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Abstract

Schema matching attempts to discover semantic map-
pings between elements of two schemas. Elements are cross
compared using various heuristics (e.g., name, data-type,
and structure similarity). Seen from a broader perspec-
tive, the schema matching problem is a combinatorial prob-
lem with an exponential complexity. This makes the naive
matching algorithms for large schemas prohibitively ineffi-
cient. In this paper we propose a clustering based technique
for improving the efficiency of large scale schema match-
ing. The technique inserts clustering as an intermediate step
into existing schema matching algorithms. Clustering par-
titions schemas and reduces the overall matching load, and
creates a possibility to trade between the efficiency and ef-
fectiveness. The technique can be used in addition to other
optimization techniques. In the paper we describe the tech-
nique, validate the performance of one implementation of
the technique, and open directions for future research.

1. Introduction
Schema matching attempts to discover semantic corre-

spondence between the elements of two schemas. Schemas
are designed by humans – they are a product of human cre-
ativity. As such, two schemas, even if they have an identi-
cal meaning, can be quite different on the syntactic level.
This makes schema matching a very difficult problem, even
for humans.

Schema matching is a crucial activity in the design
of many interoperable applications. Driven by high de-
mand, many schema matching systems have been devel-
oped [5, 6, 15, 16, 18]. In these systems, the similarity be-
tween the elements of two schemas is computed by exploit-
ing various heuristics, or, hints. Hints exploit properties of
schemas, such as node names, data-types, or schema struc-
ture. Hints can also use external data sources such as data
instances, dictionaries of synonyms, and results of previ-

ous matchings. Schema matching research has shown that
the more hints are used, the greater the effectiveness of the
matching system.

We place our research in the context of personal schema
querying – a technique which could be the next approach
for querying XML data on the Internet. In this approach a
user, unfamiliar with to the structure of the XML data on
the Internet, wants to query that data. The user first pro-
vides a personal schema – his own virtual view on the
unknown data. A simple personal schema s is shown if
Fig. 1. A schema matching system then matches the per-
sonal schema against the schemas of the Internet, which
are, for example, all stored in a large XML schema repos-
itory. The user is presented with a ranked list of map-
ping choices generated by the schema matching system.
The user asserts the choices and picks one to be used
to retrieve the actual data. The user can then provide a
query defined in terms of his personal schema, say, an
XPath query /book[title=“Iliad”]/author. A query evalua-
tion system rewrites the query into queries over the real data
sources, and evaluates the real-data queries.

Personal schema querying technique is envisioned as an
on-line interactive querying technique. As such, it must
not only be effective but also very efficient. In this paper,
we are investigating ways to improve the efficiency of the
schema matcher, which is the core component in the per-
sonal schema querying technique. Throughout the paper, we
use the terms personal schema and repository schema to de-
note two schemas which are being matched.

Seen from a broader perspective, the schema match-
ing problem is a combinatorial optimization problem [19].
The number of all possible mappings between two schemas
grows exponentially with sizes of schemas being matched.
To find the best mappings for two schemas, the schema
matcher has to search through all the possible mappings. In
large scale applications, the number of possible mappings
explodes, and the naive schema matching algorithms be-
come prohibitively inefficient.
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In this paper we propose and investigate the clustered
schema matching technique which is designed to improve
the efficiently of the existing schema matching systems.
Clustering is used to quickly identify regions, i.e., clusters,
in the large schema repository which are likely to produce
good mappings for a personal schema. The schema matcher
then needs to look for mappings only within clusters. This
reduces the matching workload and improves the efficiency.
Improved efficiency comes with a penalty: due to cluster-
ing not all mappings can be discovered. Still, the clustering
technique is designed in a way that preserves schema map-
pings which rank high, and only loose mappings which rank
low.

In the paper we make the following contributions.
• We propose clustered schema matching technique for

improving the efficiency of schema matching.
• We propose and validate the k-means algorithm as one

specific implementation of the clustering algorithm
used in clustered schema matching.

This paper has the following structure. Sec. 2 starts by an
overview of the schema matching problem and techniques
used by schema matchers to solve the problem. The section
then introduces the clustered schema matching technique.
Sec. 3 describes our experimental schema matching system
Bellflower. Sec. 4 describes the k-means clustering algo-
rithm – a concrete implementation of the clustered schema
matching technique. In Sec. 5, experimental results are an-
alyzed in order to validate the expected properties of the
clustered schema matching technique. Sec. 6 discusses re-
lated work.

2. Overview
This section introduces the clustered schema matching

approach in three steps: • step one formalizes the schema
matching problem [19]. • Step two describes how current
schema matching systems solve the schema matching prob-
lem. The architecture shared by these systems is presented.
• Step three adds clustering to this architecture and dis-
cusses how clustering is expected to improve the efficiency
of schema matching.

2.1. Schema matching problem

The definition of the schema matching problem is pre-
ceded by two other definitions. First the schema graph is de-
fined as a data model for representing XML schemas. Sec-
ond, the schema mapping is defined; the schema matching
problem is solved by discovering schema mappings.

