
Fast Paral lel Algori thms for the Unit Cost Editing Distance Between Trees (extended abstract)

Dennis Shasha, shasha@nyu.edu
Kaizhong Zhang, zhang@nyu.acf8

Courant Institute of Mathematical Sciences
New York University

251 Mercer Street
New York, NY 10012 U.S.A.I"

1. Problem Ordered labeled trees are trees whose
nodes are labeled and in which the ° left-to-right
order among siblings is significant. We consider
the distance be tween two trees to be the minimum
number of edit operations (insert, delete, and
modify) necessary to transform one tree to another.

We present three algorithms to find the distance.
The first algorithm is a simple dynamic program-
ming algorithm based on a postorder traversal
whose complexity improves upon the best previ-
ously published algorithm due to Tai (T79 in
JACM). The second and third algorithms are
parallel algorithms based on the application of suf-
fix trees to the comparison problem. The cost of
executing these algorithms is a monotonic increas-
ing function of the distance between the two trees.
Results Let trees T I and T2 have numbers of levels
L i and L 2 respectively. Let k be the actual distance

between T 1 and T2. Let N be rain (IT11, IT2]). The
asymptotic running times (assuming a concurrent-
read concurrent-write parallel random access
machine) are:

A l g o r i t h m T i m e P r o c e s s o r s

Ta i I T l l X [T2[xL~XL]

A l g l [Tx[× Ir=l xLI×L2

Algl parallel ITII+ IT21 [rll× IT2l×rain(L1,L2) i
i

A l g 2 pa ra l l e l kxlog(k)xlog(N) k2XN ,,[
A l g 3 pa ra l l e l (k2×log(k))+log(N) k2xN I

"Ih.is work was partially supported by the Office of Naval Research under grant

number N00014-85-K-0046.

Permission to copy without fee all or part of this material is granted provided that the copies
are not made or distributed for direct commercial advantage, the ACM copyright notice and
the title of the publication and its date appear, and notice is giv#n that copying is by permission
of the Association for Computing Machinery. To copy otherwise, or to republish, requires a
fee and / or specific permission.

© 1989 A C M 0 - 8 9 7 9 1 - 3 2 3 - X / 8 9 / 0 0 0 6 / 0 1 1 7 $ 1 . 5 0

Application Significance We are applying these algo-
rithms to comparing tree descriptions of spatial
curves, secondary structures of RNA, and sentence
parses.

The R N A problem is of the greatest immediate
interest to us since some of these algorithms has
been used by researchers at the National Cancer
Institute. Because R N A is a single strand of
nucleotides, it folds back onto itself into a shape
that is topologically a tree (called its secondary
structure). Each node of this tree contains several
nucleotides. Nodes have colorful labels such as
"bulge" and "hairpin."

Various researchers [ALKBO87, BSSBWD87,
BP87] have observed that the secondary structure
influences translation rates (from R N A to pro-
teins). Because different sequences can produce
similar secondary structures [DAB2, SK76], com-
parisons among secondary structures are necessary
to understanding the comparative functionality of
different RNA's .

Existing methods for comparing the secondary
structures of two RNA's take a traversal ordering
of the two trees and discover the string edit distance
between the orderings [$88]. That is unsatisfactory
since a traversal ordering does not uniquely specify
a tree. The tree edit distance is clearly a better
metric.

For all the applications, differences are most signi-
ficant for small values of k, since trees that differ
by more than a certain threshhold are for practical
purposes simply different.

Algorithmic Significance We use the Ukkonen [U83]
idea of computing in waves along the center diago-
nals of the distance matrix. At the beginning of
stage k, all the distances up to k - 1 have been com-
puted. Stage k then computes in parallel all the

117

(a ~ b)

J
/

Figure 1. Relabeling

(b -. A)

\
Figure 2. Deletion

distances up to k. We use suffix trees, inspired by
[LV86], to perform this computation fast. But,
whereas Landau and Vishkin apply suffix trees to
comparing strings we apply suffix trees to c o m p s ,
ing trees. That is, we map each of the two trees T1
and T2 to strings (each string is a traversal order
where each node is associated with the number of
its children), construct suffix trees f rom these
strings, and then use the suffix trees to infer that
portions of the T1 are identical to portions of T2.
This leaves some subtle problems.

