
MAINTENANCEOFVIEWS

Alon Itaa

Computer Science Department
Techmon - Israel Institute of Technology,

Half a Israel

In relational databases a www definzhon

IS a query against the database. and a anew

muferiulazatunt is the result of applying the

veer defimtlon to the current database A

view materiahzatlon over a database may

change as relations m the database undergo

modifications

In this paper a mechanism is proposed m

which the view IS matenahzed at all times

The problem which this mechanism

addresses is how to quickly update the view

in response to database changes A struc-

ture is maintained which provides

mformatlon useful in nunumzmg the amount

of work caused by updates

Pernusston to wpy w&out fee all or part of this matenal is granted

provtded that the copies are not made or dlstnbutcd for dnzct

wmmerctai advantage, the ACM copyrtght notice and the title of the

pubhcauon and its date appear, and notux IS gtven that copymg LS by

permaxxon of the Assoclatlon for Computmg Machinery To copy

otherwise, or to repubhsh, reqmres a fee and/or specdic pernussion

0 1984 ACM O-89791-128-8/84/006/0240 $00 75

Methods are presented for handling both

general databases and the much simpler

tree databases (also called ucyclzc database)

In both cases adding or deleting a tuple can

be performed m polynomial time For tree

databases the degree of the polynonual is

independent of the schema structure while

for cychc databases the degree depends on

the schema structure The cost of a

sequence of tuple additions (deletions) IS

also analyzed

1 INTRODUCTION

Consider a view V over a database D

The view may change as relations m D

undergo modifications Usually, views are

not materialized until needed In many sys-

tems views are never materialized Instead,

queries against the view are mod$ed to

reflect the view definition When mews are

materlahzed, they remain valid as long as

the underlying database remains

unchanged

240

In this paper a mechanism IS proposed in

which the view IS matenahzed at all times

The problem which this mechanism

addresses IS how to qmckly update the view

m response to database changes A struc-

ture IS mamtamed wbch provides mforma-

tion useful in mmlrmzmg the amount of

work caused by updates

The concept of tree database (also called

acyclw database) IS utlhzed Acychclty 1s a

property of the database schema which has

mde imphcatlons m query processmg [GSl-

GS4, GST. Yanl. dependency theory

[BFMMUY, BFMY, Fag, FMU, Hull and schema

design [BFMY. HUl-MU23 Mathematical pro-

perties of acychclty have also been studled

[GS4-GS5. GST, MUl, TY]

It has been shown [BC, BG. GS2. Yan]

that certain queries which Imply acyclic

databases, called tree quertes, appear easier

to process than queries which imply cychc

databases (called cyclzc querzes). and that

the crux of query processmg IS constructing

a tree {actually an “embedded tree”) [GSS.

GST]

The proposed mechanism consists of

malntammg an acychc database at all times

together with mformatlon that may be use-

ful for future addltlons and deletions If the

database IS cychc. then It IS made acychc by

addrng relatrons The added relations are

called templates

Dunng addltlons (or deletions) base and

template relations undergo modlficatlons to

reflect changes to base relations Changes

propagate towards the database root where

relations are mewed as tree nodes

Consider adding and deletmg tuples

startmg from an mitlally empty database,

the cost of 71 such operations is Illustrated

m the table below (c, T and y are schema

dependent parameters, all less than k - the

number of relations)

2 TERMrNoLooY

2 1 Relational Databases

A relatmn schema 1s a set of attnbutes

and a database schema (or simply schema) 1s

a multi-set of relation schemas l A relatin

state I? for relation schema R IS a relation

over R’s attnbutes, a database state for

schema D IS an assignment of relation states

to D’s relation schemas A relation R 1s total

m database D if It contains all Its possible

tuples composed of values appearmg some-

where m the database, I e d

R=%mt(“ROW) We use D = (RI

,-* RJ to denote a database schema and

D = (R,, , Rk) for a correspondmg state

* All structures 111 thm paper are dnlte

241

Tree databases

A am&e addltmn A sequence of n
or deletion additlons

O(nnlogn) O(nlogn)

Cyclic database6 I
o(n T

7’“’
fL rlogn) 0(--I-,

I 77’’
7logn)

We use W for natural Join and [XJ for

proJecton onto attribute set X Define

J(D) = bd 4,
RED

we use J instead of J(D)

when D is understood Tuple t over schema

R matches tuple s over schema S d t[RnS]

