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In relational databases a www definzhon 

IS a query against the database. and a anew 

muferiulazatunt is the result of applying the 

veer defimtlon to the current database A 

view materiahzatlon over a database may 

change as relations m the database undergo 

modifications 

In this paper a mechanism is proposed m 

which the view IS matenahzed at all times 

The problem which this mechanism 

addresses is how to quickly update the view 

in response to database changes A struc- 

ture is maintained which provides 

mformatlon useful in nunumzmg the amount 

of work caused by updates 
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Methods are presented for handling both 

general databases and the much simpler 

tree databases (also called ucyclzc database) 

In both cases adding or deleting a tuple can 

be performed m polynomial time For tree 

databases the degree of the polynonual is 

independent of the schema structure while 

for cychc databases the degree depends on 

the schema structure The cost of a 

sequence of tuple additions (deletions) IS 

also analyzed 

1 INTRODUCTION 

Consider a view V over a database D 

The view may change as relations m D 

undergo modifications Usually, views are 

not materialized until needed In many sys- 

tems views are never materialized Instead, 

queries against the view are mod$ed to 

reflect the view definition When mews are 

materlahzed, they remain valid as long as 

the underlying database remains 

unchanged 
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In this paper a mechanism IS proposed in 

which the view IS matenahzed at all times 

The problem which this mechanism 

addresses IS how to qmckly update the view 

m response to database changes A struc- 

ture IS mamtamed wbch provides mforma- 

tion useful in mmlrmzmg the amount of 

work caused by updates 

The concept of tree database (also called 

acyclw database) IS utlhzed Acychclty 1s a 

property of the database schema which has 

mde imphcatlons m query processmg [GSl- 

GS4, GST. Yanl. dependency theory 

[BFMMUY, BFMY, Fag, FMU, Hull and schema 

design [BFMY. HUl-MU23 Mathematical pro- 

perties of acychclty have also been studled 

[GS4-GS5. GST, MUl, TY] 

It has been shown [BC, BG. GS2. Yan] 

that certain queries which Imply acyclic 

databases, called tree quertes, appear easier 

to process than queries which imply cychc 

databases (called cyclzc querzes). and that 

the crux of query processmg IS constructing 

a tree {actually an “embedded tree”) [GSS. 

GST] 

The proposed mechanism consists of 

malntammg an acychc database at all times 

together with mformatlon that may be use- 

ful for future addltlons and deletions If the 

database IS cychc. then It IS made acychc by 

addrng relatrons The added relations are 

called templates 

Dunng addltlons (or deletions) base and 

template relations undergo modlficatlons to 

reflect changes to base relations Changes 

propagate towards the database root where 

relations are mewed as tree nodes 

Consider adding and deletmg tuples 

startmg from an mitlally empty database, 

the cost of 71 such operations is Illustrated 

m the table below (c, T and y are schema 

dependent parameters, all less than k - the 

number of relations ) 

2 TERMrNoLooY 

2 1 Relational Databases 

A relatmn schema 1s a set of attnbutes 

and a database schema (or simply schema) 1s 

a multi-set of relation schemas l A relatin 

state I? for relation schema R IS a relation 

over R’s attnbutes, a database state for 

schema D IS an assignment of relation states 

to D’s relation schemas A relation R 1s total 

m database D if It contains all Its possible 

tuples composed of values appearmg some- 

where m the database, I e d 

R=%mt( “ROW) We use D = (RI 

,-* RJ to denote a database schema and 

D = (R,, , Rk) for a correspondmg state 

* All structures 111 thm paper are dnlte 
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Tree databases 

A am&e addltmn A sequence of n 
or deletion additlons 

O(nnlogn) O(nlogn) 

Cyclic database6 I 
o(n T 

7’“’ 
fL rlogn) 0(--I-, 

I 77’’ 
7logn ) 

We use W for natural Join and [XJ for 

proJecton onto attribute set X Define 

J(D) = bd 4, 
RED 

we use J instead of J(D) 

when D is understood Tuple t over schema 

R matches tuple s over schema S d t[RnS] 

= s[RnS] 

A wew dejlnition 1s simply a set X c U of 

attributes. a vww materuxlzzatum V is 

V = J[Xj Our class of crews appears to be 

qmte hnuted. however, as is shown in [BG]. 

