Reduce, Reuse, Recycle : Practical Approaches
to Schema Integration, Evolution and Versioning

John F. Roddick and Denise de Vries

School of Informatics and Engineering
Flinders University,
PO Box 2100, Adelaide, South Australia 5001

roddick@infoeng.flinders.edu.au

Abstract. Three themes are apparent in recent schema integration, evo-
lution and versioning research. First, the need to reduce the number of
schema changes that are necessary. The approach here has been to build
into the conceptual and data models the scope to accommodate mod-
est changes to definition. Second, research that aims to reuse the current
schema definition through procedures that mask the changes through so-
phisticated wrappers or techniques for multiple extensional data. Finally,
techniques that enable schema change to be accommodated as seamlessly
and as painlessly as possible. All these approaches have their limitations
and strengths. This paper investigates each of these approaches and out-
lines the current research directions in schema integration, evolution and
versioning.

1 Introduction

Changes in the functional requirements for software systems commonly result
in changes to the underlying database. Similarly, changes to the storage schema
for a database often necessitates amendments to the software systems to accom-
modate the changes. Aside from any data loss that may result, these changes
cause both application and database to age resulting in higher maintenance and
redevelopment costs [I]. Schema evolution and versioning research thus aims to
reduce the effect of changes to schema on the system. Schema versioning is re-
lated to schema evolution in that it aims to provide not only evolution (change)
capability but also the provision of multiple schema instances for data update
and retrieval.

Schema versioning requires data integration which takes data held under mul-
tiple local schemata (perhaps different versions) and provides a unified view of
those data, while schema (or view) integration takes multiple user views and pro-
vides a common conceptual schema. Thus in many respects, schema and data
integration and schema evolution and versioning can be viewed as cognate prob-
lems in that there are multiple sources of data which are held, and which need
to be viewed, on demand, through multiple schemata [2].

Research in these fields has been relatively steady now for two decades, as
illustrated in Figure [l and can broadly be classified under a 3R-hierarchy which
is broadly speaking, in order of desirability:

J.F. Roddick et al. (Eds.): ER Workshops 2006, LNCS 4231, pp. 209-ZI6] 2006.
© Springer-Verlag Berlin Heidelberg 2006



210 J.F. Roddick and D. de Vries

@

DBLP.
M Google Scholar

Number of Publications
5

1987 1998 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
Year of Publication

o

Fig. 1. Approximately publications by year in schema evolution and schema versioning
(source DBLP, Google Scholar)

— Reduce. Those strategies that attempt to reduce the number of database
schema changes that need to be made by building into the conceptual and
data models the capability to accommodate changes to definition.

— Reuse. Those strategies that reuse the schema definition (and the data
held under that definition) by providing translation mechanisms, such as
wrappers.

— Recycle. Those strategies that ease the pain of integration and evolution,
including techniques for data coercion.

This paper explores those three themes. Given the surveys that are available
[BHI5I6/7], the paper focusses specifically on techniques that have been developed
in the past few years. Despite useful work in a variety of other areas (see for
example [S9I0]) we limit ourselves here to a discussion on those approaches to
database schema management.

2 The Practical and Theoretical Limits of Schema
Evolution

As discussed by Qian [II], Miller et al. showed that in order to update data
stored under two different schemata using the opposite schemata, theoretically
they must be equivalent — all valid instances of some schema S; must be able to
be stored under Sz and vice-versa [12/13]. Specifically, S1 = So iff I(S1) — 1(S2)
is bijective where I(S) is the set of all valid instances of S — essentially the
information capacity of S. This means that, in theory, full schema versioning is
unattainable and much research in the area adopts the weaker concept of partial
schema versioning in which data stored under any historical schema may be
viewed through any other schema but may only be updated through one specified
schema version - normally the current or active schema. This is essentially the
old view update problem.



Reduce, Reuse, Recycle 211

However, in practice, many schema changes that expand or reduce the infor-
mation capacity of a schema can be done without loss of information. This is
the case for example, for domains defined too large for the data, for the creation
of subclass relations from a single relation where the subclass type attribute al-
ready exists, and so on. It is common practice where there is some ambiguity in
the requirements definition of a system to allow for data that once implemented
never materialises and, as a result, changes to schemata to adhere to the data
collected are not uncommon [7].

