a list of tokens
mapped to concepts. For example, the small default the-
saurus provided with the CUPID prototype tags ’e-mail’,
"phone’ and *province’ with the concept "address’. Another
assumption of CUPID is the existence of a thesaurus that
measures semantic similarity between the concepts. For
example, the default CUPID thesaurus contains the pair:
[number=code, similarity=0.8]. Clearly these assumptions
are unrealistic for the real-world problems. In our experi-
ments with real-world schemas CUPID was unable to ex-
pand (and indeed match) abbreviations such as "MFC’ for

{Customer.CustID},
{Customer.CustName}
{Customer.st ,Customer.city }
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’Manufacturer Code’ or ’FFP’ for "Frequent Flyer Plan’ re-
sulting in poor mapping. We also note that abbreviation
expansion need not be unique. For example, ’POID’ could
be expanded to: *Post Office ID’, "Police Officer ID’ or to
"Purchase Order ID’.

As it became evident in the discussion above, there
are two main challenges in using lexical information
in schema matching. They are abbreviation expansion
and disambiguation. To demonstrate these problems we
consider a small example. Suppose we are given a schema:
Adm(pid, pd, date). The first challenge in processing this
schema is to create a list of candidate expansions for every
element in the schema. In our example, such expansions
could be: *Adm’>{Admission,Administraction,Admiral},
’pid’>{problem id, patent id, patient id}, *pd’>{patient
diagnosis, patent description, problem description},
"date’>{date}. The second challenge, disambiguation, is
to select the most likely candidates for every abbreviation.
For example ’Admission(patient id, problem description,
date)’ and ’Administration(patent id, patent description,
date)’ are such examples. On the other hand, the expansion
’Admiral(problem id, patent description, date)’ clearly
makes no sense. Figure 1 demonstrates the global view
for schema expansion and disambiguation. This paper
discusses the challenges and the methods for abbreviation
expansion.  Abbreviation disambiguation is discussed
in [16].

Schema Instance:

(=)
A

Most likely Schema Interpretation:

Patient ID Problem Description

Abbreviation Expander

Tokenized

| Schema Interpreter I
Schema Instance: T

Patent ID Patent Description
Patient ID Problem Description

Figure 1. Global view on schema expansion.

[ Free-text document corpus ]

2 Abbreviation expansion problem.
2.1 Abbreviation expansion in schemas
The problem of automatic abbreviation expansion has

received a lot of attention ([7, 8, 6, 9, 10]) in the context
of automatic construction of special-purpose dictionaries
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and other applications, such as information retrieval, text
transformations, etc.). Static abbreviation and acronym dic-
tionaries also exist, and are available from a number of
sources, some dedicated to a particular domain [13, 14],
some aim to be general purpose dictionaries, [11, 12]. On-
line portals for abbreviations containing a large number of
links to different acronym dictionaries are also available
[15]. However these tools, as we show later, do not pro-
vide a full answer to abbreviation expansion problem in the
particular context of lexical schema matching. This sec-
tion first discusses the general aspects of abbreviation ex-
pansion, then the particularity of this problem applied to
lexical schema matching.

The problem of abbreviation expansion in the context of
schema matching is: given an abbreviation abr as input,
output a list of all possible expansions for abr. In abbre-
viation expansion, we cannot rely on some static abbrevi-
ation dictionary, since database schemas abbreviations are
constructed very dynamically, and are unlikely to appear in
any such dictionary. A popular approach to respond to this
challenge ([7, 8, 6, 9]) is to crawl the Web (or a static text
corpus), looking for patterns of the form : <long form, (abr.
form)>. The intuition behind this approach is that when the
abbreviations are used for the first time, their meaning is
explained in brackets (or some other popular pattern) in the
immediate proximity to the abbreviation. We cannot use
this assumption, however, because unlike abbreviations in
any other domain which denote important and repeating do-
main concepts, schema abbreviations are sometimes created
only to save space, from phrases that would not be abbrevi-
ated in a normal context. We must also keep in mind that ab-
breviations in database schemas have different abbreviation
rules, for example, they tend to be longer (use more letters
of the long form) then abbreviations in the other fields. Thus
we are unlikely to find the abbreviated form in any text cor-
pus. On the other hand, we can sacrifice precision for recall
because unlike the traditional abbreviation dictionaries, our
abbreviation expansion tool does not have to give only the
absolutely correct set of expansions. We should merely give
(a possibly large) set of candidate expansions for the input
abbreviation and later apply linguistic tools that choose the
best expansion candidate for every schema element look-
ing at the global schema interpretation. We call this stage
disambiguation and propose solutions in [16].

