

Communications of the ACM

Volume 43, Number 6 (2000), Pages 57-62

	
Maintaining data warehouses over changing information sources

	
Elke A. Rundensteiner,
Andreas Koeller,
Xin Zhang

	

Table of Contents

	Lead-in
	Introduction
	Data Warehousing Architecture
	Dynamicity of Information Sources
	Reasons for Schema Changes
	Implicit Causes for Schema Changes
	Data Warehousing Issues for Dynamic Sources
	A Tour of EVE: Toward Flexible Data Warehousing
	Conclusions
	References
	Authors
	Footnotes
	Figures

	

Tomorrow's Web applications need a robust, efficient data
warehouse system to succeed in dynamic Web-based
environments.

In recent years, the number of digital information storage and
retrieval systems has increased immensely. These information
sources are generally interconnected via some network, and hence
the task of integrating data from different sources to serve it
up to users is an increasingly important one
[10]. Applications that could benefit from this
wealth of digital information are thus experiencing a pressing
need for suitable integration tools that allow them to make
effective use of such distributed and diverse data sets.

In contrast to the on-demand approach to information
integration, the approach of tailored information repository
construction, commonly referred to as data warehousing, is
characterized by the following properties:

	At setup time, relevant information is extracted from
different information sources on the network, transformed and
cleaned as necessary, merged with information from other sources,
and then loaded into a centralized data store—the data
warehouse.
	During query processing time, queries posed against the
system are directly evaluated against the data warehouse without
further interaction with the original sources.
	During operation time, modifications of the sources are
filtered for relevance and are then propagated in some manner to
upgrade the data warehouse.

Data warehousing (materialized views) offers higher
availability and better query performance as all information can
be retrieved from a single location, and thus is a suitable
choice when high-performance query processing and data analysis
is critical. Similarly, this approach is advantageous when the
information sources are very expensive to access or even
occasionally become unavailable, when network delays cause high
costs, or when the middle-layer tasks such as translation or
merging are too complex and ineffective, possibly requiring human
input.

Data warehousing has been found to be an extremely useful
technology for a large number of modern applications. Such
applications range over diverse domains such as business (for
example, trade-market analysis), leisure (travel, weather, or
tourist information), science (integration of diagnosis and
results from specialists, nurses, and doctors), libraries
(museums, art collections, and other multimedia online
resources), and education (lecture notes, syllabi, exams, and
transparencies from different Web sites).

The data warehousing paradigm may be applied to the following
environments:

	Monolithic systems in which a single underlying source
providing the data feed is controlled by the same organization as
the back end data warehouse store. For example, in online stores
such as Amazon.com, the Web-based front end must handle
high-performance transactions by customers whereas the underlying
data warehouse serves as container of all transactions logged
over time for off-line analysis.
	Distributed but closed environments in which a small or
moderate number of distributed sources are independent units
controlled by trusted owners often with a joint cooperative goal.
For example, enterprises of even moderate size with multiple
sources of data such as personnel information, customer
databases, products, suppliers, and accounting systems may
attempt to integrate some of them electronically for analysis
purposes.
	Large-scale open environments such as the Web in which
unrelated sources appear at unpredictable times and where content
providers aim to extract and integrate sources for possibly
non-anticipated purposes. For example, the Web currently contains
all aspects of travel information including fares and special
bargains by different airlines, maps from different cities, and
hotel availability in numerous different sources. A travel
consolidator service may collect such travel-related information
from different online sources and organize it into a tailored
travel service repository.

Data Warehousing Architecture

Technology for information integration often features a
multi-tier architecture as depicted in Figure 1.
There is generally a large variety and number of sources in the
underlying environment, each modeled by diverse data models and
each supporting different query interfaces. This may include
legacy systems, proprietary application programmer interfaces,
traditional database technology such as relational or
object-oriented database systems as well as new technology such
as HTML Web sites, SGML or XML documents, news wires, and even
multi-media sites.