Thus the limits for practical schema versioning in a database ® are that
Sy £ S, iff I'(®]S1) — I'(D|S2) is bijective where I'(D]S,,) is the set of all
instances of S, inferrable from ® given the constraints of .S,,. This means that
whether the integration of two schema is possible is dependent on the data held
as well as the schema definition and while this makes the ability to undertake
wholesale change less predictable, it may provide an acceptable level of support
in many practical situations. A number of schema matching techniques have been
suggested [I4] and the ones detailing instance matching [I5JI6] may be able to
be modified to determine whether instance level equivalence exists. The use of
Armstrong relations [I7] or induced dependencies [I8] may also assist. This is
an area for further research.

3 Reducing the Requirement for Schema Change

Since it is changes that result in system and schema modification and thus in the
ageing of a system, one approach is to avoid the need for change by developing
schemata that can handle a modest level of change through data modification.
One approach which has been proposed as a solution to this is the concept of
mesodata [T9120]. Mesodata aims to add power to the relational data model by
providing greater semantics to the domain (note, not the type) of an attribute
by allowing attributes to be defined over domains with complex data structures.
The mesodata concept does not add complex data types to the relational model
— the type of an attribute remains a simple scalar type while the domain of
the attribute allows the values taken by the attribute to be placed within some
complex structure. For example, while the code for a disease might be defined as
CHAR(5), disease codes exist within an agreed international classification (such
as ICD10) a tree-structure that relates diseases and other observations by group.

When a schema changes two events typically occur - the application is modi-
fied and recompiled to deal with the changes and the data may be converted to
a new format [21I22]. By adding a mesodata layer to the structure, the domains
over which the data are defined may be modified leaving untouched both the
data and the attribute definition. Even simple country, organisation or region
name changes may be one-to-one, one-to-many, many-to-one or many-to-many
and more complex changes might involve the reorganisation of the entity.

The typical solution is to convert all old values and replace them with new
values. This could be an ongoing task and results can result in an irreversible loss
of information. The mesodata solution would be to use the mesodata type TREE



212 J.F. Roddick and D. de Vries

Fig. 2. Basic Architectures for Schema Reuse

to map old values to the new values. Extended SQL operators could be used to
retrieve data values with the advantage that the original values are not lost.

4 Reusing Schema Definition and Data

Coercing data to a common schema is often not a practical solution and thus the
largest group of techniques focusses on retaining data and schema definition and
providing interfaces using either indirect Source-Common-Target (SCT) [23)24]
or direct Source-Target (ST) architectures. The SCT architecture benefits from
requiring fewer interfaces than the SC architecture (2n as opposed to n?/2,
where n is the number of schemata) but can suffer from a greater level of in-
formation loss as the common schema is often non-maximal. Wrappers [25/26]
and XML-based markups are effectively a version of the SCT approach in which
the interface provided adheres, at least in principle, to a more or less agreed
commonality of schema.

Implicit in some work in schema versioning is the concept of a completed
schema C' (similar to the completed relation of Clifford and Warren [27]) which
contains the minimal union of all attributes which have been defined during the
life of the relation. The domain of each attribute in C' is considered syntacti-
cally general enough to hold all data stored under every version of the relation
scheme R and the implicit primary key of C is defined as the maximal set of key
attributes for the scheme over time. Versions of the schema (denoted Sime) can
be seen to be views of C. Thus the relation scheme active during the interval
t1, Ry, = (S, , T). The current schema through which updates may be performed
is denoted Spow. A view function Vi, maps C' to a subset of the attributes in a
schema S, active during t; with a converse function Wy, mapping from Sy, to C'.

Grandi [28/29] provides a solution that enhances this view by providing a multi-
pool solution. In this proposal, each schema version can have different extensional
data and thus the same object might have an independent representation.