We use the schema matching problem illustrated in Fig. 1
as a running example: personal schema s, created by a
user interested in books, is to be matched against a schema
repository R. The figure shows a small fragment of the
repository. Arrows pointing to the gray subtree t depict a
schema mapping – one possible solution for this matching
problem.

(n )1

book

title

(n )2

author

(n )3

lib (n )1

address (n )7
(n )2 book

(n )3 data

title (n )5
(n )4 authorName

shelf (n )6

*

*

e2e1

s
’

e1’

’

’’

’

’

’

e4’e3’

e5’e2’

e6’

t

R

Figure 1: personal schema s, schema repository R, and
one possible schema mapping s �→ t (t is the gray subtree
of R)

Definition 1 Schema graph PS = (N,E, I,H) is a data
structure used to represent an XML schema, where: • N

is a set of nodes (elements), e.g., Ns = {n1, n2, n3} (see
Fig. 1), • E is the set of edges, e.g., Es = {e1, e2}, • I is
the incidence function associating each edge to its source
and target nodes, e.g., Is(e1) = (n1, n2), and • H is a
function which assigns (property, value) pairs to nodes and
edges in the tree. We write name(n1) = “book” to spec-
ify that particle n1 has the property name with the value
“book”. • A path is an alternating sequence of nodes and
edges where consecutive edges have exactly one common
node, e.g., p′=n′

3−e′2−n′
2−e′5−n′

6. We overload the inci-
dence function I to support paths; e.g., IR(p′) = (n′

3, n
′
6).

In this paper, terms node and element are used interchange-
ably.

Definition 2 (notation: � reads “such that”, x �→ y reads “x
maps to y”) When matching schema graphs s and R, s �→ t

is called schema mapping if t is a subgraph of R and if the
following holds (Fig. 1 illustrates one mapping):

• ∀n ∈ Ns, ∃1n
′ ∈ Nt � n �→ n′

Each node n in s must be mapped to exactly one node
n′ in t.

• ∀e ∈ Es, Is(e) = (u, v), u �→ u′, v �→ v′

∃1p
′ ∈ paths(t), It(p

′) = (u′, v′) � e �→ p′

where paths(t) is a set of all paths in t.
Each edge e in s must be mapped to exactly one path p′

in t (this edge-to-path mapping rule is a practical sim-
plification of a more general path-to-path rule)

The first point in Def. 2 restricts a mapping to what is com-
monly known as “1 to 1” element mapping [18]. Most of the
existing schema matching systems are designed to discover
“1 to 1” mappings [7], and we have chosen to first investi-
gate clustered schema matching in the context of such sys-
tems. When mapping two elements n and n′, we use the fol-
lowing naming convention: n �→ n′ is called element map-
ping, n is the mapped element and n′ is the mapping ele-
ment. In the paper, it is always clear from the context which
of the tree concepts is being discussed. The second point in
Def. 2 is rarely considered in related schema matching sys-
tems. This is because most of the systems model schemas as
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trees, and this point is needed only when modeling schemas
as graphs; in graphs there can exist more than one path be-
tween two nodes, and to define a mapping it must be clear
which of the paths is used.

Def. 2 specifies a schema mapping on a syntactic level,
but does not say anything about the semantic correctness
of a mapping. To determine the semantic correctness of a
schema mapping s �→ t, a schema matching system uses an
objective function Δ(s, t) → [0, 1]. The objective function
computes the similarity index for two schemas. The simi-
larity index is an indication of the semantic similarity of the
two schemas; the larger the index, more likely that the map-
ping is correct. Note that only humans can judge if a map-
ping is correct or not. The objective function only approxi-
mates this human judgment [19].

In practice, schema matching systems are built to de-
liver top-N mappings, or mappings with the similarity in-
dex above certain numerical threshold δ. It is expected that
most of the correct mappings are comprised within the set
of highly ranked mappings. Based on this, we define the
schema matching problem as follows.

Definition 3 Schema matching problem is a quadruple
P = (s,R,Δ(s, t), δ) where s is a personal schema schema
graph, t is a subgraph of the repository schema graph R

such that s �→ t is a schema mapping, Δ(s, t) is the objec-
tive function, and δ is the objective function threshold. The
solution of the schema matching problem P is a sorted list of
all possible schema mappings s �→ t for which Δ(s, t) ≥ δ.
The list is sorted on the value of similarity index. A more
detailed formalization of the XML schema matching prob-
lem can be found in [19].

In the remainder of the paper, we consider only XML
schemas which can be represented as schema trees, as op-
posed to schema graphs. This is a common simplification
in the schema matching research. Consequently, personal
schema s is a tree, and the repository schema R is a collec-
tion of a large number of trees, i.e., a forest. For brevity, in
the expressions we shall treat the repository schema R as
being a single large tree. In our experiments, however, the
repository is a forest. Work with schema graphs is future re-
search.

2.2. Existing approaches for solving the schema match-
ing problem

A number of existing schema matching approaches such
as Cupid [16], COMA [5], and LSD [6], share, with a de-
gree of distinction, a common schema matching architec-
ture. This common architecture is shown in Fig. 2.
The main input into a schema matching system are two
schemas being matched, e.g., a personal schema and a
repository schema 1©. Matching starts by comparing every
element of the personal schema with every element of the

structure
element
matchers

localized
element
matchers schema

mapping
generator

a.

b.

c.