The data warehouse store is (at least logically) a centralized
repository that must support complex decision support queries at
high performance. A data warehouse store typically utilizes
relational database technology due to the maturity of this
technology. For this reason, there is a wrapper associated with
each information source connecting the source to the system. The
wrapper is in charge of the translation between the native model
of the source to the common model of the data warehousing system,
including the exposure of constraints, schema and data chunks
from the specific source to the warehousing system, the mapping
of query requests, and the notification of source changes.

The data warehouse middle layer consists of a collection of
tools in charge of the exploitation of services provided by the
individual sources and the proper management of the integrated
data warehouse store. This includes, for example, tools for
filtering and then merging information from several sources, for
managing a metadescription of the information space, and for
maintaining the data warehouse store under any change
notifications from sources. In recent years, numerous software
companies have successfully started to produce the
"middleware" software necessary for data integration,
often in Web-based e-commerce applications. This represents a
growing market of opportunities where more and more database
vendors as well as other software companies will be producing
related tools and services.

Dynamicity of Information Sources

Individual information sources are often autonomous and
generally have an existence and purpose beyond that of supporting
the data warehouse itself. In fact, they may not even be aware
that one of the clients accessing them may be a wrapper
connecting it to an integration system. An important consequence
of the autonomy of sources is the fact that those sources may
change without being controlled from a higher data integration
layer. Many sources, particularly Web-based data sources, may not
only change their data, but also their
capabilities1 without cooperating
with users of their data.

Assuming the relational model as a common integration
paradigm, the type of changes visible at the middle layer can be
categorized as:

	Data updates such as add-tuple and change-value.
	Schema changes such as add-column and delete-table.
	Constraint modifications such as remove-key-constraint and
add-containment-constraint.
	Statistics and metadata adjustments such as selectivity of
attributes and size of relations.

It has thus far largely been overlooked that these types of
changes are possible and thus their impact on data warehousing
needs to be studied as well. Most commercial data warehousing
systems only deal with the propagation of updates of data, if at
all, and then often only in a batch mode. This means they collect
all updates (such as transactions over a source database), say,
over the course of a day and then load them all at once into the
data warehouse store. Recent research in data warehousing has
begun to go one step further and has studied the propagation of
and data warehouse maintenance under (concurrent) data updates
[1].

Reasons for Schema Changes

Schema and interface changes are quite common because not only
is it difficult to predetermine the database schema for many
complex applications during the first pass, but application
requirements also typically change over time. For example,
[9] documents the extent of schema evolution
during the development and the initial use of a health management
system at several hospitals. There was an increase of 139% in the
number of relations and an increase of 274% in the number of
attributes, and every relation in the schema was changed at least
once during the 19-month period of the study. In another study
[6], significant changes (about 59% of attributes
on the average) were reported for seven applications, ranging
from project tracking, real estate inventory and accounting, to
government administration of the skill trades and apprenticeship
programs. These studies suggest that handling schema changes is
an inevitable task not only during the development of a project
but also once a project has become operational.

Implicit Causes for Schema Changes

Schematically diverging information sources.
Even though both the information sources and the data warehouse
may abide by the relational data model, it has long been
recognized that the same information content may be stored in
schematically incompatible ways. For example, a payroll system
could store the salaries of all employees in one table, denoting
the department as one value of each tuple; or it could also
maintain a separate table for each department. Both schemas would
be capable of holding the same information (semantics), but
cannot be directly integrated into one conventional view using
currently available variants of SQL. Due to their schema
restructuring capability, second-order languages such as
SchemaSQL [3] could be utilized to integrate such
relational sources with schematic discrepancies by constructing
SQL wrappers (see Figure 2).

In such a schema-transforming SQL wrapper, update propagation
raises an interesting new issue. Namely, it turns out that data
updates in a SchemaSQL-wrapped source may be transformed into
updates of the schema in the associated SchemaSQL view (like in
the data warehouse middle layer), and vice versa. For example, as
seen in Figure 2, adding a tuple with a new dept
value (in this case, Physics) to the upper table would require
the addition of a new attribute in the lower relation with its
attribute name equal to that value (the Physics column). In fact,
a closer examination of this issue reveals that any change of the
type of an update (single/multiple, data/schema) is possible,
causing more frequent schema changes than in a simple relational
database.

