MAINTENANCE OF VIEWS

Oded Shmuela

Alon Rar

Computer Science Department
Technion - Israel Institute of Technology,
Haifa Israel

ABSTRACT

In relational databases a wew definition
18 a query against the database, and a vew
materialization 1s the result of applying the
view definition to the current database A
view materialization over a database may
change as relations in the database undergo

modifications

In this paper a mechanism 18 proposed 1in
which the view 1s materialized at all times

The problem which this mechanism

addresses 1s how to quickly update the view

in response to database changes A struc-

ture 15 maintained which prowvides

information useful 1n mmnimzing the amount

of work caused by updates

Permussion to copy without fee all or part of this matenal 1s granted
provided that the copies are not made or distnibuted for direct
commercial advantage, the ACM copyright notice and the title of the
publication and 1ts date appear, and notice 1s given that copying 1s by
permussion of the Association for Computing Machinery To copy
otherwise, or to republish, requures a fee and/or specific permission

© 1984 ACM 0-89791-128-8/84/006/0240 $00 75

240

Methods are presented for handling both
general databases and the much simpler
tree databases (also called acyclic database)
In both cases adding or deleting a tuple can
be performed in polynomal time For tree
databases the degree of the polynommal 1s
independent of the schema structure while
far cyclic databases the degree depends on
the schema structure The cost of a

sequence of tuple additions (deletions) 1s

also analyzed

1 INTRODUCTION

Consider a view V over a database D
The wiew may change as relations in D
undergo modifications Usually, views are
not materialized until needed In many sys-
tems views are never materiahzed Instead,
queries against the view are modified to
reflect the view definition When views are
materialized, they remain valid as long as
remains

database

the underlying

unchanged

In this paper a mechanism is proposed in
which the view 1s materialized at all times
The problem which this mechanism
addresses 18 how to quickly update the view
I response to database changes A struc-
ture 1s maintained which provides informa-
tion useful 1n mmmzng the amount of

work caused by updates

The concept of tree database (also called
acychic database) 1s utilized Acycheity 1s a
property of the database schema which has
wide implications 1n query processing [GS1-

Yan], theory

GS4, GST, dependency
[BFMMUY, BFMY, Fag, FMU, Hul] and schema
design [BFMY, MU1-MU2] Mathematical pro-
perties of acyclicity have also been studied

[GS4-GSs, GST, MU1, TY]

It has been shown [BC, BG, GS2, Yan]
that certain queries which 1mply acyclic
databases, called free queres, appear easier

to process than queries which imply cyche

databases {called cyclic queres), and that
the crux of query processing 1s constructing
a tree (actually an "embedded tree”) [GSS3,

GST]

The proposed mechamism consists of
maintaining an acyclic database at all times
together with information that may be use-
ful for future additions and deletions If the

database 1s cyclic, then 1t 13 made acyclic by

241

adding relations The added relations are

called templates

During additions {or deletions) base and
template relations undergo modifications to
reflect changes to base relations Changes
propagate towards the database roof where

relations are viewed as tree nodes

Consider adding and deleting tuples
starting from an initially empty database,
the cost of n such operations is illustrated
in the table below (x, T and y are schema
dependent parameters, all less than k£ - the

number of relations)

2 TERMINOLOGY

2 1 Relational Databases

A relation schema 1s a set of attrmbutes
and a database schema (or sumply schema) 1s
a multi-set of relation schemas * A relation
state R for relation schema R 18 a relation
over R's attributes, a database state for
schema D 1s an assignment of relation states
to D’s relation schemas A relation R 1s total
n database D if 1t contains all its possible
tuples composed of values appearing some-

the

R=X 4 eg(V gepRlA))

where mn database, 1e if

We use D=(R,

,..R;) to denote a database schema and

D = (R,, . Fy) for a corresponding state

* All structures 1n this paper are finite

A single addition
or deletion

A sequence of
additions

Tree databases

O(xnlogn)

