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1. Problem Ordered labeled trees are trees whose 
nodes are labeled and in which the ° left-to-right 
order among siblings is significant. We consider 
the distance be tween two trees to be the minimum 
number of edit  operations (insert, delete, and 
modify) necessary to transform one tree to another. 

We present three algorithms to find the distance. 
The first algorithm is a simple dynamic program- 
ming algorithm based on a postorder traversal 
whose complexity improves upon the best previ- 
ously published algorithm due to Tai (T79 in 
JACM).  The second and third algorithms are 
parallel algorithms based on the application of suf- 
fix trees to the comparison problem. The cost of 
executing these algorithms is a monotonic increas- 
ing function of the distance between the two trees. 
Results Let trees T I and T2 have numbers of levels 
L i and L 2 respectively. Let k be the actual distance 

between T 1 and T2. Let  N be rain (IT11, IT2 ]). The 
asymptotic running times (assuming a concurrent- 
read concurrent-write parallel random access 
machine) are: 

A l g o r i t h m  T i m e  P r o c e s s o r s  

Ta i  I T l l X  [T2[xL~XL] 

A l g l  [Tx[ × Ir=l xLI×L2 

Algl parallel ITII+ IT21 [rll× IT2l×rain(L1,L2) i 
i 

A l g 2  pa ra l l e l  kxlog(k)xlog(N) k2XN ,,[ 
A l g 3  pa ra l l e l  (k2×log(k))+log(N) k2xN I 
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Application Significance We are applying these algo- 
rithms to comparing tree descriptions of  spatial 
curves, secondary structures of  RNA,  and sentence 
parses. 

The R N A  problem is of the greatest immediate 
interest to us since some of these algorithms has 
been used by researchers at the National Cancer 
Institute. Because R N A  is a single strand of 
nucleotides, it folds back onto itself into a shape 
that is topologically a tree (called its secondary 
structure). Each node of this tree contains several 
nucleotides. Nodes have colorful labels such as 
"bulge"  and "hairpin."  

Various researchers [ALKBO87,  BSSBWD87, 
BP87] have observed that the secondary structure 
influences translation rates (from R N A  to pro- 
teins). Because different sequences can produce 
similar secondary structures [DAB2, SK76], com- 
parisons among secondary structures are necessary 
to understanding the comparative functionality of 
different RNA's .  

Existing methods for comparing the secondary 
structures of two RNA's  take a traversal ordering 
of  the two trees and discover the string edit distance 
between the orderings [$88]. That is unsatisfactory 
since a traversal ordering does not uniquely specify 
a tree. The tree edit distance is clearly a better 
metric. 

For all the applications, differences are most signi- 
ficant for small values of k, since trees that differ 
by more than a certain threshhold are for practical 
purposes simply different. 

Algorithmic Significance We use the Ukkonen [U83] 
idea of computing in waves along the center diago- 
nals of the distance matrix. At  the beginning of 
stage k, all the distances up to k -  1 have been com- 
puted. Stage k then computes in parallel all the 
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(a ~ b) 

J 
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Figure 1. Relabeling 

(b -. A) 

\ 
Figure 2. Deletion 

distances up to k. We use suffix trees, inspired by 
[LV86], to perform this computation fast. But, 
whereas Landau and Vishkin apply suffix trees to 
comparing strings we apply suffix trees to c o m p s ,  
ing trees. That is, we map each of  the two trees T1 
and T2 to strings (each string is a traversal order 
where each node is associated with the number  of 
its children), construct suffix trees f rom these 
strings, and then use the suffix trees to infer that 
portions of  the T1 are identical to portions of  T2. 
This leaves some subtle problems.  

In the swing case, if Sl[i..i+h]=S2Lf..j+h], then 
the distance between $ 1 [ 1 . . i - 1 ]  and S 2 [ I . j - 1 ]  is 
the same as between Sl[1..i+h] and S2[1..j+h]. 
The main difficulty in the tree case is that preserv- 
ing ancestor relationships in the mapping between 
trees prevents the analogous implication from hold- 
ing. In addition, to compute  the distance between 
two forests at stage k sometimes requires knowing 
whether  two contained subtrees are distance k 
apart. We overcome these problems by exploiting 
the relationship between identical subforests  and 
tree-to-tree mappings (section 5). 

