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Abstract—We introduce schema covering, the problem of iden-
tifying easily understandable common objects for describing large
and complex schemas. Defining transformations between schemas
is a key objective in information integration. However, this
process often becomes cumbersome when the schemas are large
and structurally complex. If such complex schemas can be broken
into smaller and simpler objects, then simple transformations
defined over these smaller objects can be reused to define suitable
transformations among the complex schemas. Schema covering
performs this vital task by identifying a collection of common
concepts from a repository and creating a cover of the complex
schema by these concepts. In this paper, we formulate the
problem of schema covering, show that it is NP-Complete, and
give efficient approximation algorithms for it. A performance
evaluation with real business schemas confirms the effectiveness
of our approach.

I. INTRODUCTION

Data exchange and integration are two central problems
of data management. A major step in data exchange and
integration is defining transformations among schemas. The
schemas might come from different applications, be written
in different formats, or even have different data models, such
as relational or XML. The ability to do data exchange and
integration is fundamental to many tasks: Extract-Transform-
Load (ETL) workflows, that populate data warehouses from
sets of data sources; web applications like mash-ups, that
bring data from one or more sources into a single integrated
tool; XML messaging; schema evolution; and database restruc-
turing. However, with the advent of flexible XML formats,
large and structurally complex schemas are being written
frequently, making traditional methods for data transformation
a formidable task.

The two main drawbacks of traditional tools for designing
transformations between schemas are the level of abstraction
and monolithic mapping. Traditionally, while designing map-
pings, users think in terms of the actual source and the target
schema. But since schemas are low-level structures that may
be large and do not usually have a one-to-one correspondence
with real-life objects, they are difficult to visualize and under-
stand. Thus working at such a lower level of abstraction makes
the process both difficult and error-prone. Ideally, users should
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be able to express the mappings in terms of the objects at
higher levels of abstraction, such as business objects, that are
easier to understand and do not couple implementation with
semantics.

Designing a single monolithic mapping between a source
and a target schema lacks modularity and reusability. Complex
mappings are difficult to build and debug in one step [13][14].
Mapping designers only have access to the final result of the
complex transformation, and can miss some potentially useful
results of intermediate steps in the computation. Moreover,
when the source or the target schema evolves, the designers
will typically have to modify a considerable part of the
mapping, although most of the represented concepts remain
unchanged. Schema covering can be used to eliminate both
of these shortcomings. Given a source and a target schema,
schema covering first identifies a collection of commonly
used concepts (business objects) from a repository, that are
represented within the two schemas. Next, for each of the
source and the target schemas, it computes an appropriate
layout of these concepts, that is, how these concepts can be
placed together to suitably cover the two respective schemas.
Schema covering thus provides a higher level of abstraction,
by describing a schema in terms of the common objects it



represents. Simple transformations defined individually over
these objects can be reused to come up with complex trans-
formations. When schemas evolve, only the objects covering
the changed parts need to be modified. Schema covering also
aids in visualization: a schema can be visualized at the object
level, and then each object can be elaborated as needed to see
the precise details.

An example of a schema covering is given in Figure 1.
The schema on the left is a section of a large order schema.
There are two schemas Billing-Addr and Purchase Record on
the right corresponding to two business objects. Figure 1 also
shows the two parts of the Order schema that are covered by
Billing-Addr and Purchase Record respectively. The node with
label City is present in both the business objects. However for
the coverage to be semantically correct, only Billing-Addr must
cover it. If both the business objects are allowed to cover the
node City, then an ambiguity will occur in deciding whether it
corresponds to the city where a customer stays, or the city from
where an item is purchased. There may be multiple business
objects competing to cover the same or overlapping parts of
the source/target schema. Only the best alternatives can be
chosen in such a scenario.

The framework for applying schema covering in an end-to-
end transformation involves three major steps, the second one
being schema covering itself, the topic of this paper.

a) Building the Concept Repository: Employees, prod-
ucts, articles, and so on, that represent single business objects
are examples of concepts. They are higher-level abstractions
than schemas, and as such, are closer to the understanding
of the mapping designer. These concepts can be either de-
fined manually, or automatically extracted from a source that
provides standardized schemas, such as Freebase or OAGI.
Once created, they are stored in the metadata repository of the
system, ready to be used in mappings. The metadata repository
can also hold mappings among the concepts themselves.

b) Schema Covering: Given the repository, schema cov-
ering finds the relevant concepts and the mappings from the
source and the target schema separately to these concepts.

c) Flow of Mappings: Using the existing mappings
among the concepts in the repository, a mapping path from
the concepts that cover the source to the concepts that cover
the target can be computed. From this mapping path, an end
to end source to target mapping can be composed.

These three steps together complete the picture of a simple,
reusable, and modular approach to defining transformations.
They will be incorporated in the new extension of Clio, a
schema mapping tool designed at IBM Almaden [13][14]. In
this paper our focus is only on schema covering. To learn more
details about the other two steps and the current progress on
them in the Clio context, the reader is encouraged to see [1].

Our specific contributions are as follows:

o We formulate the problem of schema covering, funda-

mental for enabling reuse.

o We show the schema covering problem is NP complete.

+ We develop efficient algorithms for schema covering, and

analyze and establish their theoretical performance guar-

antees. We give experimental evidence that algorithms

should work very well in practice.

To the best of our knowledge, schema covering has not been
studied before. We start with an overview of the different steps
involved in schema covering, which will give a road map for
the rest of the paper.

II. PRELIMINARIES AND AN OVERVIEW OF SCHEMA
COVERING

We consider schemas as rooted directed graphs G = (V, E),
where V is a set of nodes and E is a set of directed
edges (see Figure 1). For XML schemas, nodes correspond
to complex elements or attributes. For relational schemas,
nodes represent relational tables and attribute columns. Edges
represent structural relationships (such as parent-child links)
and value links (such as foreign key constraints). Each vertex
v has a label, denoted label(v), with the name of the element,
table or attribute it represents. While relational schemas have a
simple tree-structure, with no undirected cycle, XML schemas
might exhibit complex graphical structure due to edge sharing.
If a schema graph does not contain any directed cycle, it
is called a Directed Acyclic Graph (DAG) or nonrecursive
schema. Otherwise the schema graph is recursive. We assume
that in all schema graphs, there is a unique root node r¢ with
indegree 0, from which every vertex in the graph is reachable.

There are several challenges that need to be addressed for
schema covering. We discuss them in detail now.

1) Filtering: First, the repository might contain a large
number of concepts, many of which are not relevant to a
given schema. Trying to match each of them individually
is prohibitively time consuming. Therefore as a very first
step, we need to design efficient filtering methods that choose
a subcollection of the concepts for further processing. The
chosen concepts should be the potential candidates for final
coverage. Ideally, the running time of filtering should only
depend on the size of the chosen subcollection, independent
of the repository size.