= s[RnS]

A wew dejlnition 1s simply a set X c U of

attributes. a vww materuxlzzatum V is

V = J[Xj Our class of crews appears to be

qmte hnuted. however, as is shown in [BG].

thm class encodes a much larger class -

those views defined by equljom queries

2.8 Tree Schemaa

A gual graph’ for D 1s an undirected

graph whose nodes are in one-to-one

correspondence lnth the relation schemas

of D, such that for each attrlbute A. the

subgraph induced by the nodes whose

corresponding relation schemas contain A IS

connected [BG] D IS a tree schema d some

qual graph for it is a tree, otherwlse D 1s a

cyclic schema See Fuure 2 1

l We we tr~dltional graph theory notation

A database is a tree database (or an ucy-

clw database) d the underlymg database

system 1s acychc, othemse It IS a cyclzc

database

The f ollowmg simple procedure,

discovered independently by [Gra] and [YO],

recognizes tree schemas The procedure

applies the followmg two steps until neither

IS applicable

Step 1 Delete any attnbute which appears

m exactly one relation schema

Step 2 Fmd two relation schemas R and S m

D such that R r: S, delete R from D

It can be shown that the original schema

was a tree schema iR upon termmatlon of

the above procedure the database schema

consists of a single (empty) relation schema

(A hnear time algonthm for recogmzmg tree

schemas appears m [TY])

3 ADDRlONSlNTOATREEDATADASE

Let us consider a special case Suppose

for some 1” sn, XCR, Furthermore,

assume the view RI, ,Q constitute a tree

schema Let T be a qua1 tree lnth & at Its

242

root (R, 1s called the root relation and the

relations at the leaves are called leaj rela-

tlons)

Let R, be a node m T and R, Its cluld

Tuple t E Ez, 1s supported by tuple s E R, rf t

matches s A tuple t E R, IS good If every

child R, of 4 has a good tuple s E RJ which

supports t Also, all tuples m a leaf relation

are considered good Tuple t E R, 1s compu-

tible below wxth a child relation R, d there IS

a good tuple st E Rj which supports t

Hence, t E 4 IS good iff t IS compatible

below Pnth all of R’s chrldren

Inttutlvely. a tuple t E I?, 1s good lf It 1s

unanimously supported by all Its children.

Its children’s children and so on, 1 e t

belongs to the proJection onto R, of all the

relations in the subtree rooted at R,

Observe that t E I;; may contrlbute to J(D),

and therefore possibly to V, lff t IS good In

other words, all non-good tuples, whmh we

call bad, pnll definitely not contribute to

J(D) and V

Consider the database of Fig 3 I, with

X Z. RI The relations Rs, % and Rs are leaf

relations and therefore all their tuples are

good Only the first two tuples of RS are

good (E g <47,8,SF> matches <47.90> E R+

and <4?.Whlte,SF> E R5, and <99,15,LA>

matches <QQ,Brown,LA> E R5 but no tuple of

R4) Tuple X3.8> IS the only good tuple of R,,

It matches the good tuples <47,8,SF> E us

and <S,L> E R, Tuple <9.17> E R, 1s bad

because all the R, tuples It matches are

bad

The partition of each original relation

into a good part and a bad part 1s helpful

when processmg updates We start by dls-

cussmg tuple addition mto the tree data-

base of Fig 3 1 There are three cases to

consider - the relatron is a root, a leaf or an

internal node

(2) Root Suppose t,=<9,8> 1s added to RI to

mdlcate that suppher number 55 now sup-

plies part 8 Tuple t I is good since it 1s sup-

ported by the good tuples <55.&LA> E Rs

whmh indicates that project 55, located at

LA, requires part number 5, and <Q,L> E Rz

mdlcatmg that the service level of supplier

number 9 1s rated L On the other hand,

adding the tuple t,=<7.99> to RI cannot

possibly change the view since it is not sup-

ported by any good tuple of R, (The fact

that It IS supported by the good tuple

<7,&i> E R2 IS unmatenal) Thus t2 should be

added to bad(R1)