Rosenthal et al. [30] recommend that we must go beyond after-the-fact semantic
integration to actively guiding semantic choices with semantic management by:

— producing new areas of semantic agreement not just correspondences be-
tween existing systems,

— considering the needs of people in multiple roles (e.g. owners, architects,
users, developers) to have a greater share of what the data mean,



Reduce, Reuse, Recycle 213

— broadening the definition of semantics to describe what data instances are
collected and desired, not just concept definitions and relationships.

For temporal databases, which lend themselves well to schema versioning
through the provision of a temporally-aware schema, data coercion is inappli-
cable due to their write-once, append-only nature. Work in this area has in-
cluded Jensen and Bohlen [3T32] who discuss two versions of a lossless method
of schema versioning — first, a full but exponentially complex, multi-dimensional
conditionally evolving schema (MD-CES) and, secondly, a restriction on this
that is tractable for one and two-dimensional temporal datasets.

5 Strategies for Accommodating Schema Modification

As would be expected, the desire to retain information means that data coercion
is avoided in many proposals. However, it is a popular practical solution and, al-
though not accommodated in some models, we would argue that there are some
circumstances in which data coercion would be the most desirable mechanism of
evolution, particularly when a consistent interpretation of the source data is re-
quired and/or there is confidence that historical information will not be required.

Early approaches to data coercion investigated either a strict conversion [33]
or a lazy conversion [22] of data to the new format. Recent work has improved on
this by providing a more detailed view of how this may occur. The TVSE Model
[34], for example, uses temporal and versioning concepts to manage schema evolu-
tion in object-oriented databases. The model assists users to manage the evolution
history of both intensional and extensional databases and proposes a language to
derive and modify schema versions and to update the data associated with them.

It is also useful if the decisions made during database design can be con-
sulted and the users can interact with schema changes at a high level. Hick
and Hainaut [35] investigate how requirements changes can be propagated to
database schemas, to data and to programs through reference to the design pro-
cess. Other work, particularly that of Bernstein et al. [36/37] and Madhavan and
Halevy [38], provides support for meta data management that provides a higher
level view in which models can be mapped to each other.

6 Conclusions

Despite the research to date, schema integration, evolution and versioning are
far from being solved as evidenced by the almost total lack of functionality in
commercial DBMS. This lack of support may be for a number of reasons. First,
the lack of strategies for dealing with schema versioning in practice which may
be because the motivation for schema change is seldom examined and, given
many possible solutions, the best outcome is often related to the motivation for
change. Second, the need for manual intervention and the incompleteness of most
solutions. Many solutions deal with specific situations only and most proposals,
if implemented, would require at least a check that the process has provided an



214 J.F. Roddick and D. de Vries

adequate solution. Finally, many solutions target the object-oriented (cf. [39140])
rather than the (commercially more popular) relational model cf. [28§]).

We would argue that one of the next steps in schema handling is to transfer
the body of research from theory to practice including extensions to commercial
DBMS and SQL. To do this the user’s motivation needs to be involved at a more
fundamental level with, for example, links back to the original conceptual design.

References

1. Lientz, B.: Issues in software maintenance. ACM Computing Surveys 15 (1983)
271-278

2. McBrien, P., Poulovassilis, A.: Schema evolution in heterogeneous database archi-
tectures, a schema transformation approach. In: CAiSE’02, Birkbeck College and
Imperial College (2002)

3. Lautemann, S.E.: An introduction to schema versioning in OODBMS. Database
and Expert Systems Applications, 1996. Proceedings., Seventh International Work-
shop on (1996) 132-139

4. Lemke, T.: Schema evolution in OODBMS: A selective overview of problems and
solutions. Technical Report IDEA.WP.22.0.002, University of Bonn (1994)

5. Li, X.: A survey of schema evolution in object-oriented databases. In: 31st In-
ternational Conference on Technology of Object-Oriented Language and Systems,
Nanjing, China, IEEE (1999) 362-371

6. Roddick, J.F.: A survey of schema versioning issues for database systems. Infor-
mation and Software Technology 37 (1995) 383-393

