
Database Reorganization--Principles and Practice

GARY H. SOCKUT

Institute for Computer Scwnces and Technology, Natmnal Bureau of Standards, Washington, D.C. 20234

ROBERT P. GOLDBERG

BGS Systems, Inc., Box 128, L~ncoln, Massachusetts 01773

Database reorganization can be defined as changing some aspect of the way in which a
database m arranged logically and/or physically. An example is changing from a one-to-
one to a one-to-many relationship. Reorganizatmn m a necessary function in a database
system. This paper introduces the basic concepts of reorganization, including why it is
performed. Many types of reorganization are described and classified into logical/physical
levels. Then pragmatic issues such as reorganization strategies, a survey of several
commercial reorganization facilities, case studies, and database administration
cons~deratmns are covered. Finally, several research efforts are surveyed.

Keywords and Phrases: database, database management, reorganization, restructuring,
file maintenance

CR Categories" 2.43, 3.51, 3.73, 4.33, 4 34

INTRODUCTION

We define database reorganization as
changing some aspect of the way in which
a database is arranged logically and/or
physically. We use reorganization as a ge-
neric term that covers what some authors
call restructuring (changing logical struc-
tures) and reformatting (changing physical
structures). Some examples of reorganiza-
tion are adding an attribute, changing from
a one-to-one to a one-to-many relationship,
deleting a secondary index, changing from
sequential to pointer linkages, changing
from hashed to indexed access, and elimi-
nating overflow in an indexed sequential
access method.

The intended audience for this paper in-
cludes data processing operations person-
nel, database researchers, and students.
The paper should be comprehensible to a
reader with a basic knowledge of databases,
such as that acquired from taking a one-
semester university course or from reading
sources like DATE77, MART77, or SIBL76.

The reader should be familiar with such
terms as database, database management
system (DBMS), schema, subschema, rec-
ord, CODASYL (or DBTG) set, and access
method.

Reorganization may be performed for a
variety of reasons. It may be highly desir-
able (e.g., to improve performance, storage
utilization, or human productivity), or it
may be necessary (e.g., to change security
policies, to create a new database from old
databases, or to improve functional capa-
bilities). The following are some circum-
stances under which reorganization is ap-
propriate:

• The definition of the information
changes. For example, if a company ini-
tially requires each of its employees to
work on only one project at any time but
later changes its policy to allow an em-
ployee to work on several projects simul-
taneously, then the one-to-many rela-
tionship between projects and employees

Permission to copy without fee all or part of this material is granted provided that the copras are not made o r

distributed for direct commercial advantage, the ACM copyright notice and the title of the publication and its
date appear, and notice is given that copying m by permmsion of the Association for Computing Machinery. To
copy otherwme, or to republish, requires a fee and/or specific permission.
© 1979 ACM 0010-4892/79/1200-0371 $00.75

Computing Surveys, Vo|. 11, No. 4, Dec.ember 1979

372 • G. H. Sockut and R. P. Goldberg

CONTENTS

INTRODUCTION
l TYPES OF REORGANIZATION

1 1 Overview of the Classification
1 2 Reorgamzatlon at the Infologlcal Level
1 3 Reorgamzatlon at the String Level
14 Reorgamzatmn at the Encoding Level
15 Reorgamzatmn at the Physmal Devtce Level
16 Other Terminology

2 PRAGMATIC ISSUES
2 1 Strategms for Reorgamzatlon
2 2 Commercml Facilities
2 3 Case Studms
2 4 Database Admmlstratmn Conslderatmns

3 RESEARCH EFFORTS
3 1 Conversmn
3 2 Maintenance
3 3 Concurrent Reorganlzatmn and Usage

4 CONCLUSIONS
ACKNOWLEDGMENTS
REFERENCES

v

must change to a many-to-many relation-
ship.

* A new type of information is added to a
database. This may require increasing
the size of a record type to accommodate
a new field.

• New legislation requires a change. For
example, restricting disclosure of infor-
mation among government agencies may
require splitting records into disclosable
and nondisclosable parts.

• A new database is created from one or
more old databases or files. For example,
a company that acquires another com-
pany may merge the two customer data-
bases, which may be associated with dif-
ferent DBMSs and which may be in dif-
ferent forms, thus requiring conversion.

• Empirical characteristics of the informa-
tion change. For example, in a file of
families, the optimal amount of space to
reserve for children near a family record
results from a time-space trade-off. As
zero population growth becomes more
popular, more families are small, and the
optimal amount of space to reserve may
decrease.

• Characteristics of usage change on either
a short- or long-term basis. For example,
if new sociological research using a pop-

ulation database requires access via a
particular key, a new secondary index
might be added.

• As the amount of information grows, a
database may be moved to larger or faster
storage devices. This may require mod-
ifying the mapping of records to physical
locations.