2) Alignment Score Computation: Next, for each concept
chosen by the filtering step, we need to identify all the
subgraphs of the schema that can be covered by the concept.
The number of different possible subgraphs of a schema is
exponential in the number of nodes of the corresponding
schema graph. So we cannot use schema matching as a black
box and try to match each of the possible subgraphs with a
concept. The schemas can have arbitrary structural complexity.
Most schema matching algorithms do not handle recursive
schemas [3]. COMA [4] and CUPID [10] can handle cycles
to some extent, but in the worst case COMA might require
exponential time, since it explores every possible path to
a node from the root. CUPID uses a bottom-up approach,
building the match result from the leaves. In the context of
schema covering, a concept might match a schema at any
place and even can match multiple number of times. It may not
always start matching from the leaves, and thus the technique
of CUPID cannot be applied here. Similar difficulties apply to
using COMA, since COMA considers paths from the root,
whereas in schema covering any sub-path of the schema
can be matched. We need a fast algorithm that, given a



concept, identifies a small number of subgraphs matchable to
the concept. It should also compute a score, which we call
alignment score, for each computed subgraph, showing how
well the concept can be aligned to that subgraph. We require
the subgraphs computed be connected, to ensure that a concept
covers a coherent region in the schema. More details about the
requirements can be found in Section IV.

3) Schema Covering: The final step is the schema covering.
Given a collection of concepts, the subgraphs they cover and
the respective alignment scores, schema covering computes
the cover, which comprises a chosen set of concepts and the
subgraphs they match. The subgraphs covered by the concepts
might overlap. To control ambiguity, nodes should not be
covered more than a given number of times. The optimum
cover maximizes the total alignment score of the selected
concept-subgraph pairs, maintaining the overlap constraint.

In the rest of the paper, we design and analyze algorithms
for each of these three steps. For clarity we start the presen-
tation with the schema covering problem (Section III), where
we assume that all the alignment scores are known. Next, in
Section IV, we describe the alignment score computation step,
followed by the filtering step in Section V. We conclude with
performance analysis on several real world schemas using a
repository of objects created with relatively smaller schemas
from different business domains.

III. SCHEMA COVERING

In this section, we begin with a description of a specific
constraint, called the ambiguity constraint, that is essential
for schema covering. We then formally define the schema
covering problem and establish its NP-Hardness. We next
develop a greedy approximation algorithm that we prove
will always give results close to optimum. We show that
for a special case, where the schema is a tree and with
certain ambiguity constraints, there is an exact algorithm using
dynamic programming.

A. Ambiguity Constraint

Consider the schema of Figure 1. There may be different
concepts similar to the subtree rooted at Address. The ob-
jective of schema covering is to choose concepts such that
the total alignment score is maximized. Without additional
constraints, suppose all the different concepts related to the
subtree rooted at Address, are allowed to cover it. Then each
of these concepts contribute a positive alignment score to the
objective function. Thus the total alignment score grows while
the quality of the coverage does not improve. Ideally there
should not be any ambiguity in deciding which concepts are
used to cover a particular portion of the input schema. Note
that, if ambiguity is not controlled, in the worst case, coverage
might retrieve the entire set of concepts.

To control overlaps, we introduce the ambiguity constraint.
A solution of coverage has a node ambiguity constraint of ),
if each node of the schema can be covered at most \ times
by the chosen concepts. In some cases, having A = 1 (strict
ambiguity constraint) may be too restrictive. Consider again
the same example. There may be a Billing-Address concept

that covers Address. Thus even though there is a Shipping-
Address concept, which contains exactly the same subschema
for Address, that will be dropped from consideration. If
we have allowed Address to be covered twice or the edge
(Ship-To, Address) once, this effect might have been removed.
A more expressive constraint is then the edge ambiguity, where
instead of having an ambiguity constraint on nodes, we require
an edge to be covered at most A times.

The subtree rooted at Address is commonly seen in many
schemas and likely to have many coverage options. Therefore
for portions in schema like Address, it is useful to have a
stricter ambiguity constraint (with A smaller). However it may
be useful to relax the ambiguity constraint for the infrequent
nodes and edges and explore the different matching possi-
bilities. Our proposed greedy algorithm can handle variable
ambiguity.

B. Schema Covering Problem

Now we are ready to provide formal definitions for schema
covering.

Definition 1: We are given a schema graph G = (V, E), an
ambiguity requirement A, for all v € V (for edge ambiguity,
each edge e € E will have edge-ambiguity constraint \.), a
repository C of s concepts, a collection H of ¢ subgraphs, and
an s x t array A of alignment scores, with A(H, C') computed
for each H € 'H and C € C. A schema covering is a subset
S = {(H;,C;)}i=1...r, such that the node (edge, for edge-
ambiguity constraint) v € V appears at most A, times in
{Hy,Hs,...,H,} and the total sum of the alignment scores,
that is, >, ,,. A(H, Cy) is maximized.

The next theorem proves that schema covering is NP-
complete, using an easy reduction from a variation of hyper-
graph matching.

Theorem 3.1: Schema covering is NP-Complete, if all H €
‘H have at least three nodes.

Proof: First of all, given a collection of concepts and
schema subgraph pairs along with the respective alignment
scores, it is easy to check whether they form a valid instance of
schema covering and whether the total alignment score sums
up to the specified value. So the problem clearly is in NP.

Now to show it is NP-hard, consider the following version of
hypergraph matching problem, hypergraph variable b match-
ing. We have a set of nodes V' and a collection of hyperedges
defined on the subsets of those nodes. The hyperedges have
size at least three. Each hyperedge has an associated weight
and each node v has a value b, € N. The goal is to obtain
a collection of hyperedges such that the total weight of the
chosen edges is maximized and each node v is covered at
most b, times. The problem is NP-complete, since a special
case of this problem is hypergraph b-matching, [8], which is
known to be NP-complete.

Given an instance of hypergraph variable b matching, create
a schema graph G = (V, F) on the same set of nodes. For
every hyperedge, add all the edges among the vertices of
the hyperedge. Create a repository with only one concept C.
The collection of subgraphs of schemas corresponds to all
the hyperedges and hence each of them are connected. An



alignment score between C' and a subgraph (a hyperedge) is
simply its weight. Set b, = \,. Now it is straight-forward to
see that there is a solution of schema covering of weight x
if and only if there is a solution for this hypergraph variable
b-matching problem with weight x. |

Known hypergraph b-matching algorithms [8][17] can be
used to design an algorithm for schema covering. However
the approximation guarantees of all these algorithms are poor.
For example, when b = 1, the best known algorithm only
guarantees that the solution found is within a factor of \/m
of the optimum.

Instead we propose a new greedy algorithm, called C-
Greedy, which is fast and gets a constant factor approximation,
which is much better than the \/m approximation guarantee
of hypergraph matching. The greedy algorithm relaxes the
ambiguity constraint by bounding the average ambiguity of
the elements.

C. C-Greedy Algorithm

For every pair (H, C') with H € H and C € C, we construct
a set S, where S comprises either all the nodes of H, if a
node ambiguity constraint is to be satisfied, or all the edges
of H, if an edge-ambiguity constraint is to be satisfied. We
define a weight W (S) for S with W (S) := A(H,C), and
a concept C(S) := C. Define also a “normalized weight”
W(S) := W(S)/|S|. The input to our C-Greedy algorithm
consists of these sets with their weights and concepts. There
may be multiple sets having different concepts but containing
identical elements. Their weights may be same or different. For
every element e in all these sets, an integer ). is specified,
indicating the number of times that element can be covered.
An element e is said to be saturated if in the existing solution,
it is covered at least A, times. The output of the C-Greedy
algorithm is a collection of sets 7, and the corresponding
schema covering solution is {5, C(S)}ser.

C-Greedy consists of the following steps:

o Arrange the sets in non-increasing order of W(S ).