2. Edit operations 

Our distance metric for  trees is a generalization of  
the editing distance between sequences. The edit 
operations are relabel,  delete, and insert. Relabel- 
ing node n means changing the label on n. Deleting 
a node n means making the children of  n become 
the children of  the parent of  n and then removing 
n. Insert is the complement  of  delete. This means 
that inserting n as the child of  n' will make n the 
parent  of  a consecutive subsequence of  the current 
children of  n' .  Figures 1, 2, and 3 illustrate these 
editing operations.  

(A -. b) 

- - V  

Figure 3. Insertion 

J 
/ 

W e  represent  an edit operat ion [T79, ZS87] as a 
pair (a,b) ~ (A,A) ,  sometimes written a -- b. We 
call a -- b a relabeling operation if a ~ A and b 
A; a delete operation if b = A; and an insert opera- 
tion if a = A. Le t  S be a sequence sl . . . .  ,sk of  edit 
operations.  An S-derivation from A to B is a 
sequence of trees A0, ;.. Ak such that A=A0,  
B=Ak, and A i - I  "" Ai via si for  l~ i~k .  

For the purposes of  this paper,  the cost of any edit- 
ing operation a -, b, denoted T(a-*b), is 1 if a ~ b 
and 0 otherwise.  By extension, the cost of a 
sequence is simply the length of  the sequence. The 
distance between 7 t  and T2 is simply the minimum 
cost sequence taking Tl to T2. Our problem is to 
find the distance. 
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((d- a), (A - d)) 

Figure 4. Edit Sequence 

Mapping must preserve ancestor descendant relationship 

Mapping must preserve sibling order 

Figure 5. Mapping rules 

2.1. Mappings 

The edit operations correspond to a mapping which 
is a graphical specification of what edit operations 
apply to each node in the two trees (or two ordered 
forests). The mapping in Figure 4 shows a way to 
t r a n s f o r m  T I to  T2. It corresponds to the sequence 
(delete(node with label d), insert(node with label 
d)). 

Formally a mapping from T1 to T2 is a triple 
(M,Ti,T2),  where M is any set of pair of integers 
( i , j)  satisfying the following conditions (see Figure 
5): 

O) 
(2) 

l ~ i ~ N l ,  I ~ j ~ N 2 ;  
For any pair of ( i l , j l )  and ( i2 j2 )  in M, 
(a) (one-to-one) i I = i2 iff j l = j 2  
(b) (ancestor) Tl[il] is an ancestor of Tl[i2] iff 
T2[jl] is an ancestor of  T2[J2] 
(c) (sibling) T1[il] is to the left of Tl[i2] iff 
T2[jl] is to the left of T2[j2] 

We use M instead of (M,T I,T2) if there is no con- 
fusion. The cost of  M, denoted ~(M),  is the 
number of nodes to be inserted (i.e. those in T 2 
that are not touched by a mapping line) plus the 
number to be deleted (i.e. those in T! not touched 
by a line) plus the number  relabeled (i.e. those 
pairs of nodes related by mapping lines with differ- 
ing labels). 

Lemma I: Given $, a sequence s l ,  ... ,sk of edit 
operations from T 1 to T2, there exists a mapping M 
from Ti to T2 such that ~/(M) ~ ~/(S). Conversely, 
for any mapping M, there exists a sequence of edit- 
ing operations such that ~/(S) = ~/(M). 

Hence, 6(Ti,T2)=min{~/(M)[ M is a mapping from 
T! and T2} 

2.2. Left-to-right postorder traversal notation -- 
the default 

Let  T[i] be the ith node in the tree according to the 
left-to-right postorder numbering (our default 
traversal order),  l(i) is the number of the leftmost 
leaf descendant of the subtree rooted at T[i]. When 
T[i] is a leaf, l ( / )= i. 