3 Abbreviation Patterns

Our task is: given an abbreviation, to create a list of
all of its possible expansions. We follow the intuition of
[7, 8, 6, 9, 10] that schema elements’ names come form
meaningful and even popular phrases that are likely to ap-
pear in a text document. We further enhance this approach
by performing shallow parsing and stop words elimina-
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tion on the corpus. For example, the following text:”You
can mail contribs to Danny Thomas, Post Office Box 7599,
Chicago. So, if anybody possibly solicits by phone, make
sure you mail the dough to the above.” is transformed to:
”[You] [mail] [contribs] [Danny Thomas], [Post Office
Box ], [Chicago]. [anybody] [possibly] [solicits] [phone],
[make sure] [you] [mail] [dough] [above].” To further in-
crease precision, we could consider only the noun phrases
as expansion candidates. To increase the recall, we could
consider each candidate expansion phrase both with and
without stop words. However the main goal of this paper
is to show the feasibility of our approach, which performed
satisfactorily even without these enhancements.

We also note that abbreviations tend to be created in pat-
terns that repeat themselves. A list of several such patterns
(borrowed from [9] and [10]) is given in Table 1. Before
suggesting any concrete solution, we have to define a model
for abbreviation creation from its long form (note that the
abbreviation could be created in different ways from its
long form, thus the process need not be unique). For ex-
ample, [9] uses feature vectors to capture some important
aspects of the abbreviation process. Each entry in the nine-
dimensional vector denotes a manually selected feature be-
lieved important for the process of creating abbreviations.
Some of such features are: ’percent of letters in abbrevia-
tion in lower case’, "percent of letters aligned on a syllable
boundary’, ’percent of letters in the abbreviation that are
aligned’, etc.... The probability of a phrase p being the
long form of the given abbreviation abr, is scored based on
the best induced feature vector induce(p, abr) using statis-
tical methods (linear regression).

[6] and [10] attempted to develop an ’abbreviation rule
grammar’. Typical rules (or grammar derivations) are: "take
the first letter of a word’, ’convert the word to a number’,
"take some interior character of the word’, etc. ... Each rule
is assigned a weight, and the probability of phrase p be-
ing the long form of the given abbreviation abr, is scored
based on the best induced sequence of derivations from p to
abr. (Scoring a sequence of derivations based on scores for
single derivations is not a trivial problem without assum-
ing rule application independence, another problem of this
approach is the computational complexity of finding all the
possible derivations.)

The main problem of these approaches is that the set of
grammar rules, and the feature vector dimensionality are
both hardcoded and fixed. We suggest a more flexible sys-
tem, that can learn new abbreviation patterns using Neural
Networks. We relax the feature vector approach to *abbrevi-
ation pattern approach’. The idea behind the *abbreviation
patterns’ is that we want to represent the abbreviation pro-
cess, while on the one hand, keeping enough information
for inducing previously unobserved abbreviation templates,
and on the other hand, in a way that would allow us to gen-
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eralize and avoid overfitting.

The notion of "abbreviation pattern’ is best described by
an example. An abbreviation from ’Department’ to *Dpt’
induces two abbreviation patterns: *CxCxxxxxxC’” and *Cx-
CxxCxxxx’, which mean that there were three consonant
letters in appropriate locations chosen for the abbreviation.
This example also shows that a pair <abbreviation,phrase>
can induce several different abbreviation patterns.

More formally, abbreviation pattern is a word over the
alphabet {"C’,;’V’,_’’x’}, where: ’_” means ’space’ (words
are delimited with a spaces), 'V’ means that a vowel let-
ter was chosen, ’C’ means that a consonant was chosen, ’x’
means that the letter was filtered out from the phrase in ab-
breviation construction.