« Consider the sets .S; in that ordering, and choose one if
and only if at least half of its elements are not already
saturated by the previously chosen sets.

o Return the collection 7 of chosen sets.

Now we analyze the approximation guarantee of C-Greedy.
We say that an algorithm is an (x,y) bi-criteria approximation
algorithm for the schema covering problem if the total align-
ment score is at least 1/x of the optimum total alignment
score, and the average number of times each node (or edge)
is covered is at most y. When A\, = 1 for all e, our C-Greedy
is a (2,2) bi-criteria approximation algorithm for the schema
covering problem, that is, its total alignment score is at least
one half of the optimum aggregated alignment score, and on
average each element is covered at most twice. For arbitrary
Ae values, if A\jax = maxc A, then C-Greedy guarantees a
bi-criteria approximation of (2Anax, 2Amax)-

1) Bi-Criteria Approximation for C-Greedy: We prove the
result when A, = 1 for all e. The proof for arbitrary values of
Ae 1s similar and omitted.

Lemma 3.2: The solution returned by C-Greedy when A\, =
1 for all e has an average ambiguity less than two.

Proof: Each of the sets S in the returned collection 7°
contributes at least [|S]/2] new elements, since otherwise the
set S wouldn’t have been chosen. Letting N denote the total
number of elements covered by the solution 7, we have
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Now let f. denote the frequency of the element e in 7,
that is, f. denotes how many times e is covered by the sets
in 7. Let f denote the average frequency of the elements in
T.Then f =3, fo/N =2 gcr|S|/N <2, by (D). |

The following lemma establishes the bound on z. If the
optimum solution is denoted by OPT and 7 is the obtained
solution, we try to charge or distribute the scores of the sets
in OPT to the scores of the sets in 7. In our charging
mechanism, if we can show that the scores of all the sets
in OPT can be distributed by raising the scores of each set
in 7 at most twice, this will imply that the total score of the
sets in 7 is at least one half of the optimum score.

Lemma 3.3: The solution returned by C-Greedy has a total
alignment score which is at least one half of the optimum total
alignment score.

Proof: List the members o; of OPT in non-increasing
order of W(o;). We charge OPT to 7 via the following
charging scheme:

e If 0; is included in 7, charge o; € OPT to itself.

o If 0; is not included, let 7 (0;) C 7 be the sets before o;
in the greedy order that are also included in 7. Charge
0; 0 S € T(0;) by |SNo;|[W(o;).

First we bound the total charge received by 7, by bounding
the charge received by each set S € 7. For a set o, € OPT
and S € T(0;), we have W(o;) < W(S), since S comes
before o; in the greedy order. Hence the charge on S € 7 is

> 18N0i|W(0;) <> [SNoi|W(S) < SV (S) = W(S),
1€OPT 1€OPT

where the last inequality follows from the fact that each
element of S is covered at most once by the sets in OPT.
Therefore the total charge received by 7 is at most W (7).

We next calculate how much of the total score of OPT is
charged by this scheme. The total charge from o; is

. W (0;
SIS N0 W(o) = |O(f’|/) Yo ISnoil > W(ai)/2,
5€T (04) 1 SeT(0s)

where the last inequality follows from the condition that at
least half of the elements of o; are covered by the S € T (0;).
Hence the total charge transferred from OPT is greater than
W(OPT)/2. Since the total charge received by 7 is no more
than W(7T'), we have W(7) > W(OPT)/2. |
These two lemmas imply the following theorem.
Theorem 3.4: C-Greedy is a (2, 2) bi-criteria approximation
algorithm for the schema covering problem.
Proof: From Lemma 3.2 the average ambiguity is at most
2, and from Lemma 3.3, the total score of the solution returned




is at least one half of the total score of the optimum solution.
|
This completes the analysis of C-Greedy.

D. Exact Coverage for Schema Tree with Strict Ambiguity
Constraint

C-Greedy guarantees an approximate solution that is close
to optimum. However, when the schema graph is a tree and
we require strict node or edge ambiguity, the schema covering
problem is no longer NP-hard. In this subsection, we develop
an exact polynomial-time solution for this special case. We
first consider the case of node ambiguity, where each node
is allowed to be covered at most once, and then show how
the result can be generalized for edge ambiguity, where an
edge can be covered at most once. Under the edge ambiguity
constraint, the number of times a node can be covered is equal
to one more than its outdegree, for non-root nodes, and is
equal to its outdegree, for the root node. In both of these
algorithms, we follow a bottom-up dynamic programming
approach, starting from the leaves. Each node’s level is its
height in the tree, where leaves have level 0.

1) Coverage with Strict Node Ambiguity: The alignment
score requires that the subgraphs H € H are each connected
(Section IV). Therefore, if H C G is covered by some C € C,
then H is a subtree, and except for one node, which we call
the root r of H, every node in V(H) has indegree 1. Define
OUT(H) as all the nodes outside H, reachable from V(H)
through a directed edge. The level of each node in OUT(H)
is less than the level of » € H. One possible solution for
schema covering, for the subtree rooted at r, might consist of
concepts to cover H and the subgraphs rooted at each node
in OUT(H). Let D(r) denote

{(H,C) | H e H,C e€C,H rooted at 7}.

For any node v, let Cover(v) denote the best coverage solution

for the subtree rooted at v, and let Score(v) denote the corre-

sponding alignment score. We have the following theorem.
Theorem 3.5: The Score() function satisfies

Score(r) = [A(H,C) + Z Score(u)].
uweOUT(H)

max

(H,C)eD(r)

If the pair H,C' achieves the maximum in this expression,
then Cover(r) = H U, cour ) Cover(u). If rg denotes
the root of the entire tree G, then Cover(rg), along with the
corresponding concepts, gives the optimum schema covering
solution, and Score(rg) is the optimum total alignment score.
Proof: Since each node can be covered only once,
Cover(r) is a feasible solution for schema covering that covers
the subtree rooted at r. If the optimum solution for the
subtree rooted at r is not Cover(r), then we can improve the
total alignment score and arrive at a contradiction, since we
consider all the feasible solutions for the subtree rooted at r
when computing Score(r). Hence Cover(r¢), with the corre-
sponding concepts, is the optimum solution, and Score(rq) is
the total alignment score. |
The optimum solution now can be computed easily using
dynamic programming. If we create a hash table to access the

entries in each D(r) in constant time, dynamic programming
will run in time O(|V(G)|Hmax ), Where Hyax is the maxi-
mum size of any H € H.