..
.

2
mapping
elements3

4

schema
mappings5

1

repository
schema

personal
schema

Figure 2: Basic architecture of schema matching systems

repository. Elements are compared using different element
matchers 2©. Each element matcher uses different heuris-
tics to compute a similarity index. Matchers can be divided
into two groups depending on the type of information they
use to compute the similarity index: localized matchers and
structure matchers. Localized matchers compute the sim-
ilarity index by using only local properties of schema ele-
ments, such as element names or element data types. For ex-
ample, COMA compares element names, name synonyms,
and data types to compute the similarity index. Structure
matchers take into account the structural properties of el-
ements such as relations with other elements in a schema
graph. For example, Cupid uses a TreeMatch operator which
computes the similarity of structural contexts of elements
being compared.

For every element pair being compared, each matcher
produces a different similarity index. These indexes are
combined into a single similarity index by means of
weighed average or other combining techniques [5, 6]
(this step is not illustrated in Fig. 2). Element pairs n, n′

with non-zero similarity index become element map-
pings n �→ n′. Each personal schema node can be mapped
to multiple repository elements. For example, the black el-
ement of the personal schema 1© is mapped to four
different mapping elements in the repository 3© (also de-
picted as black nodes). The number of mapping elements is
also expected to be proportional to the size of the reposi-
tory.

With the mapping elements known, in the next step the
schema mapping generator 4© is used to generate schema
mappings 5©. Schema mappings are formed by making
various combinations of mapping elements. Mapping gen-
erator uses an objective function to compute the similarity
index for different schema mappings, and to rank the map-
pings accordingly.

The presented architecture has two sources of computa-
tional complexity: the complexity of element matchers and
the complexity of the schema mapping generator. The com-
plexity of element matchers is individual for each matcher.
Various techniques, such as approximate string joins [10] or
quick computations of structural relations through node la-
beling [11, 12], are used to implement element matchers ef-
ficiently. The mapping generator has to look for mappings
within an exponentially growing search space. This search
space is a set of all possible schema mappings the num-
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ber of which can be expressed as O(|MEn|
|Ns|), where s

is the personal schema and MEn is the set of mapping ele-
ments for each node in s. To handle such large search space,
schema matchers use efficient search algorithms, e.g., beam
search which is used in iMap system [4] or A* algorithm
used in LSD [6].

In the next section we propose a clustering based tech-
nique for further improving the efficiency of schema match-
ing. The technique is orthogonal to techniques used in ex-
isting systems and can be used in addition.

2.3. Clustered schema matching technique

In a nutshell, clustered schema matching works as fol-
lows. Clustered schema matching identifies regions
in the repository schema R which are likely to com-
prise good schema mappings t for a certain personal
schema s. The schema matcher then looks for map-
pings only within these regions, instead of searching
through the repository as whole. This reduces the work-
load and improves the efficiency of schema matching. The
personal schema is not affected by clustering.

In a search for an algorithm which can quickly gener-
ate such regions we have resorted to clustering. Hence, we
call such regions clusters and we call the technique clus-
tered schema matching. The clustered schema matching
technique is built by adding clustering to an existing (non-
clustered) schema matching system.

clusterer

c

3’

clusters of
mapping
elements

schema
mapping
generator

4

schema
mappings5

..
.

a.

b.

mapping
elements3

Figure 3: Clustered schema matching

We present the simplest, and the most generic way to add
clustering to an existing schema matching system. Fig. 3 il-
lustrates the approach. The components 1©, 2©, and 3©
remain the same as in the non-clustered matching system
(see Fig. 2). The difference lies in the addition of the clus-
terer c© which groups mapping elements 3© into clus-
ters of mapping elements 3’©. The rest of the matching
process continues by sending each cluster individually to
the schema mapping generator 4© which delivers schema
mappings. Schema mappings coming from individual clus-
ters are all placed together in a single ordered list 5©.

This approach reduces the workload of the schema map-
ping generator by reducing the size of the search space
within which mappings are to be looked for. In the non-
clustered case the mapping generator had to traverse the
search space with the size O(|MEn|

|Ns|), explained above.
In the clustered case, the nodes in the repository are par-
titioned into c clusters, with each cluster having approxi-

mately |MEn|
c

elements. Mapping generator considers each
cluster independently. Consequently, the search space size

in the clustered matching approach is O(c ·
(

|MEn|
c

)|Ns|

).

The clustering algorithm can be tuned to keep the |MEn|
c

ratio constant with the varying size of repository, e.g., by
creating more clusters in larger schemas. In such a case,
the problem complexity changes from polynomial to lin-
ear in respect to the size of the repository schema. When
compared to the non-clustered matching technique the clus-
tered schema matching technique reduces the search space
c(|NS |−1) times; the more the clusters (i.e., c) the larger the
search space reduction.