thm class encodes a much larger class - 

those views defined by equljom queries 

2.8 Tree Schemaa 

A gual graph’ for D 1s an undirected 

graph whose nodes are in one-to-one 

correspondence lnth the relation schemas 

of D, such that for each attrlbute A. the 

subgraph induced by the nodes whose 

corresponding relation schemas contain A IS 

connected [BG] D IS a tree schema d some 

qual graph for it is a tree, otherwlse D 1s a 

cyclic schema See Fuure 2 1 

l We we tr~dltional graph theory notation 

A database is a tree database (or an ucy- 

clw database) d the underlymg database 

system 1s acychc, othemse It IS a cyclzc 

database 

The f ollowmg simple procedure, 

discovered independently by [Gra] and [YO], 

recognizes tree schemas The procedure 

applies the followmg two steps until neither 

IS applicable 

Step 1 Delete any attnbute which appears 

m exactly one relation schema 

Step 2 Fmd two relation schemas R and S m 

D such that R r: S, delete R from D 

It can be shown that the original schema 

was a tree schema iR upon termmatlon of 

the above procedure the database schema 

consists of a single (empty) relation schema 

(A hnear time algonthm for recogmzmg tree 

schemas appears m [TY] ) 

3 ADDRlONSlNTOATREEDATADASE 

Let us consider a special case Suppose 

for some 1” sn, XCR, Furthermore, 

assume the view RI, ,Q constitute a tree 

schema Let T be a qua1 tree lnth & at Its 
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root (R, 1s called the root relation and the 

relations at the leaves are called leaj rela- 

tlons ) 

Let R, be a node m T and R, Its cluld 

Tuple t E Ez, 1s supported by tuple s E R, rf t 

matches s A tuple t E R, IS good If every 

child R, of 4 has a good tuple s E RJ which 

supports t Also, all tuples m a leaf relation 

are considered good Tuple t E R, 1s compu- 

tible below wxth a child relation R, d there IS 

a good tuple st E Rj which supports t 

Hence, t E 4 IS good iff t IS compatible 

below Pnth all of R’s chrldren 

Inttutlvely. a tuple t E I?, 1s good lf It 1s 

unanimously supported by all Its children. 

Its children’s children and so on, 1 e t 

belongs to the proJection onto R, of all the 

relations in the subtree rooted at R, 

Observe that t E I;; may contrlbute to J(D), 

and therefore possibly to V, lff t IS good In 

other words, all non-good tuples, whmh we 

call bad, pnll definitely not contribute to 

J(D) and V 

Consider the database of Fig 3 I, with 

X Z. RI The relations Rs, % and Rs are leaf 

relations and therefore all their tuples are 

good Only the first two tuples of RS are 

good (E g <47,8,SF> matches <47.90> E R+ 

and <4?.Whlte,SF> E R5, and <99,15,LA> 

matches <QQ,Brown,LA> E R5 but no tuple of 

R4 ) Tuple X3.8> IS the only good tuple of R,, 

It matches the good tuples <47,8,SF> E us 

and <S,L> E R, Tuple <9.17> E R, 1s bad 

because all the R, tuples It matches are 

bad 

The partition of each original relation 

into a good part and a bad part 1s helpful 

when processmg updates We start by dls- 

cussmg tuple addition mto the tree data- 

base of Fig 3 1 There are three cases to 

consider - the relatron is a root, a leaf or an 

internal node 

(2) Root Suppose t,=<9,8> 1s added to RI to 

mdlcate that suppher number 55 now sup- 

plies part 8 Tuple t I is good since it 1s sup- 

ported by the good tuples <55.&LA> E Rs 

whmh indicates that project 55, located at 

LA, requires part number 5, and <Q,L> E Rz 

mdlcatmg that the service level of supplier 

number 9 1s rated L On the other hand, 

adding the tuple t,=<7.99> to RI cannot 

possibly change the view since it is not sup- 

ported by any good tuple of R, (The fact 

that It IS supported by the good tuple 

<7,&i> E R2 IS unmatenal ) Thus t2 should be 

added to bad(R1) 