T[i..j] is the ordered subforest  of T induced by the 
nodes numbered i to j inclusive (Figure 6). T[1..i] 
will be referred to as forest(i), when the tree 
referred to is clear. T[ / ( / ) . . / ]  will be referred to as 
tree(i). Size(i) is the number  of  nodes in tree(i). 
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T rp .. 71 

~II ~6] ~171 ~II ~21zt41 rt51 

T[4] T[5] 

"IU] 

Figure 6. Postorder T[1 .. 7] = forest(7) 

r111 .. l(1)-l] rlO(1)..i] r211., l(j).l] r20(j), fl 

Figure 7. Case 3. holds when ( i , j )  
is in mapping 

The distance between T1[i'..i] and T2[j'..j] is 
denoted dist(Tl[i ' . .i], T2[j'..j]) or dist(i ' . .i, j '..j) if 
the context is clear. We use a more  abbreviated 
notation for certain special cases. The distance 
between Tl[1 .. i] and T211 .. j]) is sometimes 
denoted forestdist(i , j) .  The distance between the 
subtree rooted at i and the subtree rooted at j is 
sometimes denoted treedist(i,j).  

3. Basic Algori thm 

We compute forestdist(i,j) for  1 < i ~ N1 
j ~ N2. Let M be a minimum-cost  map 
forest(i) and forest(j). The distance is 
minimum of these three cases. 

(1) 

(2) 

(3) 

and 1 
between 

the 

Tl[i ] is not touched by a line in M. So, 
forestdis t  ( i , j )  = forestdist  (i - 1 , j )  + 1. 

T2[j] is not touched by a line in M. So, 
forestdis t  ( i , j )  = forestdis t  ( i , j  - 1) + 1. 

T1[i ] and T2[]] are touched by lines in M 
(Figure 7). By the ancestor and sibling con- 
ditions on mappings, ( i , j )  must be in M. 
By the ancestor condition on mapping, any 
node in the subtree rooted at Tl[i ] can only 
be touched by a node in the subtree rooted 
at T 2 [j]. Hence,  forestdis t  ( i , j )  = 
forestdis t  (1 ( i ) -  1, l ( j ) -  1) 
+ dist (T 1 [1 ( i ) . . i  - 1], T 2 [1 ( j ) . . j  - 1]) 
+~I(Ti[ i ] -T2[ j] ) .  When either l ( i )  ~ left- 
most child of T 1 or l ( j )  # leftmost child of 
T2, we Call USe the equation 
fores td i s t ( i , j )  = f o r e s t d i s t ( l ( i ) -  1 , l ( j ) -  1) 
+ treedist ( i , j ) .  

These three cases specify a step of a simple 
dynamic programming algorithm. Because of case 
3, any subtree-to-subtree distance may be required. 

[TilIT2[ 
So, the time complexity is O ( ~ ~ size (i) × size (j))  

i•ljffil 
= O ( [ T 1 ] ×  ] T 2 ] × L I × L 2 ) .  

4. Improving the simple algorithm 

4.1.  Review of  Landau-Vlshkln  algorithm 

In the following discussion, diagonal d corresponds 
to the the set of  distances {stringdist(i,j) [ i - j = 
d}. (The name diagonal comes f rom the distance 
matrix in the naive dynamic programming algo- 
ri thm.) 
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a 

Figure 8a. Different Trees May have 
the Same Postorder Traversal 

(Here, bca) 

d d 

forestdlst(3,2) = forestdis~(5,4) 

Figure 8b. Label with Number of 
Children Seems not Necessary 

(Even though d has a different number of 
children, editing operation is "delete b °') 

d d 

forestdist(3,2) ~' for~,u.list(5,4) 

Figure 8e. Label with Number  of 
Children Seems not Sufficient 

(even though both have traversal with 
children sequence {c,0}, {e,0}, {d,3}) 

The basic algorithm of [LV86] is 

for  p := 1 to ~21 do 
for diagonals d between -p and p inclusive pardo 
compute maximum row i in d such 
that stringdist(i, i+ d) ~ p 
exit program when 
stringdist (IS 1 [, IS2 I) is computed 

Here  is the computation for a given diagonal at 
stage p. 

(1) Find a row i in diagonal d with value p 
(consult diagonals d -  1 and d+ 1 for this). 

(2) Jump to i + h if h is the maximum value 
such that S l[i..i + h ]= S2[i + d..i + d + h ]. 

Both steps can be done in constant time, where step 
2 uses a suffix tree. So the whole algorithm takes 
O (k) time, where k is the actual distance between 
the two strings. 