This reduction, however, comes with a cost. In an ideal
hypothetical case, clusters comprise all the good mappings
t, i.e., mapping for which for which Δ(s, t) ≥ δ. In prac-
tice, clusters are not ideal, and they cut-out some good map-
pings by shredding mappings over several clusters. The re-
sult of this side effect is the loss of effectiveness. Clustered
schema matching is therefore a non-exhaustive matching
technique which offers a trade-off between the efficiency
and the effectiveness: the more clusters the more efficient
schema matching, but the higher the chances of loosing
some valuable schema mappings. Such a trade-off is accept-
able in many applications. Nevertheless, clustering must try
to preserve as much mappings as possible, and in particular
the mappings which are ranked high by the objective func-
tion. It is desirable to loose only the mappings which rank
low. Sec. 4 discusses a concrete clustering algorithm for the
use in clustered schema matching.

We have described the simplest and the most generic way
to use clustering in schema matching. There exist another,
similar but non-generic clustered schema matching tech-
nique. This technique heavily depends on the heuristics and
the implementation details of individual element matchers
2©. In the alternative technique, element matchers are split

in two groups. For example, group one comprises localized
element matchers, group two comprises structure element
matchers. First group is used before the clustering step to
produce a set of preliminary mapping elements. Clustering
groups the preliminary mapping elements into clusters. The
second group of matchers is used after the clustering step by
considering each cluster individually. We expect that some
structure element matchers would have less work, and con-
sequently an improved efficiency, if being applied on clus-
ters, rather than on the whole repository. In this paper we
only discuss the generic technique.

When strictly following Def. 2, a cluster can produce
a schema mapping, only if it has all the necessary map-
ping elements: at least one mapping element for each per-
sonal schema element. Such clusters are called useful clus-
ters. The chances are that some clusters will not have all the
needed elements. These clusters do not produce any schema
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mappings. To overcome this limitation, the definition of a
schema mapping should be extended with a notion of par-
tial schema mapping. This would enable the discovery of
partial mappings in non-useful clusters. Such partial map-
pings might, nevertheless, be valuable to the user. This is
future research.

3. Experimental system for clustered schema
matching

To investigate the effects of the clustered schema match-
ing, we have developed an experimental schema matching
system called Bellflower. Bellflower implements clustered
schema matching as described in the previous section (see
Fig. 3). In this section we describe Bellflower’s components
in more detail.

Schema repository: Bellflower uses a schema repository
built by randomly selecting XML schemas available on the
Internet. GoogleTM search engine was used to discover 1700
non-recursive DTDs and XML schemas with a total number
of 178252 element (attribute) nodes distributed over 3889
trees (note, that one schema can have multiple roots, each
represented with one tree). A repository of such size, proved
to be too big for our experimental framework, and we built
several smaller repositories with sizes from 2500 to 10200
elements, by randomly selecting schemas from the collec-
tion.

Element matcher: Bellflower uses one element matcher
sim(n, n′) → [0, 1] which compares names of elements n

and n′. The matcher is implemented using the Compare-
StringFuzzy [1] function. The CompareStringFuzzy func-
tion computes a normalized string similarity based on char-
acter substitution, insertion, exclusion, and transposition.

Objective function for schema mappings: Bellflower
computes the objective function for schema mappings by
combining name similarity indexes (sim) and the path
length similarity index (path). The value of the objec-
tive function Δ(s, t) is computed as follows. Eq. 1 com-
putes the name similarity index for a schema mapping by
averaging the name similarities of individual element map-
pings. Eq. 2 computes the difference in total path lengths of
the personal schema s and the mapping schema t. The dif-
ference is normalized to [0, 1] by means of a normalization
constant K. The value of K is determined using other con-
straints in the system (e.g., the maximum length of a
path).

Δsim(s, t) =
1

|Ns|
·

∑
n∈Ns

sim(n, n′) (1)

where n′ ∈ Nt and n �→ n′

Δpath(s, t) = 1 −
|Et| − |Es|

|Es| · K
, (2)

where K is a normalization constant

The two hints are combined using a weighted sum (Eq.3)
with parameter α determining the relative importance of the
two.

Δ(s, t) = α · Δsim(s, t) + (1 − α) · Δpath(s, t) (3)

This objective function, though simple, simulates the two
most important types of heuristics used in schema matching
systems. First, Δsim simulates the heuristic based on local-
ized properties of elements, and two, Δpath simulates the
heuristic based on structural properties of schemas. Please
note, that our research does not try to develop a new, or bet-
ter, objective function; the simple objective function used
in Bellflower probably has an inferior effectiveness when
compared to that of the other schema matching system.
Nevertheless, we believe that Bellflower has enough be-
havioral similarity to the other schema matching system,
to present a good platform for investigating the clustered
schema matching approach, and even for making conclu-
sions about a broader applicability of the clustered schema
matching.

Schema mapping generator: The generator uses an adap-
tation of the Branch and Bound algorithm (B&B) (see [13],
pg. 141). The generator, produces all schema mappings
for which Δ(s, t) ≥ δ, where δ is a manually selected
threshold. The generator gains efficiency by using a bound-
ing function for an early detection of mappings for which
Δ(s, t) < δ. We omit the implementation details due to the
lack of space. In the experimental section, the effects of the
B&B algorithm will, however, be indicated.