O(nlogn)

Cyclic databases

We use Dd for natural join and [X] for
projection onto attribute set X Define

J(D) = NReDR;, we use J instead of J(D)

when D is understood Tuple ¢ over schema
R matches tuple s over schema S if {[RNS]
= s[RNS]

A Mmew definition 1s simply a set X C U of
attributes, a wew materahizalwon V 1s
V =J[X] Our class of views appears to be
quite limited, however, as is shown in [BG],

this class encodes a much larger class -

those views defined by equijoin queries
2.2 Tree Schemas

A gqual graph® for D 18 an undirected
graph whose nodes are in one-to-one
correspondence with the relation schemas
of D, such that for each attribute A4, the
subgraph induced by the nodes whose
corresponding relation schemas contain 4 1s
connected [BG] D s a tree schema if some

qual graph for it is a tree, otherwise Dis a

cyclic schema See Figure 21

*
We use traditional graph theory notation

r
O(x ——-n77__1 Tlogn)

242

o(-I—l—'n,’flogn)
i

A database 1s a tree database (or an acy-
clic database) if the underlying database

system 18 acyclic, otherwmse 1t 18 a cyclic

database

The following simple procedure,
discovered independently by [Gra] and [YO],
recognizes tree schemas The procedure
applies the following two steps until neither
18 applicable

Step 1 Delete any attribute which appears

1n exactly one relation schema

Step 2 Find two relation schemas R and Sin

D such that RC S, delete R from D

It can be shown that the original schema
was a tree schema iff upon termination of
the above procedure the database schema
consists of a single {(empty) relation schema
(A linear time algorithm for recognizing tree

schemas appears in [TY])

3 ADDITIONS INTO A TREE DATABASE

Let us consider a special case Suppose

XCR,

,R; constitute a tree

for some r=n, Furthermore,

assume the niew R,,

schema Let T be a qual tree mith R, at its

root (R, 1s called the root relation and the
relations at the leaves are called leaf rela-

tions)

Let R, be a node in T and R, 1ts child
Tuple t € R, 1s supported by tuple s € R, 1f ¢
matches s A tuple f € R 1s good 1if every
child K, of K, has a good tuple s € &, which
supports ¢ Also, all tuples in a leaf relation
are considered good Tuple t € R, 1s compa-
tible below with a child relation K, if there 1s
a good tuple s, € R, which supports i
Hence, t € K, 18 good 1iff ¢ 15 compatible

below with all of R,’s children

Intuitively, a tuple ¢ € R, 15 good if 1t 18
unanmimously supported by all its children,
its children’'s children and so on, 1e ¢
belongs to the projection onto R, of all the
relations 1n the subtree rooted at R,
Observe that t € K, may contribute to J(D),
and therefore possibly to V, 1ff ¢ 15 good In
other words, all non-good tuples, which we
call bad, will definitely not contribute to
J(D)and V

Consider the database of Fig 31, with
XCR; The relations Ry, R, and Ry are leaf
relations and therefore all their tuples are
good Only the first two tuples of Rg are
good (Eg <47,8,SF> matches <47,90> € R,
and <47,White,SF> € B5, and <99,15,LA>

matches <99,Brown,LA> € F5 but no tuple of

243

R,) Tuple <3,8> 1s the only good tuple of Ry,
it matches the good tuples <47,8,SF> € Ry
and <3,L>€ R, Tuple <9,17> € R, 1s bad

because all the Ry tuples it matches are

bad

The partition of each original relation
iInto a good part and a bad part is helpful
when processing updates We start by dis-
cussing tuple addition into the tree data-
base of Fig 31 There are three cases to
consider - the relation 1s a root, a leaf or an

internal node

(2) Root Suppose t;=<9,8> 1s added to R, to
indicate that supplier number 55 now sup-
phes part 8 Tuple t; is good since 1t 18 sup-
ported by the good tuples <55,8,LA> € Ry
which indicates that project 55, located at
LA, requires part number 5, and <9,L> € R,
indicating that the service level of supplier
number 9 1s rated L. On the other hand,
adding the tuple £,=<7,99> to HK,; cannot
possibly change the view since 1t 1s not sup-
ported by any good tuple of Ry (The fact
that it 18 supported by the good tuple