4.2.  Problems in applying this approach to trees 

Problem 1: We would like to use suffix trees based 
on some traversal order, but a traversal order on 
labels alone is insufficient as Figure 8a shows. On 
the other hand, it is well known [Knuth vol. I, p. 
350] that any traversal (we use a left-to-right pos- 
torder traversa!) in which each label is associated 
with the number of its children is sufficient to 
specify the tree. We will call that traversal SLR. 

Problem 2: Identical traversals with children are not 
necessary. That is, forestdist(i,j) = forestdist(i+ h, 
]+ h) is possible even though 
SLRi[i+I..i+h]~SLR2[j+I..j+h]. See Figure 
8b. 

Problem 3: Identical traversals with children are not 
sufficient. That is, forestdist(i,j) < forestdist(i+ h, 
j + h) is possible even though 
S L R i [ i + I . . i + h ] = S L R 2 [ j + I . . j + h ] °  See Figure 
8c. 

So, what are these traversals good for? -- we hear 
you cry. Well, if the single node labeled e in Fig- 
ure 8b or in 8c were replaced by a tree (or even 
forest) of size r, then in both cases 
forestdist (3,2) = forestdist (3 + r, 2 + r) and this would 
be discovered by establishing that 
SLRI[3+ 1..3 + r ] =  SLR2[2+ 1. .2+ r] .  
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Part 1 

I I 
i J 

Part 2 

Ii i1 I il 

j+q 

Part 3 

1 

j+q 

j + h  

@ 
Figure 9. Three Parts to Basic Jump 

(goal is to find largest h usch that forest( i+h,  j+h)=fores t ( i , j ) )  

4.3. Overvtew of Our improved algorithm 

Having discussed these problems, we will now see 
how our algorithm deals with them. Figure 9 shows 
the three parts of the basic jump along one diago- 
nal. Parts I and Ill are analogous to the string 
case, whereas part II requires special attention. 
Our algorithms differ in how they perform part If. 
We present only algorithm 3's approach, because 
algorithm 2, which uses binary search in part !I is 
slightly more complex. 

Part I finds the first l such that ( i , i + d )  must be in 

any mapping such that forestdtst (i,i + d) = k. In that 
case, we l e t j = i + d .  If no such i exists then stage k 
is over for this diagonal. 

Part H determines the maximum ancestors Tl [ i+q]  
(of TI[i]) and T2 [ j+q ]  (of T2[j] ) such that 
forestdist(i  + q , j  + q) = k. 

Part HI then determines the maximum h such that 
fores td i s t ( i+h , j  + h ) = / ,  using a left-to-right pos- 
torder suffix tree. 
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Forest F Forest F 

If d~lO~t')~O then dist(F,F')~dist~2,f2' ) 

Forest F Forest F '  

d s t ( f 2 f 2 ' ) ~ O  ~ dlst(F,F)~di,~t(flu¢l ') 

Forest F Forest F 

g ~idi')=0 and dis~3 J3')=0 then ~(F,F')~st (/'2,A') 

T T 

A A  
If shaded part of the two trees m'e the same, then dist((T,T)=dist(t,t') 

Figure 11. Quarantined Subtree Lemma 

Figure 10. Proper Forest Lemmas 

4.3.1. Doing part II 

One particularly difficult problem in part II is that 
determining that forestdis t ( i l , j l )=k may require 
knowing that treedist( i l , j l )=k.  Our ability to 
determine that fact without waiting depends on the 
following definitions and lemmas. 

Definition: Given forest F, we say that F[i..j] is a 
proper forest of F if the subgraph induced by the 
nodes i through j in the post-order numbering of F 
has the following property: if n is in F[i..j], then all 
children of n in the tree F are in F[i..j]. 

Lemma 2 (two sided proper forest): Suppose 
Fl[1. .m ] and F2[1..n] are ordered forests, Fl[1. .x ] 
is a proper forest of F 1, F l Ix + 1 . . y -  1] is a proper 
forest of  F1, F2[1..x] is a proper forest of  F 2. and 
F2[x + 1..z - 1] is a proper  forest  o f  F2. I f  F 111..x] 
is identical to F2[1..x] and Fl[y. .m] is identical to 
F2[z..n]. then dist(1..m, 1..n) = dis t (x+l . .y-1 ,  
x+ 1..z-1). (See Figure 10.) 

We now propose the analogous property for trees. 