7. Shankaranarayanan, G., Ram, S.: Research issues in database schema evolution
- the road not taken. Technical Report Technical Report 2003-15, University of
Arizona (2003)

8. Fan, H., Poulovassilis, A.: Schema evolution in data warehousing environmentsa
schema transformation-based approach. In Atzeni, P., Chu, W., Lu, H., Zhou, S.,
Ling, T.W., eds.: International Conference on Conceptual Modeling. Volume 3288.,
Shanghai, Springer (2004) 639-653

9. Noy, N.F.E., Klein, M.E.: Ontology evolution: Not the same as schema evolution.
Knowledge and Information Systems 6 (2004) 428-440

10. Haase, P., Stojanovic, L.: Consistent evolution of OWL ontologies. In Gémez-
Pérez, A., Euzenat, J., eds.: Second European Semantic Web Conference. Volume
3532 of LNCS., Heraklion, Greece, Springer (2005) 182-197

11. Qian, X.: Correct schema transformations. In Apers, P.M.G., Bouzeghoub, M.,
Gardarin, G., eds.: Advances in Database Technology - EDBT’96, 5th International
Conference on Extending Database Technology. Volume 1057 of LNCS., Avignon,
France, Springer (1996) 114-128

12. Miller, R., Ioannidis, Y., Ramakrishnan, R.: The use of information capacity in
schema integration and translation. In Agrawal, R., Baker, S., Bell, D., eds.: 19th
International Conference on Very Large Data Bases, VLDB’93, Dublin, Ireland,
Morgan Kaufmann (1993) 120-133

13. Miller, R.J., loannidis, Y.E., Ramakrishnan, R.: Schema equivalence in heteroge-
neous systems: Bridging theory and practice. Information Systems 19 (1994) 3 31

14. Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching.
VLDB Journal 10 (2001) 334:350



15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Reduce, Reuse, Recycle 215

Li, W.S., Clifton, C.: SemlInt: a tool for identifying attribute correspondences in
heterogeneous databases using neural network. Data and Knowledge Engineering
33 (2000) 49-84

Doan, A.H., Domingos, P., Halevy, A.Y.: Reconciling schemas of disparate data
sources: a machine-learning approach. ACM SIGMOD International Conference
on Management of Data (2001) 509-520

Armstrong, W.W.: Dependency structures of data base relationships. In: 6th
International Federation for Information Processing Congress (IFIP). Volume 74.,
North-Holland, Amsterdam (1974) 580-583

Roddick, J.F., Craske, N.G., Richards, T.J.: Handling discovered structure in
database systems. IEEE Transactions on Knowledge and Data Engineering 8
(1996) 227240

de Vries, D., Roddick, J.F.: Facilitating database attribute domain evolution us-
ing mesodata. In Grandi, F., ed.: 3rd International Workshop on Evolution and
Change in Data Management (ECDM2004). Volume 3289 of LNCS., Shanghali,
China, Springer (2004) 429-440

de Vries, D.: Mesodata : Engineering Domains for Attribute Evolution and Data
Integration. PhD thesis, Flinders University (2006)

Ferrandina, F., Meyer, T., Zicari, R.: Implementing lazy database updates for
an object database system. In Bocca, J.B., Jarke, M., Zaniolo, C., eds.: 20th
International Conference on Very Large Data Bases, VLDB’94, Santiago, Chile,
Morgan Kaufmann (1994) 261-272

Tan, L., Katayama, T.: Meta operations for type management in object-oriented
databases - a lazy mechanism for schema evolution. In Kim, W., Nicolas, J.M.,
Nishio, S., eds.: 1st International Conference on Deductive and Object-Oriented
Databases, DOOD’89, Kyoto, Japan, North-Holland (1989) 241-258
Bergamaschi, S., Castano, S., Vincini, M.: Semantic integration of semistructured
and structured data sources. SIGMOD Record 28 (1999) 54-59

Cavalnese, D., De Giacomo, G., Lenzerini, M., Nardi, D., Rosati, R.: Information
integration: Conceptual modeling and reasoning support. In: 3rd IFCIS Interna-
tional Conference on Cooperative Information Systems (CooplS), New York City,
NY (1998) 280-291