(22) Leaf Suppose t9=<99,30> 1s added to Re 

mdlcatmg that project 9 has been assigned 

a budget 30K First, leaves only have good 

243 



Parts Thus t3 1s added to good(R,) Now, It 

IS possible that the new addltlon may 

change the good part of Rs (which 1s 

equivalent to changing an internal node and 

1s discussed below) Namely, 

t,=<99,15,LA> E R,. previously supported 

only by the good tuple <99,Brown,LA> E R5 

1s now also supported by t,. thus t, should 

move to the good part of R3 This effect 

rmght propagate up the tree On the other 

hand <99,15,SF>, which also matches t3, 

remains m bad(RS) since even now It 1s not 

supported by any Rs-tuple To summarize, d 

the new tuple 1s good, we should check the 

matching tuples in the bad part of the 

parent node because now some of them can 

become good 

(%a~) internal Node Suppose t,=<70,18,DC> 1s 

added to R, Tuple t, 1s good since it 1s sup- 

ported both by <70.50> E Rd and by 

<70,Black,DC> E R5 As mentioned above, 

changes to an internal node may propagate 

upwards We now have to check d t, is com- 

putable above - 1 e matches anth tuples m Its 

parent relation Indeed, t, matches 

t6=<19,18> and t,=<20,18> E RI Hence ta 

becomes good since it. 1s supported by 

<19.&I> E R2, while t, remains bad since it is 

not supported by any (good) Rz-tuple 

Consider an empty database over our 

fixed schema To this state apply a 

sequence of n tuple addltlons (mto various 

relations) Throughout this addition process 

maintain the database as above - I e mth 

good-bad partitions Compatlblhty above IS 

checked only when a tuple becomes good A 

tuple t 1s thus compared to all tuples m Its 

parent node, and d we find a matching bad 

tuple s. s IS checked for compatibility 

below, smce potentially s may have become 

good Thus, each time a tuple becomes good 

it mltlates O(n) compatlblhty checks Each 

compatlblhty check compares a tuple Pnth 

all the tuples m a parent (or child) node 

Thus, m the worst case, each tuple IS com- 

pared to all other tuples, costing 0(n2) 

time Thus, the cost of n additions m this 

naive scheme 1s 0(n3) 

The followmg good--bad murhng scheme 

reduces the number of times t IS checked 

for compatlblhty below Consider a tuple t 

m bad(R3) (see Fig 3 1) It may be there 

because either 

(1) t [PROJf 1s not mentioned m R4. or 

(u) t [PROJ#,LOC] IS not mentioned m R5 

However, we have no mformation as to which 

of these cases hold To remedy this sltua- 

tlon, mth each tuple m bad(R,) we associate 
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mELrks For example, an R4-mark would mdl- 

cate that t could And no match m R4. hke- 

wise, for an Rs-mark As relations change 

marks may need updating 

Data structures 

We now descrrbe the data structures 

employed and 

operations are 

(node) 4 with 

how the insert and delete 

performed Consider relation 

tree parent l$, and children 

Rl* , R, Define Z, = R(@,,, The follow- 

ing balanced trees* are associated mth 4 

(a) For each child R,,,. a tree C, contaunng 

all tuples of &[L] For each w,,, E. Cm 

we associate the hst of tuples t m R, 

with w,=t[&] and a good -counter 

lndmatmg the number of good tuples 

(m R”,) whmh support It 

(b) Tz - containing all the tuples (good and 

bad) of 4. each tuple has a 

murk -counter whmh counts the 

number of bad marks It has and a 

pointer (called the up-powder) to the 

tuple v=t[Z,J E C, (t has an h- 

mark iff w,,,‘s good-counter is equal to 

zero ) 

l 00. a set w~t,h n elementr. the operations msert. 

delete and member can be performed in C(logn) 

when the set 18 implemented as a balanced tree. 

examples for balanced tree schemes m&de AVL 

trees and 2 3 trees [mu] 

We should note that that m all the 

appearances of t m these trees, it is the 

same t, 1 e t has a record structure which 

allows it to exist concurrently on several 

hsts 

opel-&.lOllS 

Consider a tuple t m 4 with v = t[G,] 

and w,,, = twun1 

Ense9-t(tn&) 

A First, t 1s mserted into the tree T, and Its 

mark-counter IS set to zero 

B For each child R,,, treat Cm as follows 

(4 If zu, does not appear m C, then 

insert rt mto C,,,, and set Its good- 

counter to zero Add t to w,‘s hst and 

If wm’s good-counter > 0 then add 1 to 

t ‘s mark-counter 

(b) Once all C;nr’s have been treated, d 

t’s mark-counter > 0 then t 1s bad and 

we are done, otherwise t IS good and we 

set t’s up-pomter to v’s appearance in 

C’, (Of course, d v does not appear in 

C’. then it 1s mserted ) Finally. v ‘S 

good-counter m Cp2 1s incremented by 

1 

(cl If incrementing v ‘s counter 

transformed It form 0 to 1 then v ‘S hst 

IS scanned and each tuple on this hst 

has Its mark-counter decremented If 

now some tuple s on v’s hst has Its 
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mark-counter equal to zero (1 e it 

became good) then stage (b) above need 

be (recursively) applied to s 

Delete (t ,&) 