(22) Leaf Suppose t9=<99,30> 1s added to Re

mdlcatmg that project 9 has been assigned

a budget 30K First, leaves only have good

243

Parts Thus t3 1s added to good(R,) Now, It

IS possible that the new addltlon may

change the good part of Rs (which 1s

equivalent to changing an internal node and

1s discussed below) Namely,

t,=<99,15,LA> E R,. previously supported

only by the good tuple <99,Brown,LA> E R5

1s now also supported by t,. thus t, should

move to the good part of R3 This effect

rmght propagate up the tree On the other

hand <99,15,SF>, which also matches t3,

remains m bad(RS) since even now It 1s not

supported by any Rs-tuple To summarize, d

the new tuple 1s good, we should check the

matching tuples in the bad part of the

parent node because now some of them can

become good

(%a~) internal Node Suppose t,=<70,18,DC> 1s

added to R, Tuple t, 1s good since it 1s sup-

ported both by <70.50> E Rd and by

<70,Black,DC> E R5 As mentioned above,

changes to an internal node may propagate

upwards We now have to check d t, is com-

putable above - 1 e matches anth tuples m Its

parent relation Indeed, t, matches

t6=<19,18> and t,=<20,18> E RI Hence ta

becomes good since it. 1s supported by

<19.&I> E R2, while t, remains bad since it is

not supported by any (good) Rz-tuple

Consider an empty database over our

fixed schema To this state apply a

sequence of n tuple addltlons (mto various

relations) Throughout this addition process

maintain the database as above - I e mth

good-bad partitions Compatlblhty above IS

checked only when a tuple becomes good A

tuple t 1s thus compared to all tuples m Its

parent node, and d we find a matching bad

tuple s. s IS checked for compatibility

below, smce potentially s may have become

good Thus, each time a tuple becomes good

it mltlates O(n) compatlblhty checks Each

compatlblhty check compares a tuple Pnth

all the tuples m a parent (or child) node

Thus, m the worst case, each tuple IS com-

pared to all other tuples, costing 0(n2)

time Thus, the cost of n additions m this

naive scheme 1s 0(n3)

The followmg good--bad murhng scheme

reduces the number of times t IS checked

for compatlblhty below Consider a tuple t

m bad(R3) (see Fig 3 1) It may be there

because either

(1) t [PROJf 1s not mentioned m R4. or

(u) t [PROJ#,LOC] IS not mentioned m R5

However, we have no mformation as to which

of these cases hold To remedy this sltua-

tlon, mth each tuple m bad(R,) we associate

244

mELrks For example, an R4-mark would mdl-

cate that t could And no match m R4. hke-

wise, for an Rs-mark As relations change

marks may need updating

Data structures

We now descrrbe the data structures

employed and

operations are

(node) 4 with

how the insert and delete

performed Consider relation

tree parent l$, and children

Rl* , R, Define Z, = R(@,,, The follow-

ing balanced trees* are associated mth 4

(a) For each child R,,,. a tree C, contaunng

all tuples of &[L] For each w,,, E. Cm

we associate the hst of tuples t m R,

with w,=t[&] and a good -counter

lndmatmg the number of good tuples

(m R”,) whmh support It

(b) Tz - containing all the tuples (good and

bad) of 4. each tuple has a

murk -counter whmh counts the

number of bad marks It has and a

pointer (called the up-powder) to the

tuple v=t[Z,J E C, (t has an h-

mark iff w,,,‘s good-counter is equal to

zero)

l 00. a set w~t,h n elementr. the operations msert.

delete and member can be performed in C(logn)

when the set 18 implemented as a balanced tree.

examples for balanced tree schemes m&de AVL

trees and 2 3 trees [mu]

We should note that that m all the

appearances of t m these trees, it is the

same t, 1 e t has a record structure which

allows it to exist concurrently on several

hsts

opel-&.lOllS

Consider a tuple t m 4 with v = t[G,]

and w,,, = twun1

Ense9-t(tn&)

A First, t 1s mserted into the tree T, and Its

mark-counter IS set to zero

B For each child R,,, treat Cm as follows

(4 If zu, does not appear m C, then

insert rt mto C,,,, and set Its good-

counter to zero Add t to w,‘s hst and

If wm’s good-counter > 0 then add 1 to

t ‘s mark-counter

(b) Once all C;nr’s have been treated, d

t’s mark-counter > 0 then t 1s bad and

we are done, otherwise t IS good and we

set t’s up-pomter to v’s appearance in

C’, (Of course, d v does not appear in

C’. then it 1s mserted) Finally. v ‘S

good-counter m Cp2 1s incremented by

1

(cl If incrementing v ‘s counter

transformed It form 0 to 1 then v ‘S hst

IS scanned and each tuple on this hst

has Its mark-counter decremented If

now some tuple s on v’s hst has Its

245

mark-counter equal to zero (1 e it

became good) then stage (b) above need

be (recursively) applied to s

Delete (t ,&)