This representation, while avoiding overfitting, keeps a
lot of information that can be inferred about the abbrevi-
ation process, such as: (*)What were the locations of the
letters in the phrase (first letters of words, last letters of
words ...), (¥)Was the letter chosen for word representa-
tion a consonant or a vowel (consonants are used more of-
ten). (*)How long was each word of the abbreviated phrase,
and how many characters it contributed to the abbreviation,
etc.

We could further enhance the expressive power of the
abbreviation patterns by: (*)Expanding the vocabulary to
{1C’,c’)V’,)v’) X’} capturing whether the mapped let-
ter was capitalized in abbreviation. (*)Marking syllables
boundaries. (¥*)Marking whether a filtered letter was a con-
sonant or a vowel. (¥*)Including a part-of speech tag be-
fore the words. We could even represent the abbreviation
process as a pair <long form, indices of letters chosen for
abbreviation>, which would keep lossless information on
abbreviation process. However, as we increase the expres-
siveness of abbreviation patterns, we increase the *abbrevi-
ation rules’ search space, make the learning process more
difficult and risk overfitting.

Note that abbreviation patterns as they are defined now,
do not handle the cases when the abbreviated form contains
letters that do not appear in the long form. Neither can they
handle the cases when words or letters are replaced by digits
(see table 1). Extending the expressiveness of abbreviation
patterns is subject to further research.

We define an abbreviation pattern induced by a pair
<phrase,abbr> as ’legal’ if the pattern indicates that the
phrase could be the long form of the abbreviation. Else,
the pattern is considered illegal. For example, abbreviation
pattern 'Cxxxxxxx_Cxxxxx’ is a legal pattern, because it
indicates that the first consonant letters of every word were
chosen for the abbreviated form. On the other hand, the pat-
tern "x Vxxxx Vxxx _xxxx_xxxx’ is illegal pattern, because it
appears unlikely that only the first word in the long form
contributed two internal vowels to the abbreviated form. A
pair <phrase,abbr> may induce several abbreviation pat-
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Abbrv. Definition Description

VDR vitamin D receptor The letters align to the beginnings of the words.

PTU propylthiouracil The letters align to a subset of syllable boundaries.
JNK c-Jun N-terminal kinase The letters align to punctuation boundaries.

IFN interferon The letters align to some other place.

ATL adult T-cell leukemia The long form contains words not in the abbreviation.
CREB-1 | CRE binding protein The abbreviation contains letters not in the long form.
beta-EP | beta-endorphin The abbreviation contains complete words.

W3C World Wide Web Consortium | Letters or words are replaced by digits

Table 1. Typical patterns for abbreviations

terns. If at least one of them is legal, we consider the pair
legal. For example, the pair <Artificial Intelligence, AI>
induces 7 abbreviation patterns. It is a legal pair, since be-
sides illegal patterns, such as: Vax Voo xxxxxxxxxxxx
( AxxDxxxxxx xxxxxxxxxxxx) it contains a legal pattern:
Voeexxxxxxx _Vaxxxxxxxxxx ( AXxxxxxxxx IXxxxxxxxxxxx).

4 Recognizing Legal Abbreviation Patterns

We implemented and compared two tools for clas-
sifying abbreviation patterns to legal and illegal ones:
A hard-coded heuristic tool that assigns weight to
a pattern. For every mapped letter the weight is
0.50f fset=from—word=start an{ for every filtered letter, the
score is —0.50f fset—from—word=start Thiq simple heuris-
tic is based on the intuition that in schema abbreviations
many of the letters of the long form are kept in the abbrevi-
ation, with priority given to the letters that start words. For
example, a pattern *CxVxxx CxCxx’ would score 0.5° —
0.5" + 0.5 — 0.5% + 0.5* — 0.5 + 0.5° — 0.5! 4+ 0.5% —
0.53+0.5% = 1.09. A pattern scoring over 0.2 is considered
to be legal. A neural network (NN) Learning tool. The
other tool is a NN for pattern classification. The advantage
of the hard-coded algorithm is that it’s simple, fast and quite
effective. The NN on the other hand can learn to recognize
unpredicted patterns. In general, we reduce the problem of
abbreviation expansion to supervised pattern classification.
We chose NN for our machine learning method because it
is a popular choice for pattern recognition learning with au-
tonomous feature selection and good generalization capa-
bilities.