• Poor performance may lead to "tuning"
or redesigning such aspects as hashing
parameters.

• The optimal access arrangement varies
with time, as in an airline reservation
system, where flight information for the
next few days may be finely indexed for
quick access, while information for later
days may be coarsely indexed to save
space. At the end of a day, that day's
information is archived, and one more
day's information is indexed finely.

• Performance can degrade during normal
operation as unpredictable insertions are
made or deleted records accumulate. For
example, if insertions into an indexed se-
quential file are clustered in one key
range, access times for that part of the
file increase as overflow structures accu-
mulate. Maintenance may produce a
more balanced structure yielding better
access times.

A DBMS may select and maintain some
storage structures automatically. However,
even for such a system, those storage struc-
tures, as well as logical structures, may
require manual or automatic reorganization
at times.

The balance of this paper contains tuto-
rials and surveys on several aspects of re-
organization. In Section 1 we describe many
types of reorganization and classify them
into logical/physical levels. In Section 2 we
discuss pragmatic issues. These include
1) strategies used to reorganize, 2) a survey
of reorganization facilities provided with
several well-known commercial DBMSs, 1
3) case studies, and 4) database administra-

1 In several places m th is paper we describe se lected
commercia l sys tems The inclusion or exclusion of a
sys tem and the order and content of our d e s c n p h o n s
do not imply endorsement or d isapproval by the au-
thors or the i r organizations. We do not cert ify tha t the
sys tems operate as described.

Computing Surveys, Vol 11, No 4, December 1979

Database Reorganization--Principles and Practice

tion considerations. We then survey several
research efforts in database reorganization
in Section 3.

1. TYPES OF REORGANIZATION

In this section we describe several types of
reorganization, which are classified using a
database accessing model. As explained be-
low, the accessing model describes database
constructs at each of several levels, ranging
from logical to physical. We classify types
of reorganization into levels according to
the constructs they change. Reorganization
can occur at any level. The classification is
presented primarily for pedagogic purposes,
but it can also illustrate data indepen-
dence; i.e., changes in constructs at low
levels do not affect constructs at high levels,
except for differences in performance.
BERG80b also describes some types of
changes.

1.1 Overview of the Classification

The classification uses the stratification of
DIAM II [SENK75], the second version of
the Data Independent Accessing Model,
which was developed principally by Mi-
chael E. Senko. DIAM II consists of a data
model and an accessing model. A data
model is a set of logical data structure types,
occurrences of which represent the logical
information in a database, plus operations
on those types. Examples are the CODA-
SYL (or DBTG) [CODA71, CODA78], re-
lational [CoDD70], IMS [IBM77a], and en-
tity-relationship [CHEN76, CHEN78] data
models, as well as the many data models
described in KERS76. An accessing model is
a description of how data are physically
stored and accessed.

The classification is useful for all data
models, not just DIAM's, since it uses only
DIAM's accessing model, not its data
model. Most of the reorganization examples
used in this paper come from CODASYL,
IMS, and relational systems. SCHN76 uses
DIAM I [ASTR72, SENK73], an earlier ver-
sion of DIAM, to describe relational sys-
tems.

We selected DIAM because it provides a
stratification of database constructs and it
is well known. The stratification used by
the CODASYL Stored-Data Definition and

• 373

Translation Task Group [CODA77] was
also largely based on DIAM's stratification.
The classification is general enough to ap-
ply to all of the database structures that we
examined, but there could be structures
requiring other classifications.

Below we describe briefly the levels of
DIAM II. The description is not an in-
depth one, but it provides sufficient criteria
for classifying types of reorganization. The
references contain more detailed explana-
tions of the DIAM II levels.

Figure 1 shows an overview of DIAM II.
Logical levels appear at the top, and phys-
ical levels appear at the bottom. Rectangles
represent constructs at the various levels,
while ovals represent interlevel mappings
between constructs. The five DIAM II
levels are labeled at the left, while the three
levels of the ANSI SPARC database archi-
tecture (a proposed architectural frame-
work for database systems) [Tsm77] are
labeled at the right. Senko has pointed out
a correspondence between ANSI SPARC
and DIAM II levels [SENK75]: The ANSI
SPARC external schema corresponds to
the DIAM II end-user level, the conceptual
schema corresponds to the infologtcal
level, and the internal schema corresponds
to the string level, encoding level, and
physical device level. Some database terms
in common use (subschema, schema, and
access methods) that correspond roughly
to DIAM II concepts also appear in the
figure.

We first describe the infological level
[SENK75], which defines attributes and re-
lationships among them. It also defines at-
tributes' logical representations (e.g., range
of values). This level corresponds roughly
to the common notion of schema, although
schemata in existing DBMSs generally con-
tain information from lower DIAM II levels
as well.