A Delete t from the tree Z!! m 4

B For lsrnsc , delete w, from the tree &,

if t was the only tuple on wm’s list and wm’s

good-counter is zero, then delete w, from

cm

C If t was good then the good-counter asso-

ciated with v in %s is decreased, (if it

becomes zero and v’s list is empty then v IS

removed from Cpt) This may remove support

from s-tuples v’s hst IS scanned and each

tuple has its mark-counter incremented If

some tuple’s mark-counter changes from 0

to 1 then the tuple is now bad and stage C of

Delete has to be (recursively) applied to this

tuple and %

Addition Analysis Consider adding a tuple t

mto relation 4 where the database contains

n tuples (we use the same notation as

above) Entering t mto < costs O(logn)

Entering t into W~‘S list (recall that

w,=t[&] belongs to C’) costs O(logn), as

there are c such trees, the overall cost is

O(clogn) The analysis of t’s interaction (m

case t is good) with % m a bit more mtri-

cate First. the good-counter of v m CPs has

to be incremented at a cost of O(logn) Now,

246

d as a result of this the counter has

changed from 0 to 1, mark-counters for

tuples on v ‘S list are updated This updat-

ing may cause some bad tuples m s to

become good and the effect propagates up

the tree

The crucial point m the analysis is that

the effect propagates on the unique path

from 4 to the root and that m each relation

node R along the way each tuple can lose at

most one mark - the one correspondmg to

the unique child S of R which also lies on

the path from 4 to the root Turnmg s E S

from bad to good costs only O(1) time since

we use t’s up-pointer to access the hst m

the appropriate C-tree in R’s parent

Hence, since there are n tuples m the data-

base, the overall cost of the propagation

effect is C(n) Summanzmg, the overall cost

of inserting t is O(c logn+n)

Deletion Analysis Fmdmg t and deleting it

from T, and the lists on the C,, trees can be

done m C(c+logn) time However, if t was

the only tuple on a hst m C, and the value

w,,, has a zero good-counter then UJ, needs

to be deleted (O(logn) time) Thus the

overall cost of updating T and the c trees IS

O(clogn) If t was bad we are done Other-

wise, v’s good-counter m Cp2 is decre-

mented, if it becomes zero then, effectively.

an R,-mark is added to the tuples on v’s

hst If this transforms some tuples rn 5

from good to bad the effect nnght propagate

up the tree Again. the number of marks

that can be added to all tuples m the

database m the course of a single deletion is

bounded by n Hence, the overall cost of a

single deletion IS O(c logn +n)

Theorem 3.1 A single tuple can be added or

deleted from a tree database with n tuples

in O(n +c logn) time

By the above theorem, any sequence of

m operations durmg which the database

never contamed more than n tuples costs

Oh4 Another complexity measure is

amortwed cost, the cost of adding n tuples

into an mitially empty database The main

observation here is that m the course of n

additions at most n tuples can become good

and each tuple can lose at most all its

marks Thus the amortized cost for n addi-

tions (and no deletions) mto a node with c

children is O(cnlogn) We summarize this by

Theorem 3 2 Consider a sequence of n addi-

tions to an mitially empty database or n

deletions and no additions apphed to a

database with n tuples This sequence can

be performed in O(znlogn) time, where c is

the maximum number of children of a node

in the qua1 tree

If the view attnbutes are not contained

in any relation schema, or if the database is

not a tree database, we transform the data-

base and view to the previous case by

adding new relations that we call templates

The problem of finding suitable templates

w-ill not be addressed here, see [GS4,GST]