5 Neural Networks classification.

We selected a simple feed-forward multilayered network
structure, with backpropagation learning algorithm. With
60 input elements, the NN is able to classify patterns of
length up to 60 letters. If the output neuron is activated, the
pattern was considered legal. The network also contained a
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hidden layer of 15 elements. The positive and the negative
training sets for the network learning were created using a
hard-coded probabilistic algorithm that worked similarly to
the hard-coded classification tool discussed in section 4.

The negative training set contains random patterns,
missing-word patterns and bad-segment patterns. Ran-
dom patterns are just random collections of symbols over
V,C,_x. They are highly unlikely represent abbreviations,
so they are added to the negative training set. Exam-
ples of such patterns are: 'CVxx__CxxVC_Cx_V_’ and
"xxCVC__C_Vxx_xx_CV’. Missing-word patterns represent
phrases where one of the words of the phrase did not con-
tribute letters to the abbreviation. These patterns are con-
sidered illegal, even though the rest of the phrase might
have been a legal abbreviation. Examples of such patterns
are: 'CVxxx_xxxxx_CCxxxx’ and "xxxxx_Cxxxxx’. Bad-
segment patterns represent phrases where all the words in
the phrase contribute letters to the abbreviation, but at least
one of the words contributes letters in an illegal fashion.
Even single such word is enough to make the pattern illegal.
Examples of these patterns are: *Cxxxxx_xxxxxC_Vxxxx’
and *xxxxxC_Cxxxxxx’.

The legal patterns training set was characterized by
letters being mapped closer to words beginnings and
the mapped letters being more often consonants then
vowels. Examples of such patterns are: ’CCVxxxxx’,
"Cxxxxx_CxCxxxx’, ’"CxVxxx_VVxxx_xCxxxx’. The next
section discusses the results of our neural network and hard-
coded expansion tool.

6 Results and Conclusions

To check the feasibility of our abbreviation-expansion
tool, we expanded a given abbreviation by scanning the
(shallow-parsed) Brown corpus' and comparing the lists of

!'The Brown corpus consists of one million words of American English
texts printed in 1961. The texts for the corpus were sampled from 15 dif-
ferent text categories to make the corpus a good standard reference. Today,
this corpus is considered small, and slightly dated.
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candidate expansion phrases given by the hardcoded tool
and the NN-learning tool. The neural network we worked
with was a (60,15,1) perceptron network, trained on 1800
automatically created training samples.

The ad-hoc(hard-coded) expansion tool performed com-
parably to NN expansion tool (which is not surprising since
the NN tool was trained with the ad-hoc heuristic tool). The
NN tool has a slightly better recall, but a significantly lower
precision. The method of expanding abbreviations using a
corpus showed reasonable results whenever the corpus con-
tained the original abbreviated phrases. The NN tool found
the right expansion in all experiments we performed, pro-
ducing however several hundreds of candidate expansions
per abbreviation.

Our NN tool could be boosted by:(1)Extending the ab-
breviation patterns to capture additional information such
as syllable boundaries in the abbreviations. (2)An improved
training set based on several heuristics(possibly existing
methods). We believe that trained on a large enough, more
carefully built (containing more negative examples, using
several heuristics, with manual extension) training set, the
NN approach will considerably outperform the ad-hoc ap-
proach.

The main goal of our abbreviation expansion tool was to
show the feasibility of the machine learning corpus-based
abbreviation expansion approach. At this stage we do not
require a great precision, since we later use disambigua-
tion tool [16] that will consider a global interpretation of
schema expansion. The main goal of this stage was to re-
duce the candidate expansions set from several millions (if
we consider any word combination of fixed length) to sev-
eral hundreds (with our methods), giving a reasonable input
to the disambiguation tool. We also believe that selecting a
context-specific corpus can significantly reduce the number
of candidates.

Experiments that involving different network structures,
checking corpus sensitivity and comparing our methods to
other existing ones is subject to furute work.
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