2) Coverage with Strict Edge Ambiguity: When ambiguity
constraints are placed on edges rather than vertices, the recur-
rence given by Theorem 3.5 does not hold. To obtain an exact
solution by dynamic programming, we need a trick, which we
call set splitting.

a) Set splitting: We know that each H is a subtree and
has a root r of indegree 0. Let d denote the outdegree of r,
and write the d children of r as ¢i,cg,...,cq. Create d sets
from H, namely Hy, H», ..., Hy, such that each H}, contains
exactly one child of r, namely ¢, for k € [d]. (Here [d]
denotes the set of integers {1,2,...,d}.) We call the edge
(r, cx) the root-edge of Hy. If (H,C) is a feasible subgraph-
concept pair, we also decompose C' into Cy,Cs, ..., Cy, such
that Cy contains those nodes of C' that are matched to Hy, for
¢ € [d] and, we update the alignment score for each (Hy, Cy)
pair accordingly. This is called set splitting. Set splitting and
score computation for each split set can be done in time linear
in |V(H)|, and can be calculated during the computation of
the alignment score. Once the set splitting is done, each Hy,
contains a root-edge.

b) Dynamic Programming: Call an edge (u,v) a leaf
edge if v is a leaf vertex. We define Cover(x,y) as the
optimum cover of a subtree with (x,y) as a root-edge, and
Score(z,y) denotes the corresponding alignment score. Let
D(xz,y) denote all the pairs (Hy, Cy) after set-splitting, such
that H, contains the edge (x,y) as the root edge and the
concept Cy can cover it. The list of such subtrees can be
accessed in O(1) time using a hash-table. When (z,y) is
a leaf edge, Cover(z,y) and Score(z,y) can be found by
simply checking D(x,y) and picking the one with maximum
alignment value. If D(z,y) is empty, Cover(z,y) is set to
empty and Score(z,y) becomes 0. We traverse the tree bottom
up. Assuming we have computed all the Cover(z,y) and
Score(x,y) values, where x is at level at most h — 1 for
some h, we next compute Cover(z,y) and Score(zx,y) values
for those x which are at level h, that is, higher up in the
tree. We define OUT(Hy) as all the edges having their higher
endpoint in H, and their lower endpoint outside of Hy, that
is, OUT(H,) := {(u,v)lu € Hy,v ¢ Hy,(u,v) € E(G)}.
We get the following theorem for the dynamic programming
recurrence, proof of which is similar to Theorem 3.5

Theorem 3.6: The Score() function satisfies

max

Score(r, ¢p) =
(H¢,Ce)eD(rcr)

[A(Hy, Cp)+ Z Score(u, v)].

(u,v)€OUT (Hy)

If the pair (H;, Cy,) maximizes Score(r,c¢) then
Cover(r,ce) = (He, Cy) U(u,’u)EOUTHZ Cover(u,v). If
rg denotes the root of the entire tree G' and cf,cj,...,cp
are the k children of rg, then Ule Cover(rg,c}), along
with the corresponding concepts, gives the optimum schema
. . k s .
covering solution, and )’ , Score(rg,c}) is the optimum
total alignment score.



IV. ALIGNMENT SCORE COMPUTATION

In this section, we describe how alignment scores for all the
required subgraph-concept pairs can be computed efficiently.
We first illustrate with an example, the requirements for align-
ment score. We then define it formally and give algorithms to
compute it.

A. Requirements and Definitions

We use the examples of schema and concepts from Figure 1,
to show the necessary requirements of alignment score. Ide-
ally the nodes labeled Bill-To, Name (child of Order-Person),
Address, Street, City, Country in the schema graph should
match the nodes labeled Billing-Addr, Name, Location, Street,
City, Country in Concept 1. To achieve this, first we need
approximate semantic matching that allows Bill-To to match
Billing-Addr, Address to match Location, and so on. We denote
the semantic matching score between two nodes vi,vs by
sim(v1, v2). The semantic matching score indicates how well
the label of node v; matches v,. Second, we should allow
some structural flexibility in the matching. In Concept 1, Name
appears as a child of Billing-Addr, but in the Order schema,
Name is not a child of Bill-To but a sibling. Third, we should
also ensure that all the nodes of a subgraph which is matched
to a concept are structurally close. The node Name that is a
child of Item is farther away from (Bill-To, Address, Street,
City, Country) than the node Name that is a child of Order-
Person. Hence alignment score computation should favor the
node Name that is a child of Order-Person. Fourth, we need
each subgraph that is matched to a concept to be maximal, that
is there is no bigger subgraph containing the computed one
and matching the given concept. Thus the subgraph {Address,
Street, City, Country} of the input schema is not a maximal
subgraph with respect to Concept 1. This property ensures that
the number of subgraphs to which a concept can be matched
is polynomially bounded. Finally, we want each subgraph to
be connected, to make the relationship among the nodes in
the subgraph clear. The number of extra nodes that cannot be
matched with the concept but are added to the subgraph to
ensure connectivity must be minimal. The subgraph {Order-
Person, Bill-To, Name (child of Order-Person), Address, Street,
City, Country} has all the above properties and can be matched
with Concept 1.

Definition 2: (Path Length) Given a directed graph G =
(V,E) and u,v € V, there is a path of length ¢ from u to v
if either v can be reached from u using ¢ directed edges, or
there is a common node a from which u and v can be reached
through directed edges, and the total number of edges used is
t. We will write len(u,v) = t.

Definition 3: (Alignment Score) We are given a schema
graph G = (V| E), an “flexibility” integer parameter F €
[[V(G)|—1], and a similarity threshold 6. An alignment score
is nonzero between a subgraph H C G and a concept C if
the following conditions hold:

o (PI) (Flexible Structural Matching) There exists a set
U C V(H) such that all the vertices of U are connected
in H by paths of length at most F, each node v € U is

matched to some node v € C with sim(u,v) > 6, and
there are nodes v’ € U,v' € C, with sim(u/,v") > 6,
such that len(u,u’) < F, and len(v,v") < 1. That is,
a path of length at most F can be matched to an edge
in the concept. We consider the node pairs (u,v) to be
contributing to the alignment score, and denote such pairs
by (u,v) — A.

o (PII) (Maximal Subgraph) There does not exist any
u € V(G) \ U such that there exists v’ € V(U)
with len(u,u’) < F and there are v,o’ € C with
len(v,v’) < 1, such that sim(u, v), sim(u’,v") > 6.

e (PIII) (Minimally Connected) H is connected, and
removing any vertex in V(H) \ V(U) disconnects H.

Under these conditions, the alignment score between H and

Cis
Z sim (u, v)
weV (H),veV(0)
(u,v)—A
Our goal is to efficiently compute, for every C, all the
different subgraphs H of G for which an alignment score can
be defined, and the corresponding score.

A(H,C)

B. Data Structures

Now we describe the data-structures needed for alignment
score computation. Some of these are built offline as a pre-
processing step. The rest are built online, when the schema
graph is presented for covering.

1) Offline Preprocessing. Inverted Index and Edge List:
Offline preprocessing involves building an inverted index data
structure for the repository and an edge-list for each concept.
This is done once when the concept repository is built,
and maintained incrementally with changes (additions and
deletions of concepts) in the repository. The edge-list contains
the directed edges in the concept graphs, indexed by a unique
concept-ID. The inverted index, on the other hand is indexed
by the node-labels of the concepts. For each node-label, it
stores the concept-IDs in which this node label occurs, and
its respective structural positions in the concept graphs. The
structural positions of a node include all the different possible
lengths, or depths, of the directed paths from the root to that
node.