One can think of templates as mcludmg in

principle “all possible tuples” One way to

achieve this IS to let a template be total

w r t the database This is fairly wasteful

and we shall see other ways of maintaining

templates in which only relevant tuples are

mamtamed In general, templates contam

tuples which are computed 111 various ways

from database relations, 1-e template tuples

are generated from orqyanal tuples

Observation 1: Let D=(RI, ,Q) be a data-

base and let S be a relation such that

SM(D)[S] Then for all X

(1 e a view cannot be affected by adding S)

fief: By elementary properties of the Iom

operator

Observation 2: Let D=(Rr , ,Q) be a data-

base and let S be a relation such that there

exists a tuple t in ((W,L,&)[S])\S Then
=

for some X it LS possible that

247

Aooj. There exists a tuple u E J(D) such

that u[S]=t However, since t L s.

k
u #! (W, rli;) W S If there IS no tuple e

v # u in J(D) such that v [Xj=u[Xj. then

Consider first the case of a cychc data-

base m which the view attnbutes are con-

tamed m some relation, the other cases are

sirmlar Assume the database was treefled

by adding some templates For the good-

bad mechanmm to function. by Observations

1 and 2. each template S must at least con-

Next, we dmcuss various schemes for

extending the good-bad mechamsm to tem-

plates Unhke relations where the “base set”

of tuples 1s Axed. templates may undergo

changes when base relation tuples are

changed the template base set may grow as

a result of addmg a tuple to the good set of

a base relation, or shrink when such a tuple

is deleted The problem 1s parametrized

according to the treefied schema structure

We use the followmg parameters

T - the number of templates

Y - the maxunum number of generators

(defined below) per template

n - the maximum number of children of a

node in the resulting qua1 tree

Let D be a database schema treefied by

addmg r templates Consider the process of

adding n tuples to an uutlally empty data-

base state D We separate the cost mto two

parts that of finding the tuples to be

entered mto the templates and that of

entering all the tuples into the database,

the latter consmts of the cost of the addl-

tlon of the n original tuples and the cost of

addmg template tuples. both usmg the

good-bad mechanmm We have the followmg

theorem

Theorem 4 1 Addmg n tuples mto an ml-

tlally empty treefied database requires

adding at most O(T 2n) tuples mto tem-

plates

BVJO~: An addition of a tuple t mto a relation

R may mtroduce a “new value” t[S] for tem-

plate S Let s =t[RnS] To enlarge the tem-

plate we simply duplzcate S and m one of the

copies replace the RnS columns nnth s

Thus, the addition of a tuple may double the

number of tuples in each template The

result follows smce there are n orrgmal

tuples and T templates

[I

248

Corollary Addmg n tuples to an mitially

empty treefied database requires at most

O(nm2n) time

BOON. By Theorem 4 1 N=T~~ tuples are

added, and by Theorem 3 2 this costs

O(rNlogN) time

[I

The above result IS discouraging since

the cost is extremely high even for a small

number of tuples As we shall see, we can

substantially improve this result

The manner m which templates are

enlarged determines the cost of extending

the good-bad mechamsm Let S be a tem-

plate over attributes S. One way to generate

relevant S tuples IS to Jam enough database

relations so as to obtain all of S’s attn-

butes Formally, the relations R,, ,I$ are

a generator set for S provided S s u n Rr* 6=1

they generate S’ = (W,li&)[S] S’ can

then be partltloned to good(S) and bad(S)

by the usual procedure In other words, we

have described a method for mstantiatmg a

candidate for contammg both the good and

the relevant bad tuples in a template (Bee

Figure 4 l(a))

The cost of tuple additions 1s dommated

by the correct maintenance of templates.

1 e when a tuple is added to the good part of

a generator relation. the templates for

which it is a generator might have to be

enlarged This means Iouung the new tuple

with all the other generators, a potentially

costIy procedure (O(n7)) Smce there are

at most n such additions the overall cost IS

O(nv+‘) (A closer analysis reveals that the

cost 1s O(7-;7-1 n7))

The following refinement will enable us

to reduce this cost For each template we

shall build a generator tree which 1s a full

binary tree, the template is at its root and

the generators at its leaves An internal

node consists of the]om of its two child

relations (Note that the generator tree IS a

separate structure which comes m addition

to the usual qua1 tree and the various bal-

anced trees See Figure 4 l(b))