4. Choosing the clustering algorithm
Central part of the clustered schema matching is the clus-

tering algorithm. The algorithm must be efficient to ensure
that the efficiency gains induced by clustering in the map-
ping generation step ( 4© Fig. 2) are much larger than the
overhead generated by the clustering itself ( C© Fig. 3). At
the same time, the clustering must try to preserve schema
mappings which would be produced in the non-clustered
matching.

Our choice for the initial implementation is an adapta-
tion of the k-means clustering algorithm ([8], pg. 140). The
choice is based on the simplicity and the non-exponential
complexity of the algorithm. In the sequel we first introduce
the general k-means algorithm, and then propose a concrete
implementation in the context of the Bellflower experimen-
tal system. Along the way, we discuss general problems that
clustering faces in the clustered schema matching.

K-means clustering algorithm: Algorithm 1 shows the
k-means algorithm as used in clustered schema matching.
Note that the reclustering step (line 10) does not exist in the
“standard” k-means algorithm.

The k-means algorithm uses the concepts of element,
cluster, centroid, and distance measure. In this work, clus-
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ter elements are in fact mapping elements ( 3© Fig. 3) cre-
ated in the element matching step. Clusters are thus collec-
tions of mapping elements. Each cluster is represented with
a centroid, and the distance measure calculates the distance
between a mapping element and a centroid.

The algorithm starts with the initialization of centroids
(line 1). The initialization is used to “seed” the centroids
around which the clusters will be formed. The initializa-
tion determines two things: first, the number of clusters to
be created, and second, the (approximate) locations around
which the clusters will be formed.

Algorithm 1 K-means clustering algorithm

1: initialize centroids
2: repeat
3: for each mapping element do
4: for each centroid do
5: compute distance(mapping element,centroid)
6: end for
7: assign mapping element to nearest centroid
8: end for
9: compute new centroids for all clusters

10: perform reclustering
11: until convergence criterion is met

The iterative part of the algorithm, starts with a nested
loop (lines 3 to 8) in which the nearest centroid is deter-
mined for each mapping element. A mapping element be-
comes a member of the nearest centroid’s cluster (line 7).
After the clusters have been formed, new centroids are cal-
culated (line 9). These new centroids represent clusters in
the next iteration. For reasons discussed later, we have in-
troduced a reclustering step (line 10). This step is used to
perform additional modifications of clusters. The iterations
continue until a convergence criterion is met (line 11).

The complexity of the k-means clustering algorithm is
O(c · i · |ME|), where c is the number of clusters being
formed, i is the number of iterations, and ME is the set of
all mapping elements in the repository schema.

We continue by describing an implementation of the k-
means clustering algorithm. The implementation represents
our initial efforts in building the clustered schema matching
system.

Initialization of centroids: In clustered schema matching,
it is hard to determine beforehand the number of clusters;
depending on the matching problem, the number of regions
in the repository, which comprise good mappings, varies.
For this reason, we let the initialization seed large number
of centroids, which we then bring to a desirable number by
means of reclustering (described below).

We have explored various heuristics for initializing the
centroids, one of which we describe in detail. This heuris-
tic tries to place initial centroids in repository areas which

have the highest capacity to deliver useful clusters, i.e., clus-
ters which produce mappings. In Bellflower we implement
this idea as follows. Let MEn denote a set of all mapping el-
ements for personal schema node n ∈ Ns, and MEmin the
smallest one. For example, in Fig. 3 3©, MEmin is the set of
black nodes. There are only four black nodes (mapping el-
ements) compared to five mapping elements in other two
sets. Since each cluster needs at least one mapping element
for each personal schema node, Bellflower initializes cen-
troids by declaring all the elements of MEmin as centroids.

An inherent problems of the k-means algorithm is its
sensitivity to the initial choice of centroids. With our ap-
proach which combines large number of initial centroids
and reclustering, this problem is reduced.

Distance measure: In Bellflower, the distance measure
distance(n′,m′) (line 5 in Alg. 1) is the actual tree distance
(i.e., path length) between the centroid node n′ and the map-
ping element m′. In principle, the distance measure must be
designed to support a specific objective function. Thus, each
schema matching system must have an accustomed distance
measure. Path length is important in Bellflower’s objective
function, therefore the distance measure uses this value. We
are investigating ways to extend the distance measure with
other heuristics, both localized and structural.

In k-means clustering, distances are computed very of-
ten, and the efficiency of the distance computation is impor-
tant. Bellflower uses node labeling techniques [12] to pro-
vide low-cost computation of path lengths.

Computation of centroid: The centroid is an entity used
to represent a cluster. In Bellflower, the centroid for a clus-
ter is selected from the mapping elements which belong to
the cluster (such centroids are also known as medoids [8]).
More specifically, the mapping element which is the cen-
ter of weight for the cluster is used as a centroid. We are
investigating other kinds of centroids, such as using two el-
ements to represent a single cluster.

Reclustering: Reclustering is used to directly act upon the
clusters in each clustering iteration. In Bellflower recluster-
ing dynamically changes the number of clusters by joining
clusters or by removing clusters. Reclustering makes it pos-
sible to bring the number and the size of clusters to a de-
sired state.