A Delete t from the tree Z!! m 4 

B For lsrnsc , delete w, from the tree &, 

if t was the only tuple on wm’s list and wm’s 

good-counter is zero, then delete w, from 

cm 

C If t was good then the good-counter asso- 

ciated with v in %s is decreased, (if it 

becomes zero and v’s list is empty then v IS 

removed from Cpt) This may remove support 

from s-tuples v’s hst IS scanned and each 

tuple has its mark-counter incremented If 

some tuple’s mark-counter changes from 0 

to 1 then the tuple is now bad and stage C of 

Delete has to be (recursively) applied to this 

tuple and % 

Addition Analysis Consider adding a tuple t 

mto relation 4 where the database contains 

n tuples (we use the same notation as 

above) Entering t mto < costs O(logn) 

Entering t into W~‘S list (recall that 

w,=t[&] belongs to C’) costs O(logn), as 

there are c such trees, the overall cost is 

O(clogn) The analysis of t’s interaction (m 

case t is good) with % m a bit more mtri- 

cate First. the good-counter of v m CPs has 

to be incremented at a cost of O(logn) Now, 
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d as a result of this the counter has 

changed from 0 to 1, mark-counters for 

tuples on v ‘S list are updated This updat- 

ing may cause some bad tuples m s to 

become good and the effect propagates up 

the tree 

The crucial point m the analysis is that 

the effect propagates on the unique path 

from 4 to the root and that m each relation 

node R along the way each tuple can lose at 

most one mark - the one correspondmg to 

the unique child S of R which also lies on 

the path from 4 to the root Turnmg s E S 

from bad to good costs only O(1) time since 

we use t’s up-pointer to access the hst m 

the appropriate C-tree in R’s parent 

Hence, since there are n tuples m the data- 

base, the overall cost of the propagation 

effect is C(n) Summanzmg, the overall cost 

of inserting t is O(c logn+n) 

Deletion Analysis Fmdmg t and deleting it 

from T, and the lists on the C,, trees can be 

done m C(c+logn) time However, if t was 

the only tuple on a hst m C, and the value 

w,,, has a zero good-counter then UJ, needs 

to be deleted (O(logn) time) Thus the 

overall cost of updating T and the c trees IS 

O(clogn) If t was bad we are done Other- 

wise, v’s good-counter m Cp2 is decre- 

mented, if it becomes zero then, effectively. 



an R,-mark is added to the tuples on v’s 

hst If this transforms some tuples rn 5 

from good to bad the effect nnght propagate 

up the tree Again. the number of marks 

that can be added to all tuples m the 

database m the course of a single deletion is 

bounded by n Hence, the overall cost of a 

single deletion IS O(c logn +n) 

Theorem 3.1 A single tuple can be added or 

deleted from a tree database with n tuples 

in O(n +c logn) time 

By the above theorem, any sequence of 

m operations durmg which the database 

never contamed more than n tuples costs 

Oh4 Another complexity measure is 

amortwed cost, the cost of adding n tuples 

into an mitially empty database The main 

observation here is that m the course of n 

additions at most n tuples can become good 

and each tuple can lose at most all its 

marks Thus the amortized cost for n addi- 

tions (and no deletions) mto a node with c 

children is O(cnlogn) We summarize this by 

Theorem 3 2 Consider a sequence of n addi- 

tions to an mitially empty database or n 

deletions and no additions apphed to a 

database with n tuples This sequence can 

be performed in O(znlogn) time, where c is 

the maximum number of children of a node 

in the qua1 tree 

If the view attnbutes are not contained 

in any relation schema, or if the database is 

not a tree database, we transform the data- 

base and view to the previous case by 

adding new relations that we call templates 

The problem of finding suitable templates 

w-ill not be addressed here, see [GS4,GST] 