Example 1: Making up some additional concepts that are
not shown, the partial inverted-index data structure for the
node labels in Concept 1 of Figure 1 might look like the
following:

Billing-Addr — (1,0), (
1

,4),(10,1), (10, 5)
Location — (1,1),(2,5), (3,

(2
5),(3,8)

:(7,0),(9,1)
(

Name — (1,1), (1,2)
Street — (1,2), (2,6), (10, 6)
City — (1,2), (2,6), (10,2)
Country — (1,2), (2,6), (10,2)

Zip-Code — (1,2), (2,6), (9,2)

The first line of the index indicates that node with label
Billing-Addr appears in concepts with ID 1,2,10 at depths
{0}, {4}, {1,5} respectively.



a) Tree and DAG: If the concept is a tree, there is a
unique directed path from the root to any node, and thus each
node has a single depth value, which can be computed in
O(]V']) time by tree traversal. However, when the concept is a
DAG, there may be multiple directed paths of different lengths
from the root to a particular node. We call a node u as parent
of v, u = parent(v), if there is a directed edge from u to v in
the graph. Since a DAG does not contain any directed cycle,
if u = parent(v), v # parent(u). Using this, we can define
the set of depths, Depth(u) of a node w as follows: the root
r of the concept DAG has Depth(r) = {0}, and for other u,
Depth(u) = U,—parent () PePth(v) + 1, where for a set S,
S+ 1 denotes {w+1|w e S}.

The depth values can be computed by performing a topo-
logical sort of the DAG and then using the above recursion on
nodes in a topologically sorted order. Recall that a topological
sorting of a directed graph G = (V, E) is a linear ordering of
all vertices in V' such that if G contains an edge (u,v), then
u appears before v in the ordering. Such an ordering exists
if and only if the graph does not contain any directed cycle.
Computing the depth values in a topologically sorted order
ensures that all the depth values of all the parents of a node are
computed before that node. The running time for computing
depth values is O(|V'|0+| E|), where ¢ is the maximum number
of different depth values of a vertex.

b) Recursive Schema: However if the schema graph has
directed cycles, we cannot apply this procedure. Instead, we
maintain a separate depth list for each node in the concept
graph. We scan the edge list of the concept and whenever we
encounter a directed edge (u,v), update Depth(v) by adding
the elements Depth(u) + 1 that it doesn’t contain. We repeat
this procedure n times, and use the resulting Depth() sets.
Since the distance can be at most n, all the depth values are
correctly computed. The time complexity of the algorithm is
O(V|E]5).

Once the depth values for each concept node are calculated,
the inverted-index can be created easily as in Example 1.

2) Online Preprocessing. MF Computation: To compute
alignment scores, we build a collection of arrays holding
tabulations of similarity scores; this collection is called MF,
since it depends on the structural flexibility parameter F,

Let r¢ denote the unique root of G and Depth(G) denote
the maximum depth value of any vertex v € V(G). Clearly
Depth(G) < |V(G)| — 1.

The structure M¥ includes an array M¢[][] for each concept
C € C in the repository that has at least one matching node in
the input schema graph. (The concepts that have no matching
node are thereafter ignored for this input graph.) The array
Mc|][] for C has Depth(C') rows and Depth(G)+F columns;
a cell M¢[t][r] includes a numerical similarity entry, a node
pair, and a subarray of F entries, as described next.

Let a node v € V(G) be at depth s in G. Using the
inverted index INV, finding the nodes in all the concepts
that match v and retrieving their depth information can be
done easily as follows: for the node v, we consider its label,
and any prefix, suffix and n-grams (for approximate match)
and consult a thesaurus to obtain the related labels. For each

Source Concept 1 Normalized Source Concept 2 Normalized
Node Labels|Node Labels|Similarity Score| [ Node Labels| Node Labels |Similarity Score

Bill-To  [Billing-Addr 0.9 Order Purchase-Record 0.3

Name Name 1.0 Order-Person |Purchase-Record 0.1
Address Location 0.9 City City 1.0

Street Street 1.0 Name Item-Name 0.5

City City 1.0 Item Item-Name 0.5
Country Country 1.0 OrderID Order-ID 1.0

Fig. 2.  For each source schema node, table lists the nodes of concept 1

and 2 which are retrieved during matrix computation and the corresponding
similarity value.

0.9 109 0.3[x]j0.4 (0.1
1.0 {29 (1.9 1.0 (1.0 [1.0[x]|1.0[x]
30 [3.0 1.0[x]|1.0
Fig. 3. The two matrices for Concept 1 and 2 with F = 2

of these labels, we retrieve all the concept nodes having
those labels using INV, together with their depth values. If
a node u € C at depth ¢ is one such node, then we update
Mc[t][s] +=sim(u, v). (Initially all array entries are zero.)
However, since we want to allow structural flexibility, we also
update with M¢[t][r] +=sim(u,v) for r = s,s +1,...,s +
F —1. The cell M¢[t][r] is modified, because we allow v to
shift from level s to r, or » — s levels. To keep track of
the shifted level of v at which sim(u,v) contributes to the
aggregated similarity in a cell, the M¢[t][r] data structure
also includes a shift subarray with F entries, updated by
Mc[t][r][r—s] +=sim(u, v), forr = s,s+1,...,s+F —1. The
cell M¢[t][r] also stores the pair (u,v). The same processing
is carried over for each visited node in G. The M* structure
thus stores in a condensed way all the matching node-pairs
between a source schema and a concept, and the different
structural positions of these nodes where they can be matched.

Claim 4.1: If for u,v’ € V(G) and v,v" € C, it holds
that sim(u,v) > 0, sim(u/,v’) > 0, len(u,u’) < F, and
len(v, v") < 1, then there are cells M¢[i][j] and Mc[i+1][j
1] of M that contain the pairs (u,v) and (u',v’).

The proof is easy and is left to the reader. This is an essential
property, which helps in alighment score computation. Not all
of the features of the MY data structure are required for the
alignment score computation. The shift subarray, for example,
is maintained to facilitate filtering, which we describe in the
next section.

Example 2: Consider the source schema and Concept 1 of
Figure 1. The depth of the concept nodes that can be matched
are retrieved from the inverted index data-structure shown in
Example 1. The created matrix for F = 2 is shown in Figure
3. Similarity values for various node pairs are shown in Figure
fig:matrix1. Starting the count from 0, consider row=1 of the
above matrix. Name appears at depth 2, 3 in the source schema
and at depth 1 at the concept. Therefore the similarity value
sim(Name,Name) = 1 is added to matrix cells M;[1][2]
and M;[1][3], and once again to M;[1][3] and M;[1][4]. At
cell M;[1][2], the similarity value of (Name,Name) is added
to M;[1][2][0], at M;[1][3] it is added to both M;[1][3][0]
and M;[1][3][1], and at M;y[1][4] it is added to M [1][4][1].
Similarly, the similarity value for (Address, Location) is added



at M7[1][3] and M;[1][4], and the shift arrays are updated
as well. The F value of 2 allows Name and Address, which
are at different depths in the source schema, to match Name
and Location respectively in Concept 1 at M;[1][3]. The cell
M [1][3] will also store (Name,Name), (Address,Location) and
a pointer to the corresponding nodes in the source and the
concept.

C. Algorithm and Analysis

Now, for a given concept C, we describe the algorithm to
compute all the maximal subgraphs that can have nonzero
alignment score with C. Along with each step of the algorithm,
the corresponding correctness analysis is described briefly.
Details are omitted, due to space constraints.

Initialization: create an empty graph X on the same set
of nodes as G. For each node u € V(G), initialize m[u] =
0,list[u] = 0. Here m[u] will contain the similarity score
involving u, and list[u] will contain the nodes of C' matched
to it.