<7,M> € Ry 18 immaterial) Thus ¢; should be

added to bad(®,)

(1) Leaf Suppose t3=<99,30> 18 added to R,
indicating that project 9 has been assigned

a budget 30K First, leaves only have good

parts Thus f31s added to good(R,) Now, 1t
13 possible that the new addition may
change the good part of Rg (which 1s
equivalent to changing an internal node and

= 00 A acs e o | N

- A i _\ ar 1
15 aiscusseaqa DEIoOwW) Namely,

t,=<99,15,LA> € B3, previously supported
only by the good tuple <99,Brown,LA> € Ry
18 now also supported by t3, thus £, should
move to the good part of By This effect
might propagate up the tree On the other
hand <99,15,SF>, which also matches tg,
remains 1n bad(R3) since even now 1t 1s not
supported by any Fs-tuple To summarize, if
the new tuple 18 good, we should check the
matching tuples in the bad part of the

parent node because now some of them can

become good

(mr) mternal Node Suppose t5=<70,18,DC> 1s
added to B3 Tuple {5 15 good since 1t 18 sup-
ported both by <70,50>€ R, and by
<70,Black,DC> € K5 As mentioned above,
changes to an internal node may propagate
upwards We now have to check if {5 18 com-
patible above - 1 e matches with tuples in 1its
Indeed, t5 matches

parent relation

tg=<19,18> and £,=<20,18> € R; Hence ig
becomes good since 1t 18 supported by
<19,M> € K5, while {; remains bad since 1t is

not supported by any (good) Fa-tuple

244

Consider an empty database over our

fixed schema To this state apply a
sequence of n tuple additions (into various

relations) Throughout this addition process

good-bad partitions Compatibility above 1s
checked only when a tuple becomes good A
tuple ¢ 18 thus compared to all tuples 1n 1its
parent node, and if we find a matching bad
tuple s, s 18 checked for compatibility
below, since potentially s may have become
good Thus, each time a tuple becomes good
it 1mtiates O(n) compatibility checks Each
compatibility check compares a tuple with
all the tuples 1n a parent {(or child) node

Thus, 1n the worst case, each tuple 1s com-
pared to all other tuples, costing 0(n?)

time Thus, the cost of n additions in this

naive scheme 1s 0(n?%)

The following good-bad markwng scheme
reduces the number of times ¢ 18 checked
for compatibility below Consider a tuple ¢
mm bad(R3) (see Fig 3 1) It may be there

because either
(1) t[PROJ#] 1s not mentioned in R, or
(1) t[PROJ#,LOC] 1s not mentioned 1n Ry

However, we have no information as to which
of these cases hold To remedy this situa-

tion, wmith each tuple 1n bad(R3) we associate

marks For example, an K,-mark would indi-
cate that { could find no match in R , hke-
wise, for an Rzymark As relations change

marks may need updating
Data Structures

We now describe the data structures
employed and how the insert and delete
operations are performed Consider relation

(node) R, with tree parent F, and children

Ry, , B, Define Z,, = R;NR,, The follow-

ing balanced trees’ are associated with R,

(a) For each child R,,, a tree (,,, containing
all tuples of R[Z,,] For each w, € C,,
we associate the hst of tuples ¢ 1n R,
with w,,=t[Z,,] and a good —counter
indicating the number of good tuples
(in R,,) which support 1t

(b) T; - containing all the tuples (good and

K,

mark —counter

bad) of each tuple has a

which counts the
number of bad marks it has and a
pointer (called the up-pownter) to the
tuple v=t[Zy] € G,

mark iff w,,'s good-counter is equal to

(t has an R,-

zero)