Heterogeneous model information sources. The
integration of information modeled in other data models into a
data warehousing system exhibits a similar behavior. For example,
XML, an increasingly popular format for information encoding and
exchange, could be integrated by building relational wrappers
over XML datasets by mapping XML Document Type Definitions (DTD)
into relational metadata and the corresponding XML data files
into relational data. However, since XML data files carry their
schematic descriptors in the form of tagged fields, updates to
XML data files in the DTD-less case can lead to schematic
modifications of the relational wrapper view exposed to the data
warehouse (see Figure 3).

Data Warehousing Issues for Dynamic Sources

Integrating data from dynamic information sources raises new
challenges in the maintenance and evolution of data warehouse
systems over such data that can be classified in three
groups:

Adapting to information source changes at the wrapper
level. Many solutions for wrappers currently assume some
source cooperation in the sense that sources notify the higher
layers of the data warehouse of their data updates. For
non-cooperating sources, different strategies for the discovery
of such changes are being investigated in the research community
[2]. Given that changes other than data updates
are possible, there is now also a need for the development of
algorithms for detecting data and schema updates in diverse
sources in order to include an even larger class of possible data
providers in an information integration system.

Given that sources may be integrated into the data warehouse
using a custom-made wrapper, the evolution of such wrappers under
schema changes (ideally without requiring manual input) becomes
an extremely important and difficult problem. If this issue
remains unaddressed, dynamic sources will tend to become
unaccessible to integration systems over time. Clearly, the
utilization of wrapper generator technology [5],
possibly with built-in facilities for handling evolution of the
wrapper itself, would be a step in the direction of solving this
problem. A solution must include the capability of translating
all update types through wrappers.

In the case of non-cooperative sources, multiple data
warehouses or other integration services may need to inquire at
different times about the changes an information source has
undergone based on their respective data warehouse refresh
strategy. Also, the data warehouse managers may not be ready to
receive the update notifications when the wrappers happen to
broadcast them. The spawning of many possibly computationally
expensive change detection algorithms would be prohibitively
expensive, intrusive, and thus infeasible in practice. Hence, one
important component for dynamic data warehousing architectures is
a change-history server (or query subscription service,
[2]). This manager would be responsible for
collecting all changes on a source and for servicing queries
about source changes from the middle layer. Such a manager may
even support registrations for standing notification requests
from the middle layer tools. An example may be "Give me all
updates concerning the relation Product from the regional-sales
source if you have collected either at least 10 updates or one
hour has passed since the last notification."

Adapting the definition of the data warehouse.
Given that a data warehouse schema is often defined by a
derivation specified over the exported schemas of the underlying
information sources, dynamicity of the sources could now render
the derivation invalid and possibly the data warehouse undefined.
Hence, there is a need for technology to either correctly
propagate such changes to the data warehouse definition itself or
to appropriately isolate the date warehouse from them.

Many data warehousing systems, especially over medium to
large-scale information environments, use some form of
metaknowledge to facilitate the discovery and integration of
particular information sources into the data warehouse. While not
necessarily containing a static global schema constructed from
all source schemas common for federated database systems, such
metaknowledge bases (MKBs) typically contain some information
about the schemas and capabilities of all registered information
sources [8]. Given that sources are dynamic,
algorithms must be developed for the evolution of the
metaknowledge itself to continue to correctly reflect the
underlying information space.

Adapting the data content in the data warehouse.
A data warehouse may have special-purpose data feeds set up that
"pump" data sets into the store. Once the definition
and schema structure of a data warehouse evolves, it becomes
necessary to correspondingly adjust the content of the data
warehouse store. Due to performance demands on the system and the
size of the data warehouse store, such data warehouse content
adjustments are ideally done incrementally rather than by a
complete data reload [1, 12].
Hence, incremental techniques for the adaption of the data
warehouse extent become a critical technology to support.