We illustrate the effects of reclustering by observing the
sizes and the number of clusters which are formed by using
three different reclustering strategies: no reclustering, join
reclustering, and join & remove reclustering. Fig. 4 shows
the size distribution of the resulting clusters.

The no reclustering algorithm created a total of 579 clus-
ters. Dark bars show the size distribution of these clusters.
For example, out of these 579 clusters, 134 clusters have
a size in the [8,15] range. The majority of clusters is very
small. We have observed that tiny clusters appear in areas in

Proceedings of the 22nd International Conference on Data Engineering Workshops (ICDEW'06) 
0-7695-2571-7/06 $20.00 © 2006 IEEE 



[1,1] [2,3] [4,7] [8,15] [16,31] [32,63] [64,127] [128,255]
0

20

40

60

80

100

120

140

160

n
u
m

b
e
r

o
f
c
lu

s
te

rs

no reclustering (579 clusters)
join (333 clusters)
join & remove (243 clusters)

number of mapping elements in each cluster

Figure 4: Cluster size distribution for different recluster-
ing techniques

which initial centroids are close to each other, and thus com-
pete to attract the same mapping elements. Consequently,
some centroids “starve” and form tiny clusters. This prob-
lem can be solved through join reclustering. The join tech-
nique unites clusters if the centroids of these clusters are
near each other. Fig. 4 shows the effects of using join reclus-
tering. Clustering with join reclustering creates 333 clus-
ters, which is 256 clusters less than in the no reclustering
case. These 256 clusters have joined neighboring clusters.
With join reclustering the tiny cluster problem is signifi-
cantly reduced.

The remaining tiny clusters can be either ignored or re-
moved with the remove reclustering technique. The tech-
nique removes all clusters with less then a certain number
of mapping elements. The mapping elements belonging to
these clusters are free to join other clusters in the neighbor-
hood. Fig. 4 shows that the combination of the join and re-
move reclustering completely eliminates the tiny clusters.

In some cases clustering can create huge clusters. This
occurs in areas with a large number of mapping elements,
in which only one centroid is initiated. This centroid attracts
all the mapping elements, creating a cluster with possibly
several hundred nodes. The problem of huge clusters can be
solved in several ways: by improving the initialization al-
gorithm, by splitting huge clusters, or by discarding a large
number of the huge cluster’s elements, namely the ones that
are far from the centroid. In our experiments, huge clus-
ters rarely occur, and are removed “manually” if necessary.
For now, Bellflower does not implement procedures for han-
dling huge clusters.

Convergence criteria: If in two successive iterations of
the k-means algorithm clusters do not change, clustering has
reached the total stability criterion, and the algorithm termi-
nates. In practice, however, the total stability criterion can
be relaxed. Bellflower monitors, in each iteration, the num-
ber of mapping elements which switched form one cluster

to another, and the change in the number of clusters. When
these numbers drop below a certain threshold, e.g., 5 per-
cent of the total number of mapping elements/clusters, al-
gorithm terminates. The selection of termination criteria is
not trivial. So far, we found no direct correspondence be-
tween the termination criteria and the resulting performance
of the clustered schema matching system. Finding a conver-
gence criterion which minimizes iteration and yet delivers
the desired clusters is largely open research question.

5. Experiments
We have conducted numerous experiments over different

schema matching problems, i.e., different repositories and
different personal schemas. Although results differ for dif-
ferent matching problems, the clustered schema matching
has shown the same general behavior and gave rise to con-
sistent conclusions. Experiments were conducted on a stan-
dard PC. This is sufficient because we study efficiency im-
provements, not absolute times. In this section, we report
the results of a typical experiment: the personal schema has
nodes “name”, “address”, and “email”, and a structure sim-
ilar to schema s in Fig. 1. The personal schema is matched
against the repository with 9759 elements, distributed over
262 trees. Bellflower is asked to discover all the schema
mappings, s �→ t for which Δ(s, t) ≥ 0.75. In this exper-
iment, Bellflower’s element matcher produces 4520 map-
ping elements.

In the experiment, we use three different variants of the
clustering algorithms, plus the case with no clustering. The
three clustering variants differ only in the value of the dis-
tance threshold which is used in join reclustering. For the
distance threshold 4, join reclustering joins clusters whose
centroids are at the distance not bigger than 4. Due to join-
ing, resulting clusters are larger and hence the name for this
clustering variant: “large clusters” variant. The other two
clustering variants use distance thresholds 3 and 2 and cre-
ate smaller clusters, hence the names “medium clusters” and
“small clusters”. In the non-clustered case, each tree in the
repository is treated as one cluster. These are called “tree
clusters”.

Properties of clusters: Tab. 1a shows the properties of re-
sulting clusters. The table reports only the properties of the
useful clusters, i.e., clusters which can deliver schema map-
pings.