Step 1: Obtain pairs that contribute to alignment score.
Check each pair of entries M¢[i][j] and Mc[i + 1][j + 1]
that are nonzero, to identify vertices wu,u’,v,v’ such that
sim(u,v),sim(u’,v") > 6, len(u,v’) < F, and len(v,v") < 1.
By Claim 4.1, we can identify all such nodes correctly in
this step. Update m[u], m[u'], list[u], list[u'] accordingly, that
is, m[u]+=sim(u,v), list[u] = list[u]|J{v}, and similarly
for . Add the edge (u,u’) in E(X). After this step, we
have correctly identified all the vertices that contribute to the
alignment score.

Step 2: Find maximal subgraphs. Find the maximal con-
nected components Y7,...,Y, of X with more than a single
vertex. Each Y; corresponds to a maximal subgraph to which
C can be matched. If some Y; is not a maximal subgraph,
then there exists a node u outside Y; that has a path of length
at most F' to some node v’ € V(Y;), and u, v’ matches with
v,v" € C, which are distance 1 apart. But then the edge (u, u)
will be added to F(X) and thus Y; is not a maximal subgraph,
giving a contradiction.

Step 3: Obtain alignment score. For each Y;, for i € [¢], the
alignment score is A = }_ .y m[u]. This is correct, since
all the nodes in Y; contribute towards the alignment score and
mu] stores for each contributing node its similarity score with
the nodes in C'. The set |J list[u] gives the nodes in C' to
which Y; is matched.

Step 4: Find the connected subgraphs. The nodes in Y; may
not be connected in G. To satisfy the connectedness property,
by adding a minimum number of extra vertices, we do the
following: Consider each Y, separately, obtain the subgraph
induced by Y; in G and find the connected components
Ry, ..., Ry of it. Shrink each component R;, ¢ € [k], in G
and obtain a minimum spanning tree on these shrunk vertices.
Since a tree spanning R;’s is obtained, removing any node
from the tree will disconnect at least one R;. The vertices
inside each R; are connected, and so the overall subgraph
H obtained by expanding each R; in the computed tree is
connected. Thus we get A(H,C) = A.

u€eyY;

Order

Order-Person

Bill-To Name

Address

Value

Name

Street City Country

Street City Country

Fig. 4. Two subgraphs of the source schema for which an alignment score
is defined for concept 1 and 2 respectively.

Example 3: Figure 4 shows two subgraphs of the source
(Figure 1) over which alignment scores are defined for Con-
cept 1 and Concept 2 (Figure 1). Note that, the subgraph
covered by Concept 2 contains the wrong node labeled Name.
The alignment scores are respectively 5.8 and 2.4.

It is important to note that as with schema matching
algorithms, our alignment score computation might not al-
ways return the right transformation automatically. However,
because of its modular approach, users can easily view the
concept that covers a particular subgraph, and expand and
correct the matching as required. Except step 1, all the steps
run in O(|V(G)| + |E(G)|) time. If the maximum number
of elements stored in any cell of M¢([][] is k, then the
time required for step 1 is O(Depth(C)(Depth(G) + F)k?).
Generally both k and Depth(C) are quite small and thus the
computation is fast.

V. FILTERING

In this section we describe the semantic and structural
filtering used to reduce the search space of possible matches
between concepts and subgraphs of the input schema. We
use the MY data-structure defined in the previous section, for
filtering as well. A filtering method is correct, if it does not
eliminate any concept that could have been useful later. We
also establish the correctness of our filtering strategy in this
section.

A. Semantic Filtering

The semantic score for a concept C' is simply the sum of
the sim values over all its nodes. This score can be readily
computed using M¢[][] as

semantic[C] = % Z Meli][5]

If semantic[C] < 0, where ¢ is the threshold on the
alignment score, C' is not considered further, since (as it is easy
to show) if semantic[C] < §, there cannot exist any subgraph
H of G such that A(H,C) > . The reason for dividing by
F is that the sim() value for each pair of nodes is added in F
different cells in M. Computing the semantic score for each
matrix M¢ requires O(Depth(C') x (Depth(G) 4+ F)) time.

Example 4: The semantic score for Concept 1 computed
from the matrix in Figure 3 is 6.8.

Item Order-ID'




B. Structural Filtering

A concept might have nodes that are semantically similar
with the input schema, but they may be structurally scattered
in the input schema graph. Such a concept is not useful
for schema covering and has low alignment score with any
subgraph of the schema graph. But semantic filtering alone
cannot remove it and we need a filtering strategy that considers
structural features.

Structural filtering first partitions the rows of matrix M¢|]]]
to form submatrices based on the position of the nonzero val-
ues in the matrix cells. Then, for each submatrix, it computes
a structural score and returns the maximum.

1) Matrix Partitioning: Suppose in two consecutive rows, ¢
and 7 + 1, there is no index j such that the cells M¢[i][j] and
Mc|i+1][j + 1] (2-diagonal) both have nonzero entries. Then
from Claim 4.1 of the previous section, no subgraph H of G,
for which we have A(H, C) > 4, can contain vertices mapped
to both the rows. Therefore, we initially start with the first row
in partition Py, and whenever we encounter rows ¢,% + 1 with
the above characteristic, we end the current partition at row
1 and initiate a new partition from row ¢ 4 1. Each partition
corresponds to the submatrix over which the structural score
is computed.

Example 5: Consider the matrix computed for concept 2
in Figure 3. The cells which are empty or have a [x] mark,
have zero 2-diagonal value. Every consecutive rows have some
non-zero 2-diagonals and thus the entire matrix forms a single
partition F.

2) Partition Processing: For each partition of rows, the
algorithm computes a structural score, and if the maximum
of all these structural scores is below d, then C is discarded.
For correctness, we want to show that if the maximum of the
structural scores of all the partitions is below &, then for every
subgraph H of G, A(H,C) < ¢. Since we have already shown
that any such subgraph H cannot contain nodes from multiple
partitions, we can concentrate on finding the structural score
for each partition separately. Suppose we are considering the
partition Py containing rows 0 to £ — 1. The structural score
for Py, denoted by structural[Fp], is initialized to 0. While
traversing the rows left to right, if we are at cell M¢[i][j],
then the following two cases can happen:

Case 1: Mc[i][j] = 0 or the value of both the cells
Mecli —1][j — 1] and M¢c[i + 1][j + 1] are 0.

Here it follows from Claim 4.1 that Mc[i][j] does not
contain any node that contributes to some alignment score.
Hence, we can ignore M¢[i][j] and this step is correct.

Case 2: Mc[i|[j] > O and the value of at least one of
Mcli—1][j — 1] and M¢[i+ 1][j + 1] is greater than zero.

Here Mc[i][j] has a nonzero 2-diagonal value. Let
Mc[i][§'], with j < j, be the last cell before M¢[i][j] whose
2-diagonal value is non-zero. That is, M¢[i][j'] has a nonzero
2-diagonal value. For every M¢[i][j"] with j/ < j” < j, the
2-diagonal value is 0, and M [i][j] has a nonzero 2-diagonal
value. We update with

min(j—j’—1,F —1)

D

y=0

structural[ Pp] += Mci][5][y]-

The reasoning is as follows. If u € V(G),v € C contributes
sim(u, v) to M¢[i][4][r], for some r with 0 < r < F —1, then
if r > j — j', sim(u,v) also contributes to M¢[é][j']. Thus
its contribution to structural[Pp| will come from M¢[i][j'],
or from a cell considered before that. We therefore do not
need to consider its value while processing M¢|[i][j]. Hence,
if uw € Py and sim(u,v) contributes to some alignment score,
then sim(u, v) is added to structural[Py]. So, for all subgraphs
H which have vertices mapped to Py, their alignment scores
with C' is no more than structural[Fp].
Thus if the final structural score of M¢,

structural[C] = ax structural[P;],
_l_

is below 0, then C cannot be matched with any subgraph of
G with alignment score at least 6. Hence C' can be eliminated
for further consideration. The time for computing the structural
score for each matrix M¢ is O(Depth(C)(Depth(G)+F)F).