One can think of templates as mcludmg in 

principle “all possible tuples” One way to 

achieve this IS to let a template be total 

w r t the database This is fairly wasteful 

and we shall see other ways of maintaining 

templates in which only relevant tuples are 

mamtamed In general, templates contam 

tuples which are computed 111 various ways 

from database relations, 1-e template tuples 

are generated from orqyanal tuples 

Observation 1: Let D=(RI, ,Q) be a data- 

base and let S be a relation such that 

SM(D)[S] Then for all X 

(1 e a view cannot be affected by adding S) 

fief: By elementary properties of the Iom 

operator 

Observation 2: Let D=(Rr , ,Q) be a data- 

base and let S be a relation such that there 

exists a tuple t in (( W,L,&)[S])\S Then 
= 

for some X it LS possible that 
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Aooj. There exists a tuple u E J(D) such 

that u[S]=t However, since t L s. 

k 
u #! ( W, rli;) W S If there IS no tuple e 

v # u in J(D) such that v [Xj=u[Xj. then 

Consider first the case of a cychc data- 

base m which the view attnbutes are con- 

tamed m some relation, the other cases are 

sirmlar Assume the database was treefled 

by adding some templates For the good- 

bad mechanmm to function. by Observations 

1 and 2. each template S must at least con- 

Next, we dmcuss various schemes for 

extending the good-bad mechamsm to tem- 

plates Unhke relations where the “base set” 

of tuples 1s Axed. templates may undergo 

changes when base relation tuples are 

changed the template base set may grow as 

a result of addmg a tuple to the good set of 

a base relation, or shrink when such a tuple 

is deleted The problem 1s parametrized 

according to the treefied schema structure 

We use the followmg parameters 

T - the number of templates 

Y - the maxunum number of generators 

(defined below) per template 

n - the maximum number of children of a 

node in the resulting qua1 tree 

Let D be a database schema treefied by 

addmg r templates Consider the process of 

adding n tuples to an uutlally empty data- 

base state D We separate the cost mto two 

parts that of finding the tuples to be 

entered mto the templates and that of 

entering all the tuples into the database, 

the latter consmts of the cost of the addl- 

tlon of the n original tuples and the cost of 

addmg template tuples. both usmg the 

good-bad mechanmm We have the followmg 

theorem 

Theorem 4 1 Addmg n tuples mto an ml- 

tlally empty treefied database requires 

adding at most O(T 2n) tuples mto tem- 

plates 

BVJO~: An addition of a tuple t mto a relation 

R may mtroduce a “new value” t[S] for tem- 

plate S Let s =t[RnS] To enlarge the tem- 

plate we simply duplzcate S and m one of the 

copies replace the RnS columns nnth s 

Thus, the addition of a tuple may double the 

number of tuples in each template The 

result follows smce there are n orrgmal 

tuples and T templates 

[I 
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Corollary Addmg n tuples to an mitially 

empty treefied database requires at most 

O(nm2n) time 

BOON. By Theorem 4 1 N=T~~ tuples are 

added, and by Theorem 3 2 this costs 

O(rNlogN) time 

[I 

The above result IS discouraging since 

the cost is extremely high even for a small 

number of tuples As we shall see, we can 

substantially improve this result 

The manner m which templates are 

enlarged determines the cost of extending 

the good-bad mechamsm Let S be a tem- 

plate over attributes S. One way to generate 

relevant S tuples IS to Jam enough database 

relations so as to obtain all of S’s attn- 

butes Formally, the relations R,, ,I$ are 

a generator set for S provided S s u n Rr* 6=1 

they generate S’ = ( W,li&)[S] S’ can 

then be partltloned to good(S) and bad(S) 

by the usual procedure In other words, we 

have described a method for mstantiatmg a 

candidate for contammg both the good and 

the relevant bad tuples in a template (Bee 

Figure 4 l(a) ) 

The cost of tuple additions 1s dommated 

by the correct maintenance of templates. 

1 e when a tuple is added to the good part of 

a generator relation. the templates for 

which it is a generator might have to be 

enlarged This means Iouung the new tuple 

with all the other generators, a potentially 

costIy procedure (O(n7)) Smce there are 

at most n such additions the overall cost IS 

O(nv+‘) (A closer analysis reveals that the 

cost 1s O( 7-;7-1 n7) ) 

The following refinement will enable us 

to reduce this cost For each template we 

shall build a generator tree which 1s a full 

binary tree, the template is at its root and 

the generators at its leaves An internal 

node consists of the ]om of its two child 

relations (Note that the generator tree IS a 

separate structure which comes m addition 

to the usual qua1 tree and the various bal- 

anced trees See Figure 4 l(b) ) 