The ”tree clusters” row in the table is interpreted as fol-
lows. For the given matching problem, there exist 95 useful
trees in the repository. Trees contain on average 45.5 map-
ping elements. The maximum number of mappings which
can be generated in all these trees, i.e., the search space for
a schema matcher, is 11.9 million schema mappings. We
shall see later, that amongst all these mappings, there ex-
ist only 4271 schema mapping for which Δ(s, t) ≥ 0.75.
The other rows illustrate how clustering reduces the search
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clustering a) properties of clusters b) mapping generator performance
algorithm # of useful

clusters
avg. # of mapping

elements
total # of

schema mappings
# of partial
mappings

# of schema
mappings Δ ≥ 0.75

time (s)

small 251 16.1 153311 (1.28%) 51491 620 16.0
medium 235 17.4 168877 (1.41%) 56965 1009 23.8
large 172 24.1 486383 (4.07%) 109341 2444 56.3
tree 95 45.5 11962741 (100%) 386817 4271 106.3

Table 1: Experimental results: a) properties of clusters, b) mapping generator performance

space. For example, the “medium clusters” row, shows that
235 clusters are formed with an average of 17.4 mapping
elements. The size of the search space is reduced 70 times,
from 11.9 million, in the case of “tree clusters” to 168877
(1.41 percent) in the “medium clusters” case. Note that dif-
ferent clustering variants deliver different reductions of the
search space which means that parameters of the cluster-
ing algorithm can be used to control the size of the search
space.

Efficiency of clustering: Each of the three clustering vari-
ations needed almost equal times to complete the cluster-
ing: 12.2 sec., 12.0 sec., and 11.9 sec. Time differences oc-
cur only due to the different number of resulting clusters;
the other parameters which influence the complexity of the
k-means algorithm, i.e., the number of trees (95), the num-
ber of mapping elements (4250), and the number of itera-
tions (4), were the same in all three cases. In other experi-
ments, we have observed that large time savings can be ac-
quired by fine tuning the convergence criterion. Each un-
necessary iteration is a waste of time. How to do this auto-
matically is a open question.

Efficiency of the schema mapping generator: Bellflower,
is a proof of concept experimental system and the time mea-
surements are not accurate. To assess the performance of
the schema mapping generator we measure not only time
by also use more reliable performance indicators - counters.
The Branch and Bound algorithm, which drives the genera-
tor, saves time by not generating all possible schema map-
pings. Instead it generates and tests a much smaller num-
ber of partial schema mappings. In Bellflower we count the
number of partial schema mapping generated by the B&B
algorithm. The performance of a well-tuned implementa-
tion is expected to be proportional to this number. Tab. 1b
shows the measured efficiency indicators.

The “tree clusters” row, i.e., the non-clustering case, is
interpreted as follows. To find the solutions for a given
matching problem, in the search space of 11962741 map-
pings (see “tree clusters” in Tab. 1a), the B&B algorithm
generated 386817 partial mappings and discovered 4271
schema mappings having the similarity index larger than
0.75. It took 106.3 seconds to finish the whole process. We
see here the benefits of using the B&B algorithm. Instead of
generating and testing all 11962741 mappings, B&B algo-

rithm tested 30 times less partial mappings.
Other rows show the efficiency improvements in-

troduced with the use of clustering. For example, with
the “medium clusters” clustering, the search space con-
tains 168877 mappings (see “medium clusters” in Tab. 1a),
and the B&B algorithms tests 56965 partial mappings,
which is one third of the total search space. This is less im-
provement than in the non-clustered case in which B&B
brought much more benefits; by using the “medium clus-
ters” clustering, the search space is already condensed
by clustering, and B&B cannot bring that much improve-
ment. We can also compare the efficiency of the mapping
generator when no clustering was used, i.e., for“tree clus-
ters”, and when the “medium clusters” clustering was used.
In the clustered case the number of partial mappings gen-
erated by B&B is reduced by factor 6.8 which is approx-
imately confirmed by the time measurements. The effects
that clustering has on the number of discovered map-
pings are also visible. “Medium clusters” approach did
not discover all the 4271 mappings. Instead, it pro-
duced 1009 schema mappings. This issue will be discussed
later in more detail.

If we add together the clustering time and the schema
mapping generation time, the non-clustered approach con-
sumes 0sec+106.3sec, while the “medium” clustering con-
sumes 12.0sec + 23.8sec = 35.8sec. In this particular case,
an efficiency improvement of factor 3 is achieved. A cre-
ation of an elaborate cost model for the whole clustered
schema matching technique is future research.

On how clustering affects the results of schema match-
ing: As discussed, clustering improves efficiency, but
with a penalty of losing mappings. Tab. 1b “tree clusters”
row, shows that the non-clustered matching delivers 4271
schema mappings, while the three clustered schema match-
ing techniques deliver 620, 1009, and 2444 schema map-
pings. Obviously, clustering cuts-off many mappings that
are otherwise generated in the non-clustered case. We
have, however, already argued that this loss can be ac-
cepted if it occurs among the solutions which rank low. To
see where the loss of mappings actually occurs Fig. 5 shows
the percentage of preserved mappings for different thresh-
old levels. The non-clustered schema matching exhaus-
tively traverses the search space, and finds all the schema
mappings with Δ(s, t) ≥ 0.75. Hence the constant 100 per-
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Figure 5: Percentage of preserved mappings for different
variants of the clustering algorithm

cent line for non-clustered matching, i.e., the “tree clus-
ters” line. Clustered schema matching loses mappings. For
example, the “small clusters” clustering preserves 55 per-
cents of schema mappings which have the similarity index
greater of equal 0.9 (see arrows in Fig. 5), and 14 per-
cent of mappings for δ = 0.75.