In the swing case, if Sl[i..i+h]=S2Lf..j+h], then
the distance between $ 1 [1 . . i - 1] and S 2 [I . j - 1] is
the same as between Sl[1..i+h] and S2[1..j+h].
The main difficulty in the tree case is that preserv-
ing ancestor relationships in the mapping between
trees prevents the analogous implication from hold-
ing. In addition, to compute the distance between
two forests at stage k sometimes requires knowing
whether two contained subtrees are distance k
apart. We overcome these problems by exploiting
the relationship between identical subforests and
tree-to-tree mappings (section 5).

2. Edit operations

Our distance metric for trees is a generalization of
the editing distance between sequences. The edit
operations are relabel, delete, and insert. Relabel-
ing node n means changing the label on n. Deleting
a node n means making the children of n become
the children of the parent of n and then removing
n. Insert is the complement of delete. This means
that inserting n as the child of n' will make n the
parent of a consecutive subsequence of the current
children of n' . Figures 1, 2, and 3 illustrate these
editing operations.

(A -. b)

- - V

Figure 3. Insertion

J
/

W e represent an edit operat ion [T79, ZS87] as a
pair (a,b) ~ (A,A) , sometimes written a -- b. We
call a -- b a relabeling operation if a ~ A and b
A; a delete operation if b = A; and an insert opera-
tion if a = A. Le t S be a sequence sl ,sk of edit
operations. An S-derivation from A to B is a
sequence of trees A0, ;.. Ak such that A=A0,
B=Ak, and A i - I "" Ai via si for l~ i~k .

For the purposes of this paper, the cost of any edit-
ing operation a -, b, denoted T(a-*b), is 1 if a ~ b
and 0 otherwise. By extension, the cost of a
sequence is simply the length of the sequence. The
distance between 7 t and T2 is simply the minimum
cost sequence taking Tl to T2. Our problem is to
find the distance.

118

((d- a), (A - d))

Figure 4. Edit Sequence

Mapping must preserve ancestor descendant relationship

Mapping must preserve sibling order

Figure 5. Mapping rules

2.1. Mappings

The edit operations correspond to a mapping which
is a graphical specification of what edit operations
apply to each node in the two trees (or two ordered
forests). The mapping in Figure 4 shows a way to
t r a n s f o r m T I to T2. It corresponds to the sequence
(delete(node with label d), insert(node with label
d)).

Formally a mapping from T1 to T2 is a triple
(M,Ti,T2), where M is any set of pair of integers
(i , j) satisfying the following conditions (see Figure
5):

O)
(2)

l ~ i ~ N l , I ~ j ~ N 2 ;
For any pair of (i l , j l) and (i2 j2) in M,
(a) (one-to-one) i I = i2 iff j l = j 2
(b) (ancestor) Tl[il] is an ancestor of Tl[i2] iff
T2[jl] is an ancestor of T2[J2]
(c) (sibling) T1[il] is to the left of Tl[i2] iff
T2[jl] is to the left of T2[j2]

We use M instead of (M,T I,T2) if there is no con-
fusion. The cost of M, denoted ~(M), is the
number of nodes to be inserted (i.e. those in T 2
that are not touched by a mapping line) plus the
number to be deleted (i.e. those in T! not touched
by a line) plus the number relabeled (i.e. those
pairs of nodes related by mapping lines with differ-
ing labels).

Lemma I: Given $, a sequence s l , ... ,sk of edit
operations from T 1 to T2, there exists a mapping M
from Ti to T2 such that ~/(M) ~ ~/(S). Conversely,
for any mapping M, there exists a sequence of edit-
ing operations such that ~/(S) = ~/(M).

Hence, 6(Ti,T2)=min{~/(M)[M is a mapping from
T! and T2}

2.2. Left-to-right postorder traversal notation --
the default

Let T[i] be the ith node in the tree according to the
left-to-right postorder numbering (our default
traversal order), l(i) is the number of the leftmost
leaf descendant of the subtree rooted at T[i]. When
T[i] is a leaf, l (/)= i.

T[i..j] is the ordered subforest of T induced by the
nodes numbered i to j inclusive (Figure 6). T[1..i]
will be referred to as forest(i), when the tree
referred to is clear. T[/ (/) . . /] will be referred to as
tree(i). Size(i) is the number of nodes in tree(i).

