
Managing Structure in Bits & Pieces:
The Killer Use Case for XML

 Eric Sedlar
Oracle Corporation
500 Oracle Parkway

Redwood Shores, CA 94065

eric.sedlar@oracle.com

ABSTRACT
This paper asserts that for databases to manage a significantly
greater percentage of the world’s data, managing structural
information must get significantly easier. XML technologies
provide a widely accepted basis for significant advances in
managing data structure. Topics include schema design,
evolution, and versioning; managing related applications; and
application architecture.

1. INTRODUCTION
One of Oracle’s primary goals over the entirety of its existence
has been to find ways to get more information into Oracle
databases. Unfortunately, today most estimates places less than
20% of the data in the world in any relational database, let alone
Oracle. Oracle has made advances, adding capabilities for many
new data types over the past few releases. Oracle 10g natively
supports user-defined objects based on the SQL99 model,
multimedia datatypes & indices, multidimensional cubes &
analytic operators, and filesystem protocols—capabilities that
cover the structures of most information in the world. However,
most information today remains stored in filesystems.

The reasons for this are no longer a lack of capabilities in Oracle,
or any other relational database for that matter. The primary
reason is the cost of utilizing the database’s capabilities in a
significant way. The cost I am referring to is not the software
licensing cost—it is the cost to the organization of building and
deploying a relational application.

2. THE COST OF STRUCTURE
The typical database application development process today looks
something like the following:

1. Gather requirements
2. Design schema
3. Build application code

b. If this is the second version, handle schema &
application upgrade issues (generally
requiring data migration)

4. Load data & deploy application
5. Tune performance
6. Gather feedback based on actual data & usage and go

back to step 2 to create the second version.

Most of the languages, tools and techniques developed over the
past few decades focused on the cost of application development.
Significant progress has been made in reducing the cost of step 3.
Much less progress has been made at using technology to
decrease the costs of the other steps. Since user requirements
directly drive schema design, the problem is not really a technical
one. Figuring out what people want before they see the actual
thing is an intractable problem of human nature.1

Currently, it is our experience that requirements gathering,
schema design, and upgrade costs are far more than application
development costs. The basic reason for this is that the cost of
making a mistake in schema design and correcting it is very
high—far higher than any other cause. In many cases, desirable
schema changes are impossible without throwing away old data—
the structural information required does not exist at all in the older
data. Since relational technology doesn’t allow for tables with
heterogeneous structure, the information is effectively gone.
Generally, current applications must try to anticipate all
requirements and structural requirements up front.

An added complication to the current application lifecycle is in
dealing with multiple applications with overlapping information.
In practice, this is the usual case—a solitary application with no
overlap with others is rare. The set of related applications may be
loosely coupled, exchanging data via techniques such as web
services, or they may be tightly coupled, sharing database schema
objects (such as the components of the Oracle E-Business Suite,
or SAP R-3). Providing high levels of functionality and
performance often requires tightly coupling applications, which is
why the major application vendors offer a single integrated
product suite. However, this means that all of the components
must agree on the schema design for shared components in
advance. This negotiation between various groups can be quite
tedious. A similar process goes on in industry standards bodies
that define common semantics for documents commonly
exchanged in a particular industry segment. When multiple

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

1 Many business problems beyond data management could benefit

from improvements in anticipating what people want—deciding
what movies to greenlight and Internet dating could probably
gain an even greater benefit. SIGMOD 2005 June 14-16, 2005, Baltimore, Maryland, USA

 Copyright 2005 ACM 1-59593-060-4/05/06 $5.00.

818

mailto:eric.sedlar@oracle.com

applications have overlapping schemas, the structural design cost
grows exponentially.

Various techniques are commonly employed to allow some
schema flexibility. In simple cases, object-oriented techniques
such as single inheritance can be used. A version 2 object might
just inherit from the version 1 object. This can be implemented in
the database via object-relational techniques such as the SQL99
support directly in Oracle, or in via middle-tier object mappers
such as Oracle TopLink. Another common technique is to use
name/value pairs for physical storage of attributes. (This is use in
many content management systems).

Unfortunately these techniques have limitations—name/value pair
storage often results in unacceptably slow performance and loss
of stricter datatyping when desired. Name/value pair storage may
not be enough for complicated data structures involving nesting,
or those where order is important. Single inheritance often is too
restrictive a way to evolve structures—open content models may
be required.