* On a set with N elements, the operations insert,
delete and member can be performed in O(log‘n)
when the set 1s implemented as a balanced iree,
examples for balanced tree schemes include AVL

trees and 2 3 trees [AHU]

245

We should note that that in all the
appearances of { in these trees, it 1s the
same t, 1e t has a record structure which
allows 1t to exist concurrently on several

hists
Operations

Consider a tuple ¢ n R, with v =t[Z,,]

and w,, = t[Z,,]

hsert(t,R,)

A First, t 1s 1nserted 1nto the tree 7, and its
mark-counter 1s set to zero

B For each child R, treat C,, as follows
(a) If w,, does not appear in (,, then
msert 1t into (,, and set 1ts good-
counter to zero Add ¢ to wy,,’s list and
if wy,'s good-counter >0 then add 1 to
t's mark-counter
(b) Once all C,,'s have been treated, 1f
t’'s mark-counter > 0 then ¢ 1s bad and
we are done, otherwise £ 1S good and we
set t’s up-pointer to ¥’'s appearance 1n
Cp (Of course, 1if v does not appear 1n

C,

w then it 1s inserted) Finally, v’s

good-counter in C,, 1s imncremented by
1

()

transformed 1t form O to 1 then v's hist

If incrementing v’'s counter

1s scanned and each tuple on this list
has 1ts mark-counter decremented If

now some tuple s on v's hst has its

mark-counter equal to zero (1e 1t
became good) then stage (b) above need

be (recursively) apphed to s

Delete (1 ,R)

A Delete t from the tree 7, 1n R,

B For 1sm=<=c, delete w,, from the tree C,,,

if ¢ was the only tuple on wy,’s hist and wy,'s

good-counter 1is zero, then delete w,, from
sz

C If t was good then the good-counter asso-
ciated with v 1n R, 1s decreased, (if 1t

becomes zero and v's list 18 empty then v 1s

removed from Cm) This may remove support

from E,-tuples v's hist 1s scanned and each
tuple has its mark-counter incremented If
some tuple’s mark-counter changes from 0
to 1 then the tuple 1s now bad and stage C of
Delete has to be (recursively) applied to this
tuple and kK,

Addition Analysis Consider adding a tuple ¢

into relation K, where the database contains

n tuples (we use the same notation as

above) Entering t into 7, costs O(logn)

Entering ¢t 1nto wy,’'s lst (recall that
Wy, =t[Z,,] belongs to C,,) costs O(logn), as
there are c¢ such trees, the overall cost 1s
O(clogn) The analysis of ¢'s interaction (in
case ¢ is good) with B, in a bit more intr-

cate First, the good-counter of v 1n G, has

to be incremented at a cost of O(logn) Now,

246

if as a result of this the counter has
changed from 0 to 1, mark-counters for
tuples on v's list are updated This updat-
Ing may cause some bad tuples in K, to
become good and the effect propagates up

the tree

The crucial point in the analysis is that
the effect propagates on the unique path
from E, to the root and that in each relation
node K along the way each tuple can lose at
most one mark - the one corresponding to

the unique child S of £ which also lies on

the path from R, to the root Turming s € §
from bad to good costs only 0(1) time since
we use t's up-pointer to access the lhist in
the appropriate C-tree 1n R’s parent

Hence, since there are n tuples in the data-
base, the overall cost of the propagation

effect 1s O(n) Summarizing, the overall cost

of inserting ¢ 1s O{clogn+n)

Deletion Analysis Finding { and deleting it
from 7, and the lists on the (,, trees can be
done in O(c+logn) time However, if t was
the only tuple on a hist 1n G, and the value
w,, has a zero good-counter then w, needs
to be deleted (O(logn) time) Thus the
overall cost of updating T and the ¢ trees s
O(clogn) If t was bad we are done Other-

wise, v's good-counter in G, 1s decre-

mented, 1f it becomes zero then, effectively,

an R, -mark 1s added to the tuples on v's
hst If this transforms some tuples in Ry
from good to bad the effect might propagate
up the tree