In order to compute the cost of n addi-

tions into the generator relations of a tem-

plate S we make the following observations

(1) When a tuple enters a generator rela-

tion, it has to be compared to its sibling

m the generator tree m order to popu-

late their parent

(2) Each leaf contains at most n tuples

(a) The parent of nodes mth ml and rn2

tuples has at most ml m2 tuples Conse-

quently, a node at distance h from the

leaves has at most nP tuples

(4) The cost of adding ml tuples to a child

249

and m2 tuples to Its sibling 1s exactly

m,m2* the maximum size of their

parent

(5) The cost of all the additions mto a set of

generators 1s equal to the sum of the

sizes of all the internal nodes of the

generator tree

Theorem 4 2 Suppose n. tuples are added to

an initially empty database The time

requu-ed to add all template tuples IS

O(T(y7t

AooI: First. consider two srbhng nodes m

the generator tree mth a total of m tuples

The number of tuples m their parent node 1s

maximum when each of the siblings has F

tuples Therefore, the number of tuples in a

generator tree 1s maximum when all Its

leaves have the same number of tuples The

worst case occurs when there are 7 leaves

and exactly F tuples per leaf, m which case

the total number of tuples IS

1°f(92 z = 0
(Cl 7 2f I 97 I

Since there are T templates the total cost IS

0 I 1 T(37

[I

Corollary Addmg or deletmg a smgle tuple

to a treefled database contauung n ongmal

tuples requires at most O(r(:)7 + qlogn)

time

Corollary Adding n tuples to an initially

empty treefied database requires at most

0(KT nqogn) trme
774

This IS more encouraging than the corol-

lary to Theorem 4 1 smce in many practical

applications y is small

Finally, we note that the cost of a single

deletion can be quite high, since it may

cause many tuples m templates to become

bad, costing the same as n additions Prac-

&ally, rt seems better to do the followmg

each time we delete a tuple we also delete

all tuples it helped generating (in tem-

plates) Thus, at all time, when n ongmal

tuples are in the database, there remain at

most O(T(:)7) tuples m the database

CONCLUNONS

The problem of dynanncally mamtammg

a class of views has been exannned A

scheme mcorporating various structures

was proposed as a mamtenance mechanism

for views in the class

The complexity of updates 1s polynomial

for tree schemas the degree of the polyno-

nnal 1s independent of the schema structure

while for cychc schemas the degree depends

on the schema structure We do not know

250

whether the bounds we found are tight and

we leave rt as an open problem Note that rf

the balanced trees are replaced by hash

tables the complexity 1s reduced by a factor

of logn (on the average)

This paper also suggests additional

problems such as that of mamtammg multl-

ple views, and that of extendmg the

mechanism to an off-line sequence of

updates to base relations

The complexity measure used in the
.