While data warehouse maintenance under data updates of
information sources is a fairly well-established field,
maintenance under a mixture of data and schema updates remains
largely unexplored [10, 11].
Furthermore, with the dynamicity in terms of schema information,
such incremental data warehouse maintenance algorithms would now
need to also deal with the concurrency of source updates (and
their notifications to the warehouse) and maintenance queries
(and their result submission to the warehouse). Also, maintenance
queries submitted to the information source may find an altered
schema due to a source schema change that no longer matches the
submitted query format, resulting in an aborted query request
[11].

A Tour of EVE: Toward Flexible Data Warehousing

The Evolvable View Environment (EVE) project
[4, 8, 11] is
one of the first attempts of addressing this issue of dynamic
sources in its entirety. An architectural overview of EVE is
given in Figure 4.

The EVE system follows our earlier assumptions and addresses
several of the problems presented. When a source joins the
system, it notifies EVE of its content, its capabilities, and
possibly its interrelationships with other sources. One example
of such information is overlaps in information content offered by
two source databases. This source description knowledge is then
kept in a MKB.

One core feature of EVE is Evolvable-SQL (E-SQL), an extension
of SQL that allows the view definer to express preferences for
view evolution. Using E-SQL, a user defining a view can specify
what information is indispensable, what information is
replaceable by similar information from other ISs, and whether a
changing view extent is acceptable. This is done by attaching
preference parameters to elements of the view query. This then is
the key to evolving a view by rewriting its view definition into
a possibly non-equivalent one that still preserves the user's
intended semantics.

Once the system is notified about a source schema change that
affects a view, the view synchronizer module explores alternative
techniques for view query rewritings with the goal of adapting
the definition of the data warehouse in a way acceptable to the
user. View synchronization algorithms evolve a view definition by
finding appropriate replacements for affected view components
based on available metaknowledge, and by dropping nonessential
view components if flagged as such by E-SQL [7].
Correspondingly, the MKB evolver will evolve the metaknowledge to
match the modified state of the information space.

Since view synchronization algorithms may generate many
possible query rewritings, one needs to be selected as the new
view definition. For this purpose the quality-and-cost (QC) model
has been developed to estimate the quality and cost of the
rewritings [4]. Each possible query rewriting
will in general preserve a different amount (extent) and
different types (interface) of information, referred to as the
quality of the view. Also, each new view query may cause
different view maintenance costs. With these two dimensions, the
QC-Model can compare different view queries with each other, even
if they are not equivalent.

The view maintainer applies different strategies to update the
data content of the warehouse, both after modification of its
view definition by the view synchronizer [7], as
well as under source data updates [11].

Lastly, the concurrency control module incorporates a solution
to the evolving view definition and maintaining the view extent
under concurrent data and schema updates. For this, existing
algorithms for view synchronization and for view maintenance are
integrated into one system by providing protocols that enable
them to correctly coexist and collaborate
[11].

A demonstration of the EVE system supporting several
commercial database systems as information sources has been done
in Java. The demo can be viewed and downloaded in a source code
version at davis.wpi.edu/dsrg/EVE. In its current state, our
software addresses the issues on adapting the data warehouse
definition as well as some issues in adapting the data content.
We have not yet dealt on a practical level with the discovery of
source changes.

Conclusions

Data warehouses have emerged as one key technology for the
integration of distributed information sources. However,
networked environments like the Web have produced a need for
information integration solutions that take autonomy,
heterogeneity, and dynamicity of sources into account.
Challenging issues for data warehouse solutions arise due to the
dynamicity of the information sources to be integrated. This
article characterizes the types of dynamicity (such as data
updates, schema changes, and constraint modifications) as well as
their explicit and implicit generation. This article also
identifies issues for data warehousing systems that occur when
the possibility of information source changes is taken into
consideration. Such issues include adapting wrappers to
information source changes, adapting view definitions to changes,
or adapting the data content (extent) of the data warehouse.
Lastly, possible candidate solutions for some of these problems,
especially as explored in the context of the Evolvable View
Environment (EVE) system, are outlined. Such flexible data
warehousing technology will allow more users to make use of
distributed information over networks and increase the
productivity of users and system administrators by maintaining
customized interfaces to information that can be automatically
maintained even under changes of the underlying systems.