Agaimn, the number of marks

that can be added to all tuples in the

database 1n the course of a single deletion 1s
bounded by n Hence, the overall cost of a

single deletion 1s O(clogn +n)

Theorem 3.1 A single tuple can be added or
deleted from a tree database with n tuples

mn O{n+clogn) time

By the above theorem, any sequence of
m operations during which the database
never contained more than n tuples costs
O(mn) Another complexity measure 1s
amortized cost, the cost of adding n tuples
mto an mmitially empty database The main
observation here is that in the course of n
additions at most n tuples can become good
and each tuple can lose at most all its
marks Thus the amortized cost for n addi-

tions (and no deletions) i1nto a node with ¢

children 1s O(cnlogn) We summarize this by

Theorem 3 2 Consider a sequence of n addi-
tions to an 1mtially empty database or n
deletions and no additions applied to a
database with n tuples This sequence can

be performed 1n O(xknlogn) time, where x 1s

the maximum number of children of a node

in the qual tree

247

4 ADDITIONS INTO A GENERAL DATABASE

If the view attnbutes are not contained
1n any relation schema, or if the database is
not a tree database, we transform the data-
base and view to the previous case by
adding new relations that we call templates
The problem of finding switable templates
will not be addressed here, see [GS4,GST]
One can think of templates as including 1n
principle "all possible tuples” One way to
achieve this 1s to let a template be total
wrt the database This 1s fairly wasteful
and we shall see other ways of maintaining
templates in which only relevant tuples are
maintained In general, templates contamn
tuples which are computed i1n various ways
from database relations, 1.e template tuples

are generated from ormginal fuples

Observation 1: Let D=(R;, ,R) be a data-

base and let S be a relation such that

S2J{D)[S] Then for all X,
k &
(,_ R)IXI=((M _ R) & S)XI,
(1e a view cannot be affected by adding .S)

Proof: By elementary properties of the join

operator

Observation 2: Let D=(R,, ,R.) be a data-

base and let S be a relation such that there
k
exists a tuple ¢ in ((b(l‘_ll?‘)[S])\S Then

for some X1t 1s possible that

k k
(%, RIXI(%, R) 4 S)IX]
Proof. There exists a tuple u € J(J) such
However, since ¢ g S,

that «[S]=t

k
u g Mt 1Ii;) bd S If there 1s no tuple
v#u in J(D) such that v[X]=u[X], then

uiX] € (b, RX] but

wIX] £ ((b R) X S)X]
0

Consider first the case of a cychc data-
base 1n which the wiew attributes are con-
tained i1n some relation, the other cases are
similar Assume the database was ireefied
by adding some templates For the good-
bad mechanism to function, by Observations

1 and 2, each template S must at least con-
k
tain (bd__ R)IS]

Next, we discuss various schemes for
extending the good-bad mechanism to tem-
plates Unlike relations where the “base set”
of tuples 1s fixed, templates may undergo
changes when base relation tuples are
changed the template base set may grow as
a result of adding a tuple to the good set of
a base relation, or shrink when such a tuple
is deleted The problem 1s parametrized
according to the treefied schema structure

We use the following parameters

7 - the number of templates

248

7 - the maximum number of generators

(defined below) per template

x - the maximum number of children of a

node 1n the resulting qual tree

Let D be a database schema treefied by
adding T templates Consider the process of
adding n tuples to an imtially empty data-
base state) We separate the cost into two
parts that of finding the tuples to be
entered into the templates and that of
entering all the tuples into the database,
the latter consists of the cost of the addi-
tion of the n original tuples and the cost of
adding template tuples, both using the

good-bad mechanism We have the following

theorem

Theorem 41 Adding »n tuples into an ini-
tially empty tireefied database requires
adding at most O(72") tuples mto tem-

plates

Proaf: An addition of a tuple £ into a relation
E may introduce a "new value” t[S] for tem-
plate S Let s=t[RNS] To enlarge the tem-
plate we simply duplicate S and in one of the
copies replace the RNS columns with s