Example 6: Consider the matrix of Concept 2 in Figure 3.
Below is the expanded matrix with each entry of the shift

[Tt}

subarray separated by “,

0.3,0 | 0.1,03 | 0,0.1 | 0,0 0,0 0,0
0,0 0,0 1.0,0 | 0,1.0 | 1.0,0 | 0,1.0
0,0 0,0 1.0,0 | 0,1.0 | 0,0 0,0

After putting Os in the cells which have 2-diagonal value 0,
we have,

0,0 | 0.1,0.3 | 0,0.1 | 0,0 | 0,0 0,0
0,0 0,0 1.00 | 0,1.0 | 0,0 | 0,0
0,0 0,0 0,0 |0,1.0 0,000

Contribution to structural[Py] from each cell is tabulated
below:

0[{04] O 0100
0| 0 |10] O |O]O
0| O 0 1000

Hence the structural score is 2.4, whereas the semantic score
is 3.4.

VI. PERFORMANCE EVALUATION

In this section we evaluate the performance of our schema
covering algorithm on real business schemas and schemas
generated synthetically from them following several modi-
fications. The goal is to investigate the impact of different
components and constraints of the schema covering algorithm
on the quality of the final result. We study the effectiveness
of the filtering step, the impact of structural flexibility on
matching, the effect of different ambiguity constraints, and
how the structure of schema graph affects the result quality.

A. Experimental Set-up

1) Input Schemas: For our evaluations, we used five dif-
ferent real world schemas, two from SAP and one each from
ORACLE, PeopleSoft and BSVN. For short, these are referred
as S1, S2, Ol, P1 and B1 respectively. The following Table I
summarizes the structural characteristics of these schemas.

Here the average indegree and outdegree are computed with
respect to internal nodes only. An average indegree of at least
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Fig. 5. Distribution of size and height of concepts in the repository.
[ Schema [ S1 [ S2 [ 01 [ P1 [ B1 ]

# Nodes 175 144 456 252 154

# Internal Nodes/Leaves | 25/150 16/128 38/418 | 28/224 14/140
Average Indegree 2.9 2 5.9 2.6 0.93
Average Outdegree 8.9 10 16.9 10.6 10.9

Depth 3 3 12 10 4
Directed Cycle No No Yes No No
TABLE I

CHARACTERISTICS OF TEST-SCHEMA

one indicates shared components. Schema B1 is a tree; S1, S2
and P1 are DAG, whereas O1 is recursive.

From each of these 5 schemas, we generated several syn-
thetic schemas by following one or more of the following
modifying operations:

o Edge Insert (EI): Two non-adjacent nodes are selected
uniformly at random and a directed edge is added be-
tween them. The edge addition might create directed or
undirected cycles, and can increase the number of depth
values in which a node occurs.

e Move Node (MN): A node that is not a root and has at
least one sibling is chosen uniformly at random. The edge
connecting the node to one of its parents is deleted, and
an edge is inserted to make the sibling the node’s new
parent. This operation increases degree and depth.

e Delete Subtree (DS): If there exists a subtree rooted at r,
then select any node of the subtree uniformly at random
and delete the entire subtree below it.

e Change Level (CL): An edge is selected uniformly at
random. Let the edge be between w and v. Then a
dummy node w is created with a label formed by the
concatenation of the labels of u and v. The edge (u,v)
is deleted and edges (u,w) and (w,v) are added. As a
result, the depth of v increases.

2) Concept Repository: We created a concept repository
of various business objects, with 292 concepts from 30 dif-
ferent public sources. Examples are: Account, Billing-Details,
Iltem-Delivery-Schedule, Employee-Job, Customer-BankData,
Order-Sales-Credit-Interface, and so on. Among these 292
concepts, there are 56 SAP schemas, 22 Oracle schemas, 14
People-Soft schemas and 15 BSVN schemas. Each of these
concepts are then standardized by removing any domain-
specific prefix or recurring prefix inherited from the root.
For example, an initial SAP object with root label SAP-
OrderLineltem is converted into OrderLineltem. The elements
with label SAP-OrderLinelD and OrderLineCustomerGroup oc-
curring under the root element SAP-OrderLine is converted
into ID and CustomerGroup respectively. The standardization

is done automatically at the time of inverted index creation and
helps to remove any domain specific bias in the labeling. The
size and height distribution of all the concepts in the repository
are shown in Figure 5. As can be seen from the figure, a
majority of the concepts have small size (no more than fifteen)
and height. There are few larger concepts as well. There are
some concepts like Address which is very popular among dif-
ferent domains (BVSN-MR-BILL-ADDR, BVSN-MR-SHIP-
ADDR, Jdbctest-Address, MetaSolv-Address, RMA-Address,
SAP-OrderLineContacts etc.) and have large number of shared
elements. On the other hand, there are some concepts like Tax
Exempt (MetaSolv-TaxExempt) which is specific to a domain.
However overall most of these concepts are on related business
concepts and exhibit a good number of common attributes
among themselves.

Since the repository is quite big, to properly evaluate the
covering quality, we explicitly broke each of the test-schemas
into several smaller components. For example, schema S1
that has 175 nodes and contains 25 complex elements is
broken into 13 concepts. The concepts created from each of
the test-schema are named Concept-S1, Concept-S2, Concept-
01, Concept-P1, and Concept-B1, respectively. The number
of common elements of the concepts obtained from each test
schema depends on the number of shared elements of the
original test schemas. We inserted these created concepts in
the repository. To distinguish the new repository from the
original one, it is referred as the modified repository. The
hope is that our covering algorithm will detect the pieces of
the test-schemas in the modified repository, even when the
test-schemas have evolved through the modifications specified
earlier.

3) Measure for Decomposition Quality: To evaluate the
quality of our decomposition in the modified repository, we
compared the real cover R (found manually) between the
created concepts and the several variations of the test-schemas,
and the cover P found by the decomposition algorithm. Let 1
denote the correct matches in the cover, that is, I = RN P,
and let F' denote the false matches, or the elements which
are covered but have no matching elements in the concept
(F = P\ R). Let M denote the elements that have matches
but are not covered, that is M = R\ P. We used the quality
measures previously employed by many other researchers for
match studies [9][12][5], namely, precision, which is |I|/|P|,
and recall, which is |I|/|R|. It is difficult to determine R
manually for the original repository due to its size. Therefore,
in this case, we used precision and recall to detect the quality
of the chosen concepts. That is, for each detected concept,
we estimated the precision and recall value and computed the
average.