References

1. Agrawal, D., El Abbadi, A., Singh, A., and
Yurek, T. Efficient view maintenance at data warehouses. In
Proceedings of SIGMOD, 1997, pp. 417–427,

2. Chawathe, S.S. Abiteboul, S., and Widom.,
J. Representing and querying changes in semistructured data. In
Proceedings of the International Conference on Data
Engineering. (Feb. 1998), pp. 4–13.

3. Lakshmanan, L.V.S., Sadri, F., and
Subramanian, I.N. SchemaSQL-A language for interoperability in
relational multi-database systems. In T. M. Vijayaraman et al.,
eds, In Proceedings of the 22d International Conference on
Very Large Data Bases. Mumbai, India (Sept. 1996), pp.
239–250.

4. Lee, A.J., Koeller, A., Nica, A., and
Rundensteiner, E.A. Data warehouse evolution: Trade-offs between
quality and cost of query rewritings. In Proceedings of IEEE
International Conference on Data Engineering. Special Poster
Session, Sydney, Australia (Mar. 1999), p. 255.

5. Liu, L., Han, W., Buttler, D., Pu, C., and
Tang, W. An XML-based wrapper generator for web information
extraction. In Proceedings of the ACM SIGMOD International
Conference on Management of Data. New York (June 1–3,
1999), pp. 540–543.

6. Marche, S. Measuring the Stability of Data
Models. Euro. J. Info. Syst. 2, 1 (Jan. 1993),
37–47.

7. Nica, A., Lee, A.J., and Rundensteiner,
E.A. The CVS algorithm for view synchronization in evolvable
large-scale information systems. In Proceedings of
International Conference on Extending Database Technology.
Valencia, Spain (Mar. 1998), pp. 359–373.

8. Rundensteiner, E.A., Lee, A.J., and Nica,
A. On Preserving views in evolving environments. In
Proceedings of 4th Int. Workshop on Knowledge Representation
Meets Databases (KRDB '97): Intelligent Access to
Heterogeneous Information. Athens, Greece (Aug. 1997), pp.
13.1–13.11.

9. Sjoberg, D. Quantifying schema evolution.
Info. Softw. Tech. 35, 1 (Jan. 1993), 35–54.

10. Widom. J. Research problems in data
warehousing. In Proceedings of International Conference on
Information and Knowledge Management. (Nov. 1995), pp.
25–30.

11. Zhang, X. and Rundensteiner, E.A. The
SDCC framework for integrating existing algorithms for diverse
data warehouse maintenance tasks. In International Database
Engineering and Application Symposium. Montreal, Canada (Aug.
1999), pp. 206–214.

12. Zhuge, Garcia-Molina, Y.H., Hammer, J.,
and Widom, J. View maintenance in a warehousing environment. In
Proceedings of SIGMOD. (May 1995), pp. 316–327.

Authors

Elke A. Rundensteiner (rundenst@cs.wpi.edu) is an
associate professor in the Computer Science Department, Worcester
Polytechnic Institute.

Andreas Koeller (koeller@cs.wpi.edu) is a Ph.D. student
in the Computer Science Department, Worcester Polytechnic
Institute.

Xin Zhang (xinz@cs.wpi.edu) is a Ph.D. student in the
Computer Science Department, Worcester Polytechnic Institute.

Footnotes

1These may include information
such as their schemas, their query interfaces, as well as other
services offered by the information sources.

Figures

Figure 1. Architecture of a data warehouse.

Figure 2. Relational schema transformation with
SchemaSQL: Data change turned schema change.

Figure 3. XML relation mapping and effect of XML data
file updates in the relational model context.

Figure 4. The framework of the evolvable view
environment (EVE).

©2000
ACM 0002-0782/00/0600 $5.00

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, to republish,
to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

The Digital Library is published by the Association
for Computing Machinery. Copyright © 2000
ACM, Inc.