Thus, the addition of a tuple may double the
number of tuples 1n each template The

result follows since there are m original

tuples and T templates

1

Corollary Adding m tuples to an imtially
empty treefied database requires at most

O(xmm 2™ time

Praof. By Theorem 41 N=12" tuples are

added, and by Theorem 32 this costs
O(xNlogQN) time

[

The above result 1s discouraging since

the cost 1s extremely high even for a small

As we shall see, we can

number of tuples

substantially improve this result

The manner in which templates are
enlarged deterrmnes the cost of extending
the good-bad mechanism Let S be a tem-
plate over attnbutes S. One way to generate
relevant S tuples 1s to join enough database

relations so as to obtain all of S’'s attm-
Rg are

)
a generator set for S prowvided SC u‘_lRi,

butes Formally, the relations R,

they generate S’ =(M‘:lR‘)[S] S’ can
then be partitioned to good(S’) and bad(S"*)
by the usual procedure In other words, we
have described a method for instantiating a
candidate for containing both the good and
the relevant bad tuples in a template (See
Figure 4 1(a))
The cost of tuple additions 1s dominated
by the correct maimntenance of templates,
1e when a tuple 1s added to the good part of

a generator relation, the templates for

249

which 1t 1s a generator might have to be
enlarged This means joining the new tuple
with all the other generators, a potentially
costly procedure (O(tm7?)) Since there are
at most n such additions the overall cost 1s

O(™7*!) (A closer analysis reveals that the

cost 1s 0(——1-:Tn7))

717

The following refinement will enable us

to reduce this cost For each template we
shall build a generator tree which 1s a full
binary tree, the template 1s at its root and
the generators at 1its leaves

An nternal

node consists of the join of its two child

relations (Note that the generator tree 1s a
separate structure which comes in addition
to the usual qual tree and the various bal-

anced trees See Figure 4 1(b))

In order to compute the cost of n addi-
tions into the generator relations of a tem-

pPlate S we make the following observations

(1) When a tuple enters a generator rela-
tion, 1t has to be compared to 1ts sibling
mn the generator tree in order to popu-

late their parent
(2) Each leaf contains at most n tuples

(3) The parent of nodes with m; and mp
tuples has at most m,; m, tuples Conse-
quently, a node at distance h from the

leaves has at most n?" tuples

(4) The cost of adding m, tuples to a child

and my tuples to 1ts sibling 18 exactly
m,;mgy, the maximum size of their
parent

The cost of all the additions into a set of

(5)
generators 1s equal to the sum of the
si1zes of all the internal nodes of the

generator tree

Theorem 4 2 Suppose n tuples are added to

an 1nitially empty database The time

required to add all template tuples 1s

n
o(x(7)")

Proof: First, consider two sibhng nodes 1n
the generator tree with a total of m tuples

The number of tuples i1n their parent node 1s

maximum when each of the siblings has 2

tuples Therefore, the number of tuples in a
generator tree 1s maximum when all its
leaves have the same number of tuples The

worst case occurs when there are 7y leaves
and exactly % tuples per leaf, 1n which case
the total number of tuplesis

a7 nyasy _ ol n
¢=1(7) P 0[(7)"]