Chawathe, S., Garcia-Molina, H., Hammer, J., Ireland, K., Papakonstantinou, Y.,
Ullman, J.D., Widom, J.: The TSIMMIS project: Integration of heterogeneous
information sources. In: 16th Meeting of the Information Processing Society of
Japan, Tokyo, Japan (1994) 7-18

Hammer, J., Garcia-Molina, H., Nestorov, S., Yerneni, R., Breunig, M., Vassalos,
V.: Template-based wrappers in the TSIMMIS system. SIGMOD Record 26 (1997)
532-535

Clifford, J., Warren, D.: Formal semantics for time in databases. ACM Transactions
on Database Systems 8 (1983) 214-254

Grandi, F.: A relational multi-schema data model and query language for full
support of schema versioning. In: National Conference on Advanced Database
Systems, Isola d’Elba, Italy (2002) 323-336

Grandi, F.: SVMgr: A tool for the management of schema versioning. In Atzeni,
P., Chu, W., Lu, H., Zhou, S., Ling, T.W., eds.: 23rd International Conference on
Conceptual Modeling (ER2004). Volume 3288., Shanghai, China, Springer-Verlag
(2004) 860-861

Rosenthal, A., Seligman, L.J., Renner, S.: From semantic integration to semantics
management: case studies and a way forward. SIGMOD Record 33 (2004) 44-50



216

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

J.F. Roddick and D. de Vries

Jensen, O.G., Bohlen, M.H.: Evolving relations. In: Database Schema Evolution
and Meta-Modeling, Proc. International Workshop on Foundations of Models and
Languages for Data and Objects. Volume 2065 of LNCS. Springer (2001) 115
Jensen, O.G., Bohlen, M.H.: Multitemporal conditional schema evolution. In
Grandi, F., ed.: 3rd International Workshop on Evolution and Change in Data
Management (ECDM2004). Volume 3289 of LNCS., Shanghai, China, Springer
(2004) 441-456

Penney, D., Stein, J.: Class modification in the gemstone object-oriented dbms.
OOPSLA ’87 (SIGPLAN Notices) 22 (1987) 111-117

Edelweiss, N., Moreira, A.: Temporal and versioning model for schema evolution
in object-oriented databases. Data and Knowledge Engineering 53 (2005) 99-128
Hick, J.M., Hainaut, J.L.: Database application evolution: A transformational
approach. Data and Knowledge Engineering Article in Press (Preprint)
Bernstein, P.A.: Applying model management to classical meta data problems.
Conference on Innovative Data Systems Research (CIDR) (2003) 209-220
Melnik, S., Rahm, E., Bernstein, P.A.: Rondo: a programming platform for generic
model management. In: 2003 ACM SIGMOD International Conference on Man-
agement of data, San Diego, California, ACM Press (2003) 193-204

Madhavan, J., Halevy, A.Y.: Composing mappings among data sources. In Frey-
tag, J.C., Lockemann, P.C., Abiteboul, S., Carey, M.J., Selinger, P.G., Heuer, A.,
eds.: 29th International Conference on Very Large Data Bases (VLDB), Berlin,
Germany, Morgan Kaufmann (2003) 572-583

Franconi, E., Grandi, F., Mandreoli, F.: A semantic approach for schema evolution
and versioning in object-oriented databases. In Lloyd, J.W., Dahl, V., Furbach,
U., Kerber, M., Lau, K.K., Palamidessi, C., Pereira, .M., Sagiv, Y., Stuckey, P.J.,
eds.: 1st International Conference on Computational Logic, CL’00. Volume 1861.,
London, UK, Springer (2000) 1048-1062

Grandi, F., Mandreoli, F.: A formal model for temporal schema versioning in
object-oriented databases. Data and Knowledge Engineering 46 (2003) 123-167



	Introduction
	The Practical and Theoretical Limits of Schema Evolution
	Reducing the Requirement for Schema Change
	Reusing Schema Definition and Data
	Strategies for Accommodating Schema Modification
	Conclusions


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