Definition: Suppose Tl[1. .m] and T2[1..n] arc 
ordered trees, Tl[l(i). . i] (tree(i)) is a subtree of T1 
and T2[l(j) . . j] (tree(j)) is a subtree of T2. We say 
that the only difference between Ti and T2 is between 
tree(i) and tree(j) if replacing both tree(i) and 
trec(D by a single node with the same label makes 
T1 and T2 identical. 

Lemma 3 (Quarant ined Subtree) If the only differ- 
ence between Tl and T2 is between tree(i) and 
tree(j) then dist (1 . .m, l . .n)--dis t ( l ( i ) . . i , l ( j ) . . j ) .  
(Figure 11.) 
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up(i,jr~(s,t) shaded part of the two trees are the sarae 

Figure 12. up(i,j) 

$. Algorithm 

To do part H fast,  we  use a predicate up obtained 
by one application of  suffix trees on the left-to-right 
and right-to-left pos torder  traversals. 

Definition: Given trees T1 and T2 and a pair of sub- 
trees (tree1(i), tree2(j)).  Define up(i , j)  to be a pair 
of subtrees rooted at (s, t) satisfying the following 
(Figure 12): 

1) treel(i) is a subtree of  t reel(s)  and tree2(j) is a 
subtree of  treez(t). 

2) (tree1(s), t ree2(0)  is the largest subtree pair 
(equivalently s and t are the greatest ancestors of  i 
and j) such that the only difference between them is 
between tree1(i) and tree2(j),  ta 

Figure 13(b) shows the application of up(i,j). 
Notice that the right-to-left postorder suffix tree 
will examine forests to the left of  treel(i) and 
tree2(j) as well as ancestors of  i and j .  

5.1.  Bottom up algori thm for part II 

P a x  I has established the condition in Figure  13(a). 

Start Find up( i , j )=  ( i 2 j 2 ) .  Using the p rope r  forest 
and quarantined subtree  lemmas,  we  k n o w  that 
forestdist (i 2 ,j2) = k: Let  i I =parent (i2) and 
j l=parent ( j2) .  The hard question is whether 
jbrestdist (i 1 ,J !) = k. 

This is only possible if 
T1[iz + 1..il - 1]= T2[J2 + 1. . j l  - 1] and 
Tl[il]=T2[Jl]. (That can be de termined by  one 
application of  a suffix tree.)  Otherwise  ( iz , jz)  is 
the answer to part IL 

If so, there are three cases° 

(1) If fores td is t ( l ( i l ) -  1 , 1 ( j l ) -  1) has not  been 
computed up to stage k - 1, then 
fores tdis t ( i i , j l )>k so ( i2, j2)  is the answer 
to part II. 

(2) If f o r e s t d i s t ( l ( i l ) - l , l U 1 ) - l ) > O  , then We 
can check whether  treedist ( i  I ,J  1) = k 
- forestdiat (l (i l ) -  1 , 1 ( j l ) -  1). If  not ,  then 
forestdis t( t l ,J l )>k so (i2,J2) is the answer 
to part  II. If so, then forestdis t ( i l ,J l )=k 
and go to Start setting i=i  1 and J=J l .  

(3) If f o r e s t d i s t ( l ( i l ) - l , l ( j l ) - l ) = O  then 
fores tdis t ( i l , j l )=k,  so go to Start setting 
i=i l  and j = j l .  

Case 1 holds because treedist( i l , j l )>O by definition 
of  predicate up. Case 2 poses no difficulty either 
except as far as running time is cconeerned. In both 
case 2 and case 3 if fores td is t ( i l , j l )=k,  then 
treedist( i l , j l )>treedist( i , j ) ,  so we can return to 
Start only at most  k times at stage k. 

The third ease is quite subtle, involving all the 
machinery we have presented so far. It may help 
the reader  to refer  to Figure 13(c). 