In order to compute the cost of n addi- 

tions into the generator relations of a tem- 

plate S we make the following observations 

(1) When a tuple enters a generator rela- 

tion, it has to be compared to its sibling 

m the generator tree m order to popu- 

late their parent 

(2) Each leaf contains at most n tuples 

(a) The parent of nodes mth ml and rn2 

tuples has at most ml m2 tuples Conse- 

quently, a node at distance h from the 

leaves has at most nP tuples 

(4) The cost of adding ml tuples to a child 
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and m2 tuples to Its sibling 1s exactly 

m,m2* the maximum size of their 

parent 

(5) The cost of all the additions mto a set of 

generators 1s equal to the sum of the 

sizes of all the internal nodes of the 

generator tree 

Theorem 4 2 Suppose n. tuples are added to 

an initially empty database The time 

requu-ed to add all template tuples IS 

O(T( y7t 

AooI: First. consider two srbhng nodes m 

the generator tree mth a total of m tuples 

The number of tuples m their parent node 1s 

maximum when each of the siblings has F 

tuples Therefore, the number of tuples in a 

generator tree 1s maximum when all Its 

leaves have the same number of tuples The 

worst case occurs when there are 7 leaves 

and exactly F tuples per leaf, m which case 

the total number of tuples IS 

1°f( 92 z = 0 
(Cl 7 2f I 97 I 

Since there are T templates the total cost IS 

0 I 1 T( 37 

[I 

Corollary Addmg or deletmg a smgle tuple 

to a treefled database contauung n ongmal 

tuples requires at most O(r( :)7 + qlogn) 

time 

Corollary Adding n tuples to an initially 

empty treefied database requires at most 

0( KT nqogn) trme 
774 

This IS more encouraging than the corol- 

lary to Theorem 4 1 smce in many practical 

applications y is small 

Finally, we note that the cost of a single 

deletion can be quite high, since it may 

cause many tuples m templates to become 

bad, costing the same as n additions Prac- 

&ally, rt seems better to do the followmg 

each time we delete a tuple we also delete 

all tuples it helped generating (in tem- 

plates) Thus, at all time, when n ongmal 

tuples are in the database, there remain at 

most O(T( :)7) tuples m the database 

CONCLUNONS 

The problem of dynanncally mamtammg 

a class of views has been exannned A 

scheme mcorporating various structures 

was proposed as a mamtenance mechanism 

for views in the class 

The complexity of updates 1s polynomial 

for tree schemas the degree of the polyno- 

nnal 1s independent of the schema structure 

while for cychc schemas the degree depends 

on the schema structure We do not know 
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whether the bounds we found are tight and 

we leave rt as an open problem Note that rf 

the balanced trees are replaced by hash 

tables the complexity 1s reduced by a factor 

of logn (on the average) 

This paper also suggests additional 

problems such as that of mamtammg multl- 

ple views, and that of extendmg the 

mechanism to an off-line sequence of 

updates to base relations 

The complexity measure used in the 
. 

analysis was the number of tuple opera- 

tfons. Thus the analysis LS directly apphca- 

ble to small scale databases whose data, or 

very large portions thereof, fits mto 

memory The tuple operations measure IS 

fnadequate for large databases in which 

only a small portron of the data can reside 

in main memory 

Consider a large scale database envu-on- 

ment First, the balanced trees may be 

nnplemented as B-trees or replaced by a 

mutable hashing scheme Second, the 

recursive add and delete operations should 
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Consider the schema 

D = ([A,Bj,fC,L3./6,~3,1C,El,~D,F],ID,D.F~,[B,Dj,[B,Cj) 

D 1s a tree schema vix 

A,B ---- B.C ---- B,D ---- B.D,P ---- B.P 

I 

I 

C,L ---- C,E ---- BY 

For example. the subgraph induced by attri- 

bute C III 

C.L----C.E----B.C 

The follomng is a cyclic schema 

D = (~A~BW,CW.A~~ 

The ouly qua1 graph for D ita 

A,B ---- B,C 
\ I 
\ 
\ : 

hC 

Figure 2 1 Tree and Cyclic Schew 
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RI suppuer S# euppllelr part P# , 

R2 each supplier may provide product sup- 

port (indicated 

by SLEVEL). 

Ra project PROJ/ may need part P# at loca- 

tion LOC, 

Rd project PROJ# ham an allocated BUDGET, 

Rs proJect PROJ# 16 managed by YGR at 

location LOC 

\ 
R2 

The view im on S# and P# 

FIgtare 3 1 An Example Tree Database 
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(a) Addmg templates T1 and T2 to the ongl- 

nal schema 

(b) Generator Trees 

Figure 4 1 Templates 
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