B. Results on the Modified Repository

1) Effect of graph structure and modifying operations:
Figure 6 (i),(ii),(iii),(iv),(v) show the values of precision and
recall for the different variations of S1, S2, O1, P1 and B1
respectively. The greedy algorithm for coverage with strict
ambiguity constraint and F' = 2 is used to obtain the decompo-
sition. Consider Figure 6(i). The first graph indicates that when
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Fig. 6. Results of Schema Decomposition

S1 is presented for covering in the modified repository, all
the concepts in Concept-S1 are detected with correct matches
among the elements. In this case precision and recall are 100%.
The same value is observed across all five schemas in this
case. The next four plots are obtained by modifying S1 by 10
random EI, 10 random MN, 5 random DT, and 10 random CL
operations respectively. In the case of MN and CL, precision
and recall are mostly above 90% for all five schemas. For DT
and EI, precision and recall are both 100% for all of them. For
B1, which is a tree, none of the operations has any effect on
its precision and recall values. Figure 6(viii) shows the effect
of applying these operations at random 20 times, for F = 2.
We ran the experiment five times and computed the average
precision and recall over the runs. They are both close to 90%
in all the schemas.

2) Effect of structural flexibility: Figure 6(vi) and (vii)
show the effect of varying F' = 1,2,3, when S1 is modified
by 10 random CL and MN operations respectively. As F
increases, recall improves for CL at the cost of precision. For
MN, precision remains unaffected but recall improves. As we
observed, the value of precision is affected by CL, due to the
insertion of dummy nodes with similar labels.

3) Effect of ambiguity constraint: Figure 6(ix) shows the
effect of varying the ambiguity values to 1,2,3 after S1 has
undergone 20 random modifications. As can be seen, recall
starts improving with looser ambiguity constraint. There is
a little drop of precision, which can be recovered, once the
ambiguity is removed manually. This is the trend we observed
for the rest of the test schemas as well.

Note that a schema can evolve in many different ways over
time, semantically and structurally. We selected to implement
modifications that we believe are general enough to capture
a large number of these structural variations. However since
semantic matching is not the focus of our work, we have not
tried to change the semantic labels. High value of precision and
recall in all the cases indicate, that even if there are semantic
variations, our schema decomposition algorithm coupled with
good semantic matcher (see [15] for a survey) will perform

substantially well. Our current implementation of schema
decomposition only supports some basic semantic matching
based on n-grams, prefix, suffix, and so on.

C. Results on the Original Repository

We ran experiments on the original repository. We main-
tained the semantic and structural threshold with the low value
of 3, since most of the concepts have small size.

1) Effectiveness of filtering and bias towards same domain:
The number of concepts that passed the semantic and structural
filtering are given in Figure 6(xi). As can be seen, the
semantic filter eliminates a large portion of the concepts in
the repository. However more than a tenth of the concepts
passed by semantic filtering are removed by structural filtering.
This shows the effectiveness of using structural filtering on
top of semantic filtering. Even after semantic filtering, for
any given test schema, concepts from other domains persist
along with the concepts from the same domain. Most of
these other domain concepts are removed by the structural
filtering. For S2, after the final filtering step, all the remaining
concepts are SAP concepts. For S1, there are few concepts
from other domains containing some very popular attributes
like ADDRESS, NAME, CONTACT, and so on. The remaining
concepts are mostly from the same domain. For example, four
BSVN schemas named BVSN-BV-USER-PROFILE, BVSN-
MR-DESTINATIONS, BVSN-MR-BILL-ADDR and BVSN-
MR-ACCT-PROFILE containing attributes including NAME,
ADDRESS, CITY, ZIPCODE, and COUNTRY pass the struc-
tural filtering step. They match with the address portion
of S1 containing a complex element SAP4-OrderSoldTolnfo
with attributes AddressLine, CustomerName, City, Country,
and PostalCode. However none of these BSVN schemas are
retrieved in the final decomposition. In the final decomposi-
tion, the complex element SAP4-OrderSoldTolnfo is covered
by SAP-OrderLineContacts, which although is an approximate
match, is qualitatively a better one than any of the BSVN
schemas. In another fragment of S1, it contains information
about the date an item is sold in attributes DATEQUALIFIER,



DATE and TIME. Although the filtering step qualifies schemas
like DeliverySchedule from a different domain, the final result
matches a SAP concept called SAP-OrderLineDateData to it.
In fact this same trend is observed for the other three schemas.
Though most of the concepts in the repository are on related
concepts using similar attribute names, the result indicates
that their structural layout must be quite different. Thus when
overall coverage is concerned, schema covering always favors
concepts from the same domain.

2) Goodness of the retrieved concepts: The average preci-
sion and recall values of the concepts discovered are shown
in Figure 6 (x). The value of recall in all the cases are around
85-90%, precision is between 78-88%. The somewhat low
values of precision and recall are mainly due to our simple
semantic matching strategy. When the retrieved concepts are
small enough, the automated schema covering can be used as
an advisor. The wrong matchings can be manually corrected,
improving the result. For all the 5 schemas, around 40% of
the nodes are covered by the obtained concepts in the original
repository.

VII. RELATED WORK

In Information Integration, the role of automatic schema
matching is to suggest candidate matches/correspondences be-
tween the elements of two schemas. For a comprehensive com-
pilation of approaches see the survey of Rahm and Bernstein
[15]. Some of the different systems that have been developed
for matching include SemlInt, CUPID, SF, LSD, GLUE, DIKE,
COMA, TranScm, Momis etc. It has also been recognized that
robustness can be further improved if outcomes from several
schema matchers are combined. Marie et al. [11] for example
investigates ways to estimate the uncertainty of matching from
schema matcher ensembles. There is also a large body of work
that explores semantic matchings between ontologies, such as
[5] and [6].

Related to our goal of better reuse, Madhavan et al. [9],
leverage a corpus of schemas and mappings to improve
the results of the schema matching task. In particular, they
augment the evidence about elements in the schemas being
matched, and use statistics about schemas and their elements
to infer domain constraints.

However, the reuse of matching has been limited to element
to element match and not on larger matching concepts. Most
of these works can only handle small and structurally simple
schema and define direct schema matching from source to
target. Finally recent works by Rahm et al. [16] introduces
an interesting fragment based matching approach for handling
large schemas. In their work, source and target are divided into
several fragments. Each pair of source and target fragments are
then compared to detect the best matching pairs. However their
proposed fragments are either disjoint sub-schemas, which can
be very large or leaf elements (complex and simple), and
simple shared types, which can be very small. Also comparing
each source fragment with all the target fragments is time-
consuming. In addition to this, Hu et al. [7] consider a similar
fragment based approach for ontology matching, where they
break each ontology into blocks of RDF sentences. However in
both these cases, there is no notion of a fragment that matches

a well understood concept or covering an ontology with such
concepts.

Finally An et al. [2] utilizes an underlying ER model to
obtain the concepts related to a schema. They further assume
that schema matching between source and target are known,
and use the known matchings along with the concepts to
improve schema mapping. In contrast, our goal has been to
discover a small collection of related concepts and the schema
matchings from each concept to appropriate subgraphs of the
source and the target schema.

VIII. CONCLUSION

In this paper, we introduced the problem of schema cov-
ering, the method of covering a schema with select objects
from a repository and proposed efficient algorithms for solving
it. In this regard, we defined new measures of coverage and
similarities which can be of independent interest. Schema
covering is a building block in the large framework of reuse. In
this area there are other challenges that need to be addressed
properly. One example is the creation of concept repository: it
involves selection, cleansing and unification of input objects.
Another example is the automatic identifications of map flows
among the concepts of the decomposed source and the target
schema. An extension of Clio project at IBM Almaden [1]
has started investigating these issues and incorporating schema
covering to progress towards the goal of a simple, modular
and reusable system for data integration.
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