3. SHARED SCHEMA OBJECTS
The largest cause of structural complexity is multiple application
components with shared schema objects. Each of these
components may have different assumptions about the data
structure. I refer not just to the case of large applications like the
Oracle E-Business Suite with many modules. Different versions
of the same application may be considered to be different
applications as well. In either case, the applications have some
common knowledge about the data structures. This common data
structure could be defined by a industry-specific XML standard, it
could be defined by lots of internal design meetings between
application development teams, or it could be defined by the
shared source code between different application versions.

The most common way to manage shared data structures is to use
optional attributes (or attributes with default values), which can
be ignored by those applications that aren’t interested in them.
This allows any application to create an instance of the shared
data structure. WebDAV properties and HTML markup are
common examples where unknown structure is ignored.

If each application only needs to read & update instances from the
other applications (and not create them), this requirement can be
relaxed somewhat. The collection of objects in question can be a
set with related schemas sharing those common elements—they
don’t all need to be defined using the same schema. The only
thing that is required is that there is some common set of
structural elements with common semantics to query on.

Schema versioning is just one particular scenario involving
collections of related schemas. In this case, the common structure
is generally that defined by the first version of the schema, as
opposed to being defined by a standard vocabulary.

Application integration is another scenario with related problems.
In the loosely coupled application case, documents from one
application may be exchanged via web services, and transformed
into the schema of a second application. Transformation is
generally necessary if the schemas for related objects were
developed completely independently. However, if the
applications are exchanging documents extending a standard,
there may not be a need for transformations before loading data.

4. XML STRUCTURAL DEFINITION
XML has a different method of structural definition than
relational or object-oriented techniques. The schema design
phase in those techniques is separated into two phases in XML.
Phase 1 identifies a vocabulary of discrete granules of information
that are of interest on their own. The granules must be named,
and assigned some semantic meaning. Phase 2 defines
relationships between the granules, their datatypes, and
constraints on the contents. Phase 1 requires the XML 1.x and
Namespace specs, while phase 2 requires XML schema (XSD,
RELAX, etc.).

The phase 1 structural design is only somewhat easier in XML.
We still must figure out which parts of the information are
interesting. However, XML does provide for a continuum
between unstructured and structured content, by allowing for
mixed text, where structural tags can be introduced into
unstructured text without disturbing the flow of the text. This
allows for a greater degree of freedom to identify different
granules of interest.

One the vocabulary of tags has been defined, XML provides a
marked advantage in structural definitions. It allows for an
application lifecycle that allows for the phase 2 structure to be
determined even data is loaded. In some applications, it is not
even possible to know much of the data structure without looking
at instances, since the instance data may not be directly input via
an application user interface, but exchanged via another
application. Oracle has technology today in Warehouse Builder
that helps determine data typing and constraint information from
data that is already loaded. This approach is currently limited by
the SQL type system (the data is typically in a VARCHAR
column). However, the technique could easily be applied to
schemaless XML data as well, to help identify interesting
structural properties.

With XML, documents with a common vocabulary can be
exchanged without defining a schema. The schema could be
added later if the document is validated. The XML schema is also
much more flexible than relational or object-oriented structural
defintion. XML adds “fuzzy” schema concepts, such as open
content (undefined components), mixed structured & unstructured
content, and flexible substitutions of datatypes.

5. STRUCTURAL CHANGE IN XML
To decrease the cost of schema design and requirements analysis,
we must allow designers more scope for schema design mistakes
without imposing a large penalty. A comprehensive schema
design shouldn’t be required to start loading data. Once actual
data is loaded and an application is available, more requirements
will always arrive, changing structural needs. Allowing for more
iterations of structural design should decrease costs, as hindsight
is a valuable tool for defining structure.
In general, schema complexity is related to the number of object
types and attributes in each object. So, simpler schemas will
generally err on the side of too little structure rather than too
much structure. More structure allows for more precise
identification of the information we need. Over time, we may
want users to answer more questions that we didn’t think to ask
before. (In effect, a form that evolves from essay questions to

819

multiple-choice is one that is gaining structure.) So, the general
tendency of data is to increase in structure over time.
This is not to say that it is impossible to have too much
structure—it is just less common. If a particular question we ask
users generally elicits nonsense replies, or the answers to the
question are all the same, a question may not be worth asking.
The problems of too much structure and too little structure must
both be considered.
On a more technical level, schema design problems that might be
corrected over time include:

• Fail to identify structure typing: the element may be
untyped, or a string, when a constrained datatype like a
number, enumeration or reference may be more
appropriate

• Missing subcomponents of an element

• Wrong level of granularity may be used. For example,
a “name” field may need to be broken up into first &
last name components

• Missing elements (optional or required) or too many
elements

• Datatype too simple (e.g. the value goes from attribute
to complex typed element)

• Data too constrained—may be valid corner cases that
violate constraints, or we may need to add values to an
enumeration

• Ordering may be relevant, and we want to reorder
o Ordering may be important for rendering
o May impact performance (e.g. want to stop

SAX parsing after a certain point)

5.1 Schema evolution
Current database practice focuses primarily on the question of
schema evolution. An evolution is a change to the structure that
avoids changes that create backwards incompatibilities, where the
old instances no longer conform to the new schema. Examples of
backwards-compatible changes include adding optional elements,
or adding values to enumerations. Relational databases allow for
some of these evolutions by altering a table definition. Some
evolutions such as changing an attribute from single-valued to
multiple-valued, are often very tedious to impossible. Some types
of evolution (such as converting from a numeric datatype to a
string datatype) are not allowed, even though they wouldn’t break
the backward compatibility restriction. This is generally an
implementation issue rather than a limitation of the relational
model, but is difficult nonetheless. XML allows for a somewhat
more complete set of evolutions than relational, without some of
these limitations.
Backwards-compatible schema evolution often removes
constraints—which means that structure is decreased. Adding
optional elements does increase structure, although this may
create redundancies if unstructured text fields were available to
hold the information in earlier versions. Unfortunately, many of
the schema design “mistakes” above break the backwards-
compatibility rule, and add structure. So, schema evolution by
itself doesn’t provide sufficient structural flexibility.

5.2 Schema versioning
If the more common and more natural case driving schema
change is to add structure, schema versioning must be used to
handle. Schema versioning need not be linear—clearly multiple
paths of schema descent are possible (and likely) from a single
starting point, be it either v1 of an application schema adapted by
various internal development groups in a corporation, or a
standard schema defined by some industry consortium.

The main difference between schema versioning and application
integration (when similar business documents must be exchanged
between totally independent applications) is the existence of a
common vocabulary. In the application integration case, data
with the same semantic content may use different XML tags to
identify it. If the tag names are mapped to a common vocabulary
via a transformation, application integration problems look very
similar to managing collections of data in the schema versioning
case.

5.3 Application Access to Versioned Schemas
When an application must deal with multiple versions of the
schema, it must relax its assumptions about the data. Typically,
when applications access a data item, they expect to know the
exact location of the data, and the return datatype. When
accessing XML instances with versioned schemas, this may not
always be true. Luckily, XML access technologies such as DOM,
XPath and XQuery allow for some structural uncertainty in the
data access. In particular, the following cases might occur:

• An element may not be in the expected location

• Unexpected element tags may occur

• Constraints (such as those defined by XML Schema
facets) may be violated in a different version

XPath provides techniques for handling some of these cases. For
example, to access data regardless of location or nesting level,
you could write “//elname”, or to ignore extraneous internal tags,
you could write “/elname//text()”.

Applications are already built to allow for uncertainty of
datatyping via polymorphism—you might have to ask an object
about its datatype by asking it what interfaces it implements. In
general, though, application code will need to anticipate schema
variation and be robust enough to deal with whatever variation is
allowed. XML clearly doesn’t solve all of the problems in this
space.

5.4 Schema Versioning Limitations
All this being said, with or without XML, there are still many
hard problems to solve in the schema versioning domain. Let’s
examine a use case involving a defect tracking system. In version
1, the designer simply includes an untyped element called
<productDescription>. Any valid XML content, such as
XHTML, could appear there. In version 2, <productDescription>
becomes a complexType allowing mixed text, but explicitly
specifying subelements for <manufacturer> (required), <model>,
and <serialNumber> (both optional), and allowing an open
content model. Now, to find a defect report where the
manufacturer is Dell, in the version 1 schema the best I can do is a
text search in <productDescription> for the word “Dell”. This is

820

highly likely to give me what I want, but not always. If an
instance looks like:

<productDescription>The HP LaserJet5 that I
was shipped along with my Dell Dimension
650</productDescription>