119

T rp .. 71

~II ~6] ~171 ~II ~21zt41 rt51

T[4] T[5]

"IU]

Figure 6. Postorder T[1 .. 7] = forest(7)

r111 .. l(1)-l] rlO(1)..i] r211., l(j).l] r20(j), fl

Figure 7. Case 3. holds when (i , j)
is in mapping

The distance between T1[i'..i] and T2[j'..j] is
denoted dist(Tl[i ' . .i], T2[j'..j]) or dist(i ' . .i, j '..j) if
the context is clear. We use a more abbreviated
notation for certain special cases. The distance
between Tl[1 .. i] and T211 .. j]) is sometimes
denoted forestdist(i , j) . The distance between the
subtree rooted at i and the subtree rooted at j is
sometimes denoted treedist(i,j).

3. Basic Algori thm

We compute forestdist(i,j) for 1 < i ~ N1
j ~ N2. Let M be a minimum-cost map
forest(i) and forest(j). The distance is
minimum of these three cases.

(1)

(2)

(3)

and 1
between

the

Tl[i] is not touched by a line in M. So,
forestdis t (i , j) = forestdist (i - 1 , j) + 1.

T2[j] is not touched by a line in M. So,
forestdis t (i , j) = forestdis t (i , j - 1) + 1.

T1[i] and T2[]] are touched by lines in M
(Figure 7). By the ancestor and sibling con-
ditions on mappings, (i , j) must be in M.
By the ancestor condition on mapping, any
node in the subtree rooted at Tl[i] can only
be touched by a node in the subtree rooted
at T 2 [j]. Hence, forestdis t (i , j) =
forestdis t (1 (i) - 1, l (j) - 1)
+ dist (T 1 [1 (i) . . i - 1], T 2 [1 (j) . . j - 1])
+~I(Ti[i] -T2[j]) . When either l (i) ~ left-
most child of T 1 or l (j) # leftmost child of
T2, we Call USe the equation
fores td i s t (i , j) = f o r e s t d i s t (l (i) - 1 , l (j) - 1)
+ treedist (i , j) .

These three cases specify a step of a simple
dynamic programming algorithm. Because of case
3, any subtree-to-subtree distance may be required.

[TilIT2[
So, the time complexity is O (~ ~ size (i) × size (j))

i•ljffil
= O ([T 1] ×] T 2] × L I × L 2) .

4. Improving the simple algorithm

4.1. Review of Landau-Vlshkln algorithm

In the following discussion, diagonal d corresponds
to the the set of distances {stringdist(i,j) [i - j =
d}. (The name diagonal comes f rom the distance
matrix in the naive dynamic programming algo-
ri thm.)

120

a

Figure 8a. Different Trees May have
the Same Postorder Traversal

(Here, bca)

d d

forestdlst(3,2) = forestdis~(5,4)

Figure 8b. Label with Number of
Children Seems not Necessary

(Even though d has a different number of
children, editing operation is "delete b °')

d d

forestdist(3,2) ~' for~,u.list(5,4)

Figure 8e. Label with Number of
Children Seems not Sufficient

(even though both have traversal with
children sequence {c,0}, {e,0}, {d,3})

The basic algorithm of [LV86] is

for p := 1 to ~21 do
for diagonals d between -p and p inclusive pardo
compute maximum row i in d such
that stringdist(i, i+ d) ~ p
exit program when
stringdist (IS 1 [, IS2 I) is computed

Here is the computation for a given diagonal at
stage p.

(1) Find a row i in diagonal d with value p
(consult diagonals d - 1 and d+ 1 for this).

(2) Jump to i + h if h is the maximum value
such that S l[i..i + h]= S2[i + d..i + d + h].

Both steps can be done in constant time, where step
2 uses a suffix tree. So the whole algorithm takes
O (k) time, where k is the actual distance between
the two strings.

4.2. Problems in applying this approach to trees

Problem 1: We would like to use suffix trees based
on some traversal order, but a traversal order on
labels alone is insufficient as Figure 8a shows. On
the other hand, it is well known [Knuth vol. I, p.
350] that any traversal (we use a left-to-right pos-
torder traversa!) in which each label is associated
with the number of its children is sufficient to
specify the tree. We will call that traversal SLR.

Problem 2: Identical traversals with children are not
necessary. That is, forestdist(i,j) = forestdist(i+ h,
]+ h) is possible even though
SLRi[i+I..i+h]~SLR2[j+I..j+h]. See Figure
8b.