Since there are 7 templates the total cost 1s

oz

(

Corollary Adding or deleting a single tuple

to a treefied database containing n original

250

tuples requires at most 0(1—(-;1)7 + xylogn)
time

Corollary Adding n tuples to an initially

empty treefied database requires at most

o(—:}l—n"logn) time
4

This 1s more encouraging than the corol-
lary to Theorem 4 1 since in many practical

apphcations 7 1s small

Finally, we note that the cost of a single
deletion can be quite high, since i1t may
cause many tuples in templates to become
bad, costing the same as n» additions Prac-
tically, 1t seems better to do the following
each time we delete a tuple we also delete
all tuples 1t helped generating (in tem-
plates) Thus, at all time, when n original

tuples are in the database, there remain at

most O(r(%)7) tuples in the database

CONCLUSIONS

The problem of dynamically maintaining
a class of views has been exammed A
scheme 1ncorporating various structures
was proposed as a maintenance mechanism

for views in the class

The complexity of updates 18 polynomial
for tree schemas the degree of the polyno-
mial 18 independent of the schema structure
while for cyclhic schemas the degree depends

on the schema structure We do not know

whether the bounds we found are tight and
we leave 1t as an open problem Note that if
the balanced trees are replaced by hash
tables the complexity 1s reduced by a factor

of logn (on the average)

This paper also suggests additional
problems such as that of maintaining multi-
ple wiews, and that of extending the
mechanism to an off-line sequence of

updates to base relations

The complexity measure used in the
analysis was the number of tuple opera- ’
tions. Thus the analysis 1s directly applica-
ble to small scale databases whose data, or
very large portions thereof, fits into
memory The tuple operations measure is
inadequate for large databases in which
only a small portion of the data can reside
in main memory

Consider a large scale database enwviron-
ment First, the balanced trees may be
mmplemented as B-trees or replaced by a
suitable hashing scheme Second, the
recursive add and delete operations should
be made to recurse on sets of tuples rather
than on single tuples This mimimzes the
number of relations that are dealt with at
any one time, a better use of buffers is
achieved and therefore secondary storage

access performance is 1improved

251

REFERENCES

[AHU] Aho, AV, JE Hopcroft, and JD Ull-
man, The Design and Analysis of Com-
puter Algorithms, Addison-Wesley Pub-

lhishing Company, 1976

[BC] Bernstemn, PA, and DW Chiu, "Using

Semi-Joins to Solve Relational
Queries”, J ACM 28 (1) 25-40, January

19681

[BFMMUY] Beeri, C, R Fagin, D Maier, A
Mendelzon, JD Ullman, and M Yan-
nakakis, "Properties of Acyclic Data-
base Schemas”, in Thirteenth Annual
ACM Symp on Theory of Computing,
355-362 Association for Computing

Machinery, New York, NY, May 1981

[BFMY] Beeri, C, R Fagin, D Maier and M

Yannakakis, “On the Desirability of

Acyclic Database Schemes”, J ACM, to

appear

[BG] Bernstein, PA, and N Goodman, "The
Power of Natural Semijoins”, SIAM J of

Comput , 10 (4), November 1981

[Fag] Fagin, R, "Types of Acyclicity for
Hypergraphs and Relational Database
Systems”, Research Report RJ3330, IBM

CA,

Research Laboratory, San Jose,

November 1981

[FMU] Fagin, R, AO Mendelzon, and JD Uli-
man, "A Simphfied Universal Relation
Assumption and Its Properties”, Techn-
1cal Report RJ2900, IBM, San Jose, CA,

non
10U

[Gra] Graham, M H, On the Universal Rela-
tion, Technical Report, Unmiversity of

Toronto, September 1979

[GS1] Goodman, N, and O Shmueli, “Tree
Queries A Simple Class of Queries”,
ACM Transactions on Database Sys-

tems, December 1882

[GS2] Goodman, N, and O Shmueli, “The
Structure of Database Schemas” To

appear inJ ACM

[GS3] Goodman, N, and O Shmueli, "The
Tree Property 1s Fundamental for

Query Processing”, 1n Proc ACM

SIGACT- SIGMOD Conference on Princi-
ples of Database Systems, 40-48, Los
Angeles, CA, March 1982

[GS4] Goodman, N, and O Shmuel,

"Transforming Cychc Schemas into
Trees”, in Proc ACM SIGACT-SIGMOD
Conference on Principles of Database