analysis was the number of tuple opera-

tfons. Thus the analysis LS directly apphca-

ble to small scale databases whose data, or

very large portions thereof, fits mto

memory The tuple operations measure IS

fnadequate for large databases in which

only a small portron of the data can reside

in main memory

Consider a large scale database envu-on-

ment First, the balanced trees may be

nnplemented as B-trees or replaced by a

mutable hashing scheme Second, the

recursive add and delete operations should

be made to recurse on sets of tuples rather

than on smgle tuples This mmmuzes the

number of relations that are dealt wrth at

any one time. a better use of buffers IS

achieved and therefore secondary storage

access performance is unproved

[AHU] Aho. A V , J E Hopcroft. and J D Ull-

man, The Design and Andysu of Com-

puter Algorithms, Addison-Wesley Pub-

hshmg Company, 1976

[BC] Bernstem. P A, and D W Chm. “Using

Senu-Joms to Solve Relational

Queries”, J ACM 28 (1) 25-40, January

1981

[BFMMlJYj Beeri, C , R Fagm, D Maler, A

Mendelzon, J D Ullman, and Id Yan-

nakakm, “Properties of Acychc Data-

base Schemas”. in Thirteenth Annual

ACM Symp on Theory of Computing,

355-362 Assoclatlon for Computmg

Yachmery. New York, N Y , May 1981

[BFMY] Beeri, C , R Fagm. D Maler and M

Yannakakls. “On the Deslrablhty of

Acychc Database Schemes”, J ACM, to

appear

[BG] Bernstein, P A , and N Goodman, “The

Power of Natural Senu]oms”. SIAM J of

Comput, 10 (4), November 1981

[Fag1 Fags R , “Types of Acychclty for

Hypergraphs and Relational Database

Systems”, Research Report RJ3330. IBM

Research Laboratory, San Jose, CA,

November 1981

251

[FYU] Fagm. R , A 0 Mendelzon, and J D Ull-

mm. “A Simphfled Universal Relation

Assumption and Its Properties”, Techn-

ical Report RJ2900, IBM, San Jose, CA,

1980

[Gra] Graham, 16 H , On the Universal Rela-

tion, Technmal Report, Umversity of

Toronto, September 1979

[GSl] Goodman, N, and 0 Shmueh, “Tree

Queries A Simple Class of Queries”,

ACM Transactions on Database Sys-

tems, December 1982

[GS2] Goodman, N) and 0 Shmueh, “The

Structure of Database Schemas” To

appear m J ACM

[GSS] Goodman, N , and 0 Shmueh. ‘“The

Tree Property is Fundamental for

Query Processmg”. m Proc ACM

SIGACT- SIGMOD Conference on Prmcl-

ples of Database Systems, 40-48. Los

Angeles, CA, March 1982

[GS4] Goodman, N, and 0 Shmueh.

“Transformmg Cychc Schemas mto

Trees”, m Proc ACM SIGACT-SIGMOD

Conference on Pnnciples of Database

Systems, 49-54. Los Angeles. CA, March

1982

[GS51 Goodman, N, and 0 Shmueh, “NP-

Complete Problems Simplified on Tree

Schemas”, To appear m Acta Informa-

tica

[WI+] Goodman, N , 0 Shmueb and Y C Tay.

“GYO Reductions, Canonical Connec-

tions. Tree and Cychc Schemas and

Tree ProJections”, m Proc ACM

SIGACT-SIGMOD Conference on Prmci-

ples on Database Systems, 267-278,

Atlanta, Ga , March 1983

[Hull Hull, R , “Acychc Join Dependencies

and Database ProJections”, m Proc

XP2, State College, PA, June 1981

[MUl] Maier, D , and J D Ullman, “Connec-

tions m Acyclic Hypergraphs”, in Proc

ACM SIGACT-SIGMOD Conference on

Principles of Database Systems, 34-39,

Los Angeles, CA, March 1982

[MU21 Maier. D , and J D Ullman, “Maximal

Oblects and the Semantics of Universal

Relation Databases”, Technical Report

#SO-016, Dept of Camp Science. SUNY

at Stonybrook. November 1980

[PY] Papadnmtnou C H , and M Yannakakls,

“The Complexity of Facets (and some

facets of complexity)“, m Fourteenth

Annual ACM Symp on Theory of Com-

puting Association for Computmg

252

Machmery, New York, N Y , May 1982

[TY] Tarjan, R E , and M Yannakakm, “Srm-

ple Linear-time algorithms to test

chordahty of graphs, test acyclmlty of

hypergraphs. and selectively reduce

acychc hypergraphs”. unpublished

manuscript, March 1982

[YO] Yu, C T , and Y.Z Ossoyoglu, “An Algo-

rdhm for Tree-Query Member&p of a

Dmtributed Query,” m Proc COYP-

SAC79, IEEE Comp Society, November

1979

[Yan] Yannakakls. M , “Algonthms for Acy-

clic Database Schemes”, in Proc VLDB,

02-94, Cannes, France, September

1981

Consider the schema

D = ([A,Bj,fC,L3./6,~3,1C,El,~D,F],ID,D.F~,[B,Dj,[B,Cj)

D 1s a tree schema vix

A,B ---- B.C ---- B,D ---- B.D,P ---- B.P

I

I

C,L ---- C,E ---- BY

For example. the subgraph induced by attri-

bute C III

C.L----C.E----B.C

The follomng is a cyclic schema

D = (~A~BW,CW.A~~

The ouly qua1 graph for D ita

A,B ---- B,C
\ I
\
\ :

hC

Figure 2 1 Tree and Cyclic Schew

253

RI suppuer S# euppllelr part P# ,

R2 each supplier may provide product sup-

port (indicated

by SLEVEL).

Ra project PROJ/ may need part P# at loca-

tion LOC,

Rd project PROJ# ham an allocated BUDGET,

Rs proJect PROJ# 16 managed by YGR at

location LOC

\
R2

The view im on S# and P#

FIgtare 3 1 An Example Tree Database

254

(a) Addmg templates T1 and T2 to the ongl-

nal schema

(b) Generator Trees

Figure 4 1 Templates

255