Problem 3: Identical traversals with children are not
sufficient. That is, forestdist(i,j) < forestdist(i+ h,
j + h) is possible even though
S L R i [i + I . . i + h] = S L R 2 [j + I . . j + h] ° See Figure
8c.

So, what are these traversals good for? -- we hear
you cry. Well, if the single node labeled e in Fig-
ure 8b or in 8c were replaced by a tree (or even
forest) of size r, then in both cases
forestdist (3,2) = forestdist (3 + r, 2 + r) and this would
be discovered by establishing that
SLRI[3+ 1..3 + r] = SLR2[2+ 1. .2+ r] .

121

Part 1

I I
i J

Part 2

Ii i1 I il

j+q

Part 3

1

j+q

j + h

@
Figure 9. Three Parts to Basic Jump

(goal is to find largest h usch that forest(i+h, j+h)=fores t (i , j))

4.3. Overvtew of Our improved algorithm

Having discussed these problems, we will now see
how our algorithm deals with them. Figure 9 shows
the three parts of the basic jump along one diago-
nal. Parts I and Ill are analogous to the string
case, whereas part II requires special attention.
Our algorithms differ in how they perform part If.
We present only algorithm 3's approach, because
algorithm 2, which uses binary search in part !I is
slightly more complex.

Part I finds the first l such that (i , i + d) must be in

any mapping such that forestdtst (i,i + d) = k. In that
case, we l e t j = i + d . If no such i exists then stage k
is over for this diagonal.

Part H determines the maximum ancestors Tl [i+q]
(of TI[i]) and T2 [j+q] (of T2[j]) such that
forestdist(i + q , j + q) = k.

Part HI then determines the maximum h such that
fores td i s t (i+h , j + h) = / , using a left-to-right pos-
torder suffix tree.

122

Forest F Forest F

If d~lO~t')~O then dist(F,F')~dist~2,f2')

Forest F Forest F '

d s t (f 2 f 2 ') ~ O ~ dlst(F,F)~di,~t(flu¢l ')

Forest F Forest F

g ~idi')=0 and dis~3 J3')=0 then ~(F,F')~st (/'2,A')

T T

A A
If shaded part of the two trees m'e the same, then dist((T,T)=dist(t,t')

Figure 11. Quarantined Subtree Lemma

Figure 10. Proper Forest Lemmas

4.3.1. Doing part II

One particularly difficult problem in part II is that
determining that forestdis t (i l , j l)=k may require
knowing that treedist(i l , j l)=k. Our ability to
determine that fact without waiting depends on the
following definitions and lemmas.

Definition: Given forest F, we say that F[i..j] is a
proper forest of F if the subgraph induced by the
nodes i through j in the post-order numbering of F
has the following property: if n is in F[i..j], then all
children of n in the tree F are in F[i..j].

Lemma 2 (two sided proper forest): Suppose
Fl[1. .m] and F2[1..n] are ordered forests, Fl[1. .x]
is a proper forest of F 1, F l Ix + 1 . . y - 1] is a proper
forest of F1, F2[1..x] is a proper forest of F 2. and
F2[x + 1..z - 1] is a proper forest o f F2. I f F 111..x]
is identical to F2[1..x] and Fl[y. .m] is identical to
F2[z..n]. then dist(1..m, 1..n) = dis t (x+l . .y-1 ,
x+ 1..z-1). (See Figure 10.)

We now propose the analogous property for trees.

Definition: Suppose Tl[1. .m] and T2[1..n] arc
ordered trees, Tl[l(i). . i] (tree(i)) is a subtree of T1
and T2[l(j) . . j] (tree(j)) is a subtree of T2. We say
that the only difference between Ti and T2 is between
tree(i) and tree(j) if replacing both tree(i) and
trec(D by a single node with the same label makes
T1 and T2 identical.

Lemma 3 (Quarant ined Subtree) If the only differ-
ence between Tl and T2 is between tree(i) and
tree(j) then dist (1 . .m, l . .n)--dis t (l (i) . . i , l (j) . . j) .
(Figure 11.)

123

up(i,jr~(s,t) shaded part of the two trees are the sarae

Figure 12. up(i,j)

$. Algorithm

To do part H fast, we use a predicate up obtained
by one application of suffix trees on the left-to-right
and right-to-left pos torder traversals.