Systems, 49-54, Los Angeles, CA, March
1982

252

[GS5] Goodman, N, and 0 Shmueli, "NP-
Complete Problems Simplified on Tree
Schemas", To appear in Acta Informa-
tica

] Goodman, N, O Shmueli and YC
"GYO Reductions, Canonical Connec-
tions, Tree and Cyclic Schemas and
Tree Projections”, in Proc ACM
SIGACT-SIGMOD Conference on Princi-
ples on Database Systems, 2867-278,

Atlanta, Ga , March 1983

[Hul] Hull, R, "Acychc Join Dependencies
and Database Projections”, in Proc

XP2, State College, PA, June 1981

[MU1]} Maier, D, and JD Ullman, “Connec-
tions 1n Acyclic Hypergraphs”, in Proc
ACM SIGACT-SIGMOD Conference on
Principles of Database Systems, 34-39,

Los Angeles, CA, March 1982

[MU2] Maler, D, and JD Ullman, "Maximal
Objects and the Semantics of Universal
Relation Databases"”, Technical Report
#80-016, Dept of Comp Science, SUNY

at Stonybrook, November 1980

[PY] Papadimitriou C H, and M Yannakakis,
"The Complexity of Facets (and some

facets of complexity)”, in Fourteenth
Annual ACM Symp on Theory of Com-

puting Association for Computing

Machinery, New York, NY, May 1982 [YC] Yu, CT, and M.Z Ozsoyoglu, “An Algo-

rithm for Tree-Query Membership of a

[TY] Tarjan, RE, and M Yannakakis, "Sim- Distributed Query,” in Proc COMP-
ple Linear-time algorithms to test SAC79, IEEE Comp Society, November
chordality of graphs, test acychcity of 1979

hypergraphs, and selectively reduce
acychc hypergraphs”, unpublished

manuscript, March 1982

[Yan] Yannakakis, M, "Algorithms for Acy-
clhic Database Schemes”, 1n Proc VLDB,
82-94, Cannes, France, September

1981

Consider the schema
D = ({A.B}.{C.L}.{E.M}.{C EL,{B.F}.{B.D.F}.,{B.D},{B.C})
D 1s a tree schema viz
AB---- BC ---- BD ---- B,D,F ---- B,F
I
|
CL---CE--—-—-EXM
For example, the subgraph induced by attri-
bute C1s
CL----C,E----B,C

The following is a cyclic schema
D = ({4.B},1B,C1.(C.4))
The only qual graph for D is
AB----BC
\ /

\ /
N/

AC

Figure 2 1 Tree and Cyclic Schemas

253

P#
3 8
6 | 15
8 [17
18
R
PROJ# | P# | LOC
47 8 | SF
L. 65 8 LA |
|99 15 | LA
99 _ 15 | SF
33 16 | NY |
|90 65 | NY
|82 17 1 D¢
R, Ry
|_PROI# | BUDGET# | i PROJ# | MGR | 1OC
1 1000 | 33__1Jdones | NY
3 10 47 Yhite | SF
47 00 60 [Brown | LA
40 | LA |
| Brown |
o 60 | 20 Black | DC

R, supplier S§ supples part P§,

Ry each supplier may provide product sup-

port (indicated

by SLEVEL),

Rg project PROJ§ may need part P# at loca-

tion LOC,

R, project PROJ# has an allocated BUDGET,

Rg project PROJF 1s managed by MGR at
location LOC

The view iz on S§ and P§

Figure 31 An Example Tree Database

254

rrrmg 3

SEFFFEE

(a) Adding templates Ty and T, to the origi-

nal schema

Figure 4 1 Templates

255

| S4 | P§
T,
L P§ |

Te

L PROJ# | P§ | LOC | _LOC | | 8¢ | SLVL, |
| PROJ# | BUDGET | | PROJ# | MGR | LOC | PROJE

(b) Generator Trees
Ty T
PROIZ 100 (s | P2 | LoC

| PROJ§ | P§ | | PROJ# | MGR | LOC LOC