A search looking for the word “Dell” in <productDescription>
will get a spurious hit, since the defect in question applies to an
HP printer. However, the chances of a spurious hit are much less
than a full-text search of the entire defect document had no
tagging been used.
To allow a v2 application to get a “manufacturer”, I could write a
utility to go through v1 instances and tag any of the well-known
manufacturer names from a list by scanning productDescription.
If one and only one manufacturer matched, I could wrap the
manufacturer name with XML tags, and mark the instance as
upgraded to a v2 schema. However, some instances would not be
upgradable, such as the example above.
In this case, a v1 instance simply doesn’t have enough
information to answer all of the questions a v2 application might
want the answers to. The v2 application would simply have to
handle both cases. For example, in a query-by-example screen,
the v2 application could gray out v2 query fields based on a date
range search, if the minimum date was earlier than the v2
application upgrade date. Various manual techniques would have
to be employed if that was unacceptable. For example, the
application could keep an upgrade list to send to users to upgrade
instances they originally created, or require that the instance be
upgraded before update.
In general, schema design errors may result in instances with
insufficient information to meet requirements of later versions of
an application, because the designer didn’t think to ask all of the
right questions when the data was input. The key thing that XML
allows, though, is managing all of the instances, even those with
only some of the answers.

6. IS XML PERFORMANCE SUFFICIENT?
Any data management system architecture is typically driven by
performance considerations as much as anything else. So, to
provide a technology allowing for more flexible structural
management, one must also have competitive performance with
existing object-oriented and relational technologies. Some of the
key metrics that XML technologies must match include:

• Query performance based on known structure should be
comparable to relational.

• Read performance should be comparable to file read

• Write performance should be at minimum within 2-3x
of a file write (given the index update cost)

• Partial update (of a single element) should be
comparable to relational row/column update

• Access of in-memory data structures based on XPath
should be comparable to the cost of a hash table access

Based on the work at Oracle currently under development, all
these goals appear to be achievable.
To go through the example of the query case, the XML lifecycle
still allows for all of the fundamental techniques that provide
relational performance. Once XML data is loaded and schemas
have been defined, indexes can be built on the XML data in the
same manner as on relational data.

High performance queries generally are driven by indexes, so
there is no reason that query performance on indexed XML
storage should be significantly slower than relational, even if the
XML was originally stored without a schema. The index
structures will be the same—only the cost to scan a row would be
different (Storing XML in a binary format could also address that
cost). The interesting parts of the data structure, from the point of
view of the relational query engine, could all be in the indexes,
not in the table data.

Indexes have the lifecycle properties we desire—they can be built
after the data is loaded, without causing significant disruption to
the running application. The data types being indexed can also be
determined at index creation time, by building functional indices
coercing data into the desired type from untyped string data. It is
possible to build generic name/value pair indices on XML data
(actually this is typically a path/value index, where Xpath-like
node identifiers take on the role of the name in a typical relational
name/value table). In addition, specific value indices can be built
just as in the relational case using functional indexes, including
concatenated key indexes, and still have the indexes get picked up
by the query optimizer.

7. CONCLUSION
To be a compelling technology platform for more than 20% of the
world’s information, databases must go beyond the rigid
structural capabilities typical in applications today. The answer
is not simply to remove all structure and use LOBs, since a large
part of the value of databases is lost. We believe that allowing
small amounts of structure to be added cheaply and manageably,
without requiring all the overhead of typical relational design
processes, provides a more compelling solution. The cheaper the
structure is to add, the more likely an iterative schema design
approach can be employed. If the first iteration is cheap, more
content will be loaded into a DBMS.

XML technologies don’t solve the entire problem of managing
structural change, but they do provide a significant advance over
previous techniques such as relational or object-oriented data
management. XML also allows for structural definitions that
aren’t possible in object-oriented or relational systems. While
XML also provides benefits for document management systems,
and as a common file format, our experience is that neither of
these generates as much impact for our customers as the structural
flexibility of the XML stack. This perception of XML utility is
likely to be instrumental in driving technology directions in the
Oracle database for some time to come.

821

	1. INTRODUCTION
	2. THE COST OF STRUCTURE
	3. SHARED SCHEMA OBJECTS
	4. XML STRUCTURAL DEFINITION
	5. STRUCTURAL CHANGE IN XML
	5.1 Schema evolution
	5.2 Schema versioning
	5.3 Application Access to Versioned Schemas
	5.4 Schema Versioning Limitations
	6. IS XML PERFORMANCE SUFFICIENT?
	7. CONCLUSION