Definition: Given trees T1 and T2 and a pair of sub-
trees (tree1(i), tree2(j)). Define up(i , j) to be a pair
of subtrees rooted at (s, t) satisfying the following
(Figure 12):

1) treel(i) is a subtree of t reel(s) and tree2(j) is a
subtree of treez(t).

2) (tree1(s), t ree2(0) is the largest subtree pair
(equivalently s and t are the greatest ancestors of i
and j) such that the only difference between them is
between tree1(i) and tree2(j), ta

Figure 13(b) shows the application of up(i,j).
Notice that the right-to-left postorder suffix tree
will examine forests to the left of treel(i) and
tree2(j) as well as ancestors of i and j .

5.1. Bottom up algori thm for part II

P a x I has established the condition in Figure 13(a).

Start Find up(i , j)= (i 2 j 2) . Using the p rope r forest
and quarantined subtree lemmas, we k n o w that
forestdist (i 2 ,j2) = k: Let i I =parent (i2) and
j l=parent (j2) . The hard question is whether
jbrestdist (i 1 ,J !) = k.

This is only possible if
T1[iz + 1..il - 1]= T2[J2 + 1. . j l - 1] and
Tl[il]=T2[Jl]. (That can be de termined by one
application of a suffix tree.) Otherwise (iz , jz) is
the answer to part IL

If so, there are three cases°

(1) If fores td is t (l (i l) - 1 , 1 (j l) - 1) has not been
computed up to stage k - 1, then
fores tdis t (i i , j l)>k so (i2, j2) is the answer
to part II.

(2) If f o r e s t d i s t (l (i l) - l , l U 1) - l) > O , then We
can check whether treedist (i I ,J 1) = k
- forestdiat (l (i l) - 1 , 1 (j l) - 1). If not , then
forestdis t(t l ,J l)>k so (i2,J2) is the answer
to part II. If so, then forestdis t (i l ,J l)=k
and go to Start setting i=i 1 and J=J l .

(3) If f o r e s t d i s t (l (i l) - l , l (j l) - l) = O then
fores tdis t (i l , j l)=k, so go to Start setting
i=i l and j = j l .

Case 1 holds because treedist(i l , j l)>O by definition
of predicate up. Case 2 poses no difficulty either
except as far as running time is cconeerned. In both
case 2 and case 3 if fores td is t (i l , j l)=k, then
treedist(i l , j l)>treedist(i , j) , so we can return to
Start only at most k times at stage k.

The third ease is quite subtle, involving all the
machinery we have presented so far. It may help
the reader to refer to Figure 13(c).

L e m m a 4 (bottom np hop): If
O. up (i,j)= (i2,j2), ii =p (i2), Jl =P (J2)-
1. forestdist(i , j)=k and (i ,j) must be in the map-
ping with cost k f rom forest(i) to forest(j) .
2. T l [i 2 + l . . i l - 1] = T 2 [J 2 + l . . j l - 1] and
Tl[l]=T2 l].
3. forestdist (1 (i 1) - 1, I U 1) - 1) = 0.

then forestdist (il , J l) = k.

124

(a)

(i,j) must in best " m a p p i n g ~

t I
(b)
up O,J)= (i2,J2)

/ @

(c)

p (i 2) ~ - i l andp(. j2) - - j l ~1 [°

I t 1

A

f
J l

Figure 13. Hard Case for Bottom-up Approach

Proof: By lemma 3 (quarantined subtree) and con-
dition 0, treedist (i 2 , J 2) ----" treedist (i , j) . BY condition
1, k = fores td i s t (i , j) = treedist (i , j)
+ f o r e s t d i s t (l (i) - l , l (j) - l) . By lemma 2 (proper
forest) and condition 0, f o r e s t d i s t (l (i) - 1 , / (j) - 1)
= fores td i s t (l (i2) - 1,1 (]2) -- 1).
Putting this together,
k = treedist (i 2 , J 2) +forestdist (1 (i2) - 1,1 (J2) - l) . So ,

fore~tdist (/ 2 , J 2) -- k.