The figure demonstrates that clustering provides the de-
sired behavior: in the areas with high value of objective
function, large proportion of mappings are preserved. The
loss of mappings is greater among the lower ranked map-
pings.

Fig. 5 also demonstrates that different clustering variants
exhibit different percentages of preservation. The larger re-
ductions of the search space result in the larger losses of
mappings. Still, the numbers are promising. For example,
the “medium clusters” clustering reduces the search space
to only 1.41 percent of its original size (see Tab. 1a), and yet
it preserves 23 percent (i.e., 1009 / 4271) of schema map-
pings for δ = 0.75, or even 72 percent for δ = 0.9.

On the correlation of clustering and the objective func-
tion: Clustering in clustered schema matching cannot be
designed in a generic way. It has to be designed with a spe-
cific objective function in mind. To show how a single clus-
tering approach performs with different objective functions
we use the following experiment. The given schema match-
ing problem is solved with three different objective func-
tions. These functions differ only in the value of the α pa-
rameter (see Eq. 3) which varies over 0.25, 0.50, and 0.75.
Large α favors name similarity heuristics Δsim. Small α fa-
vors the path length heuristics Δpath. The experiment uses
the “medium clusters” clustering variant for all three objec-
tive functions.

Fig. 6 shows the preservation percentage for the three
objective functions. Large differences can be observed. As
show in Sec. 4, the distance measure used in clustering is
based on path length only. It is designed to preserve map-
pings in systems which treat the path length feature as an
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Figure 6: The effectiveness of clustered schema matching
for three variations of the objective functions

important heuristics in matching. Consequently, clustering
delivers the best results if used with the α = 0.25, i.e., with
the objective function which favors the path length hint.
As the α increases, the number of preserved mappings de-
creases. This demonstrates the importance of adapting the
clustering algorithm to a specific objective function.

6. Related work

Schema matching attracts significant attention as it finds
application in many areas dealing with highly heteroge-
neous data. A comprehensive survey by Rahm and Bern-
stein [18] identifies main schema matching techniques.
More specific schema matching techniques and system in-
clude COMA [5], Cupid [16], LSD [6], and Corpus-based
schema matching [15], to name a few. These systems fo-
cus only on the effectiveness of schema matching. Var-
ious hints and the techniques to combine these hints
are investigated in order to improve the schema match-
ing effectiveness. On the other side, there exist very little
work which addresses the efficiency of schema match-
ing.

Bernstain et. al, describe a design of an industrial-
strength schema matcher called PROTOPLASM [3].
While analyzing the techniques for building a customiz-
able schema matching system, authors underline the
importance of developing the efficient schema match-
ers – the same motive drives our research.

Recently, Rahm et. al [9, 2], suggested and demonstrated
the use of fragmentation to make schema matching more ef-
ficient. While our clustered matching forms clusters on-line
and by taking into account the personal schema, they pro-
pose that fragments can be formed off-line by exploiting
syntactic substructures, such as complex types or groups,
of individual XML schemas. They further perform schema
matching in two steps. First, fragments as a whole are com-
pared to other fragments to find the most similar ones. Like-
wise, we plan, as a future research, to devise a metrics which
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identifies clusters with high potential for delivering good
mappings. In the second step, in both our an their approach,
detailed matching is performed per cluster, that is, per frag-
ment.

Clustering has already been used to support schema
matching in two ways. First, clustering is used to detect cor-
responding schema elements [17, 21]. It has been shown
that different clustering techniques can be used to form the
groups of semantically similar elements [22]. Second, clus-
tering is used to identify groups of semantically related
schemas and to confine the matching efforts within these
schema groups [14]. The way we use clustering in clustered
schema matching has common points with both approaches.
An overview of other Web data clustering practices is given
in [20].

7. Conclusion and future research

We have proposed the clustered schema matching as
a technique for efficient matching of one smaller schema
against the large schema repository. Clustering is used to
quickly identify regions in the schema repository which are
likely to comprise good mappings for the smaller schema.
The schema matcher then looks for mappings only within
these regions, i.e., clusters. This reduces the matching work-
load and improves the efficiency. The improved efficiency,
however, comes at the cost of the loss of some mappings.
The loss mostly occurs among the mappings which rank
low which is an acceptable trade off. For validation we
have built an experimental clustered schema matching sys-
tem called Bellflower. Experimentation confirmed two main
abilities of clustered schema matching: (1) the ability to im-
prove efficiency of schema matching, and (2) the ability to
preserve highly ranked mappings, in doing so.

Future research includes: (1) establishing a tighter con-
trol over clustering – more insight into the effects of cer-
tain clustering parameters on the efficiency/effectiveness
trade off allows for better tuning, (2) ordering the clusters –
a measure of cluster’s quality can be used to decide which
clusters have better chances to produce good mappings. In
this way, the time-to-first good mapping can be improved,
(3) design of a other distance measures for clustering.

Other challenging issues include, the generation of par-
tial mappings, matching with larger personal schemas, and
clustered schema matching in graph based repositories.
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