L e m m a  4 (bottom np hop):  If 
O. up (i,j)= (i2,j2), ii =p (i2), Jl =P (J2)- 
1. forestdist( i , j)=k and (i ,j)  must be in the map- 
ping with cost k f rom forest(i)  to forest( j ) .  
2. T l [ i 2 + l . . i l - 1 ] = T 2 [ J 2 + l . . j l - 1  ] and 
Tl[ l]=T2 l]. 
3. forestdist (1 (i 1) - 1, I U 1) - 1) = 0. 

then forestdist (il , J l )  = k. 
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(a) 

(i,j) must in best " m a p p i n g  ~ 

t I 
(b) 
up O,J)= (i2,J2) 

/ @ 

(c) 

p ( i 2 ) ~ - i l  andp( . j2 ) - - j l  ~1 [ ° 

I t 1  

A 

f 
J l  

Figure 13. Hard Case for Bottom-up Approach 

Proof: By lemma 3 (quarantined subtree) and con- 
dition 0, treedist  ( i 2 , J 2 )  ----" treedist  ( i , j ) .  BY condition 
1, k = fores td i s t  ( i , j )  = treedist  ( i , j )  
+ f o r e s t d i s t ( l ( i ) - l , l ( j ) - l ) .  By lemma 2 (proper 
forest) and condition 0, f o r e s t d i s t ( l ( i ) -  1 , / ( j ) -  1) 
= fores td i s t  ( l  (i2) - 1,1 (]2) -- 1). 
Putting this together, 
k = treedist ( i 2 , J 2 )  +forestdist (1 ( i2 )  - 1,1 ( J2)  - l ) .  So ,  

fore~tdist ( / 2 , J 2 )  -- k. 

By condition 3 and lemma 2 (proper foresQ, 
fores td i s t ( l  ( i2) -  1,l ( ]2 ) -  1) 
= d i s t ( l ( i l ) . . l ( i 2 ) -  1 , / ( j l ) . . / ( j 2 ) - l ) .  By condition 
2, treedist  ( i I ,J 1) = tr eedist  (i2 ,J2 ) 
+ dist  (l (i 1 ) . .  l (i2) - 1, l (j 1).. l (.]2) - 1) -- k. By condi- 
tion 3, this implies that fores td i s t  ( i l , j l )  = k. a 
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5.2. Timing Analysis 

As mentioned above, we may retarn to Start at 
most k times at stage k. There are only k stages if 
the final distance between the two trees is k. The 
extra factor of log k as shown in the first table is 
due to the fact that we do not store all of 
forestdist(i,j). Instead, we just store points where 
the distance changes in an array f.  f (d,p) is the 
maximum row number r such that the intersection 
between diagonal d and row r + 1 holds a number 
that is greater than p, but row r holds a number 
that is less than or equal to p in the distance array. 
To determine forestdist(i,j), we use binary search, 
requiring O(log ~) time. 

IDA82] Delihas, N. and Anderson, J. (1982) "Gen- 
eralized structures of 5s ribosomal RNA'~ °~ 
Nucleic Acid Res. 10, p. 7323. 

[DD87] Deckman, I. C. and Draper, D. E. (1987) 
"S4-alpha mRNA translation regulation complex," 
J. MoL Biol. 196, pp. 323-332. 

[Knuth] D. E. Knuth, The Art of Computer Pro- 
gramming, vol. I Addison-Wesley, Reading, N/ass. 

[LV86] G.M. Landau and U. Vishkin, "Introducing 
efficient parallelism into approximate string match- 
ing," Proc. 18th ACM Symposium on Theory of Com- 
puting, 1986, pp. 220-230. 

So, the total time is O(k21og k). Finally, the addi- 
tive O(log N) factor is required to build the suffix 
tree. 

[LSV87] G.M. Landau, B, Schieber, and U. Vish- 
kin, "Parallel construction of a suffix tree," Proc. 
14th ICALP, Lecture Notes in Computer Science 
267, Springer-Verlag, 1987, pp. 314-325. 

$.3.  Processors 

To determine whether two T1 and T2 are distance k 
apart or less, hereafter called the within k distance 
problem it is only necessary to evaluate treedist(i,j) 
if [ i - j  [<k. There are k x N  such subtree pairs. It 
is only necessary to evaluate the 2k + 1 center diag- 
onals of each subtree pair. So, O(k2xN)  proces- 
sors are needed for that problem. 

We reach that processor bound for the full problem 
by the simple trick of evaluating the within k dis- 
tance problem for successive powers of two. This 
less than doubles the time complexity and achieves 
the desired processor bound. 

The full paper with the two method of calculating 
part II and all the proofs  can be obtained from the 
authors. 
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