By condition 3 and lemma 2 (proper foresQ,
fores td i s t (l (i2) - 1,l (]2) - 1)
= d i s t (l (i l) . . l (i 2) - 1 , / (j l) . . / (j 2) - l) . By condition
2, treedist (i I ,J 1) = tr eedist (i2 ,J2)
+ dist (l (i 1) . . l (i2) - 1, l (j 1).. l (.]2) - 1) -- k. By condi-
tion 3, this implies that fores td i s t (i l , j l) = k. a

125

5.2. Timing Analysis

As mentioned above, we may retarn to Start at
most k times at stage k. There are only k stages if
the final distance between the two trees is k. The
extra factor of log k as shown in the first table is
due to the fact that we do not store all of
forestdist(i,j). Instead, we just store points where
the distance changes in an array f. f (d,p) is the
maximum row number r such that the intersection
between diagonal d and row r + 1 holds a number
that is greater than p, but row r holds a number
that is less than or equal to p in the distance array.
To determine forestdist(i,j), we use binary search,
requiring O(log ~) time.

IDA82] Delihas, N. and Anderson, J. (1982) "Gen-
eralized structures of 5s ribosomal RNA'~ °~
Nucleic Acid Res. 10, p. 7323.

[DD87] Deckman, I. C. and Draper, D. E. (1987)
"S4-alpha mRNA translation regulation complex,"
J. MoL Biol. 196, pp. 323-332.

[Knuth] D. E. Knuth, The Art of Computer Pro-
gramming, vol. I Addison-Wesley, Reading, N/ass.

[LV86] G.M. Landau and U. Vishkin, "Introducing
efficient parallelism into approximate string match-
ing," Proc. 18th ACM Symposium on Theory of Com-
puting, 1986, pp. 220-230.

So, the total time is O(k21og k). Finally, the addi-
tive O(log N) factor is required to build the suffix
tree.

[LSV87] G.M. Landau, B, Schieber, and U. Vish-
kin, "Parallel construction of a suffix tree," Proc.
14th ICALP, Lecture Notes in Computer Science
267, Springer-Verlag, 1987, pp. 314-325.

$.3. Processors

To determine whether two T1 and T2 are distance k
apart or less, hereafter called the within k distance
problem it is only necessary to evaluate treedist(i,j)
if [i - j [<k. There are k x N such subtree pairs. It
is only necessary to evaluate the 2k + 1 center diag-
onals of each subtree pair. So, O(k2xN) proces-
sors are needed for that problem.

We reach that processor bound for the full problem
by the simple trick of evaluating the within k dis-
tance problem for successive powers of two. This
less than doubles the time complexity and achieves
the desired processor bound.

The full paper with the two method of calculating
part II and all the proofs can be obtained from the
authors.

6. References

[ALKBO87] Alluvia, S., Locker-Giladi, H., Koby,
S., Ben-Nun O., and Oppenheim, A. B. (1987)
"RNase HI stimulates the translations of the cIII
gene of bateriophage lambda" Proc. Natl. Acad. Sci.
USA, 85, pp.1-5.

[BSSBWD87] Berkout, B. Schmidt, B. F. Strien,
A., Boom J., Westrenen, J., Duin, J., (1987),
"Lysis gene of bateriophage MS2 is activated by
translation termination at the overlapping coat
gene." Proc. Natl. Acad. Sci. USA, 195, pp.517-
524.

[$88] Shapiro, B. A., "An algorithm for comparing
multiple RNA secondary structures" to appear in
Computer Applications in Biology, manuscript from
Image processing section, Frederick Cancer
Research Facility, building 469, room 150, Freder-
ick Maryland 21701.

[SK76] Sussman, J. L. and Kim, S. H. (1976)
"Three dimensional structure of a transfer RNA in
two crystal forms." Science 192, p. 853.

[SV88] B. Schieber and U. Vishkin, "Parallel com-
putation of lowest common ancestor in trees," NYU
Computer Science Technical Report.

[T79] Kuo-Chung Tal, "The tree-to-tree correctio~
problem" JACM 26, pp. 422-433, 1979.

[TV85] R. E. Tarjan and U. Vishkin, "An efficient
parallel biconnectivity algorithm" SIAM J. Comput-
ing, vol. 14, no. 4, November 1985

[U83] E. Ukkonen, "On approximate string match°
ing," Proc. Int. Conf. Found. Camp. Theory, Lec-
ture Notes in Computer Science 158, Spring-Verlag,
1983, pp. 487-495

[ZS87] K. Zhang and D. Shasha, "On the editing
distance between trees and related problems" Ultra-
computer Note 122, NYU C.S TR 310, August
1987

[ZS88] K. Zhang and D. Shasha, "Simple fast algo-
rithms for the editing distance between trees and
related problems" Accepted by SIAM J. Computing

126