The end-user level [SENK75] provides
users (or applications) with views of the
infological level's constructs. A user may
view a subset of the database's attributes
and relationships, and this subset may have
a certain structure {e.g., a hierarchy). This
level corresponds roughly to the common
notion of subschema.

The string level [SENK75] defines access
paths, which often implement relation-

ComputmgSurveys, Vol ll. No. 4, December 1979

374 G. H. Sockut and R. P. Goldberg

DIAM I I
DIAM II CONSTRUCTS
LEVELS & MAPPINGS

COMMON
TERMS

ANSI
SPARC
LEVELS

STRING
LEVEL

END-USER LEVEL I ATTRIBUTES RELATIONSHIPS I

f SUBSET AND
INFOLOGICAL ~STRUCTURING ..,/
LEVEL

ATTRIBUTES I RELATIONSHIPS I

t- --t
I (STRING

DEFINITIONS)

ENCODING
LEVEL

SUBSCHEMA

SCHEMA

EXTERNAL
SCHEMA

CONCEPTUAL
SCHEMA

STRINGS

ATTRIBUTE ~ (STRING
ENCODING ENCODING
DEFINITIONS ~ DEFINITIONS

PHYSICAL
DEVICE
LEVEL

I LINEAR I
ADDRESS SPACES

t
DEFINITIONS

I
r i STORAGE DEV'CES I

ACCESS
METHODS

INTERNAL
SCHEMA

FIGURE 1. Overview of DIAM II.

ships. Strings are linkages among attri-
butes, e.g., a CODASYL record type, which
links fields (data items)--or linkages among
strings, e.g., a CODASYL set, which links
an owner record type and one or more
member record types. A string can order
the constructs (attributes or strings) that it
links. Several string representations may be
possible for a given relationship. For ex-
ample, a one-to-many relationship might be
implemented in CODASYL as a set or as a
repeating group of fields. Strings are also
used in the implementation of secondary
indices.

The encoding level [ALTM72] defines

how strings and attributes are physically
represented (encoded) as bits in one-dimen-
sional bit streams (called linear address
spaces). Strings can be represented by
physical contiguity (as is usually true for a
record) or by pointers (as is usually true for
a set). Examples of attribute encoding are
character codes and binary or decimal in-
tegers.

The physical device level [SENK76] maps
linear address spaces onto physical storage
devices, using constructs called frames as
an intermediate stage. A frame is a gener-
alization of such physical units as block,
track, cylinder, hash bucket, and disk pack.

Computing Surveys, Vol 11, No 4, December 1979

Database Reorganization--Principles and Practice

Frame definitions correspond roughly to
access methods.

Sections 1.2 through 1.5 classify many
types of reorganization within the levels of
DIAM II. We use subdivisions within a
level for pedagogic purposes, not for finer
stratification. We do not list all possible
types of reorganization. Most examples
come from CODASYL, IMS, and relational
systems because these systems are well
known. The terms and constructs we use
are described in depth in CODA71,
CODA78, and TAYL76 for CODASYL, in
IBM77a and Tslc76 for IMS, in CODD70
and CnAM 76 for relational systems, and in
DATE77 and MART77 for all three. A type
of reorganization in an existing DBMS may
correspond to more than one DIAM level.

1.2 Reorganization at the Infological Level

In this section we discuss changes in defi-
nitions of attributes and relationships. The
discussion applies to any data model.
C~EN77 describes a similar collection of
changes for the entity-relationship data
model.

In cases in which unchanged subsche-
mata hide infological level changes from
application programs, old application pro-
grams are not changed. If a subschema is
changed, the change affects application
programs that use the subschema. Appli-
cation program conversion, which this pa-
per does not cover, can cost more than data
conversion [Hous77, TAYL79]. We do not
address end-user level changes separately
from infological level changes. In the fol-
lowing we describe changes at the infologi-
cal level:

Attributes can be added, deleted, com-
bined, split, or renamed. For example, in a
relational database, a relation's degree
(number of attributes) may change.

Attributes' logical representations can
change, and the changes may affect field
and record sizes, which are specified at the
encoding level. These changes include scale
(e.g., inches versus centimeters; monthly
versus semimonthly salary) and range of
values (including logical field size). Alter-
natively, one might perform some such
changes at the encoding level in order to
insulate the infological level from the
changes.

• 375

Security controls can be changed
[HsIA78]. Such changes can be imple-
mented at lower levels.

Relationships can change, although such
changes are implemented at the string level,
as described in Section 1.3.1. These changes
include

1) creating, destroying, or renaming a re-
lationship;

2) changing among a one-to-one, a one-
to-many, and a many-to-many relationship;

3) in a one-to-many relationship, moving
an attribute between the one and the many.

1.3 Reorganization at the String Level

This section's examples involve changes
in the string definitions. The examples
are divided into 1) implementing changes
in relationships, 2) reimplementing un-
changed relationships, and 3) performing
other changes at the string level.

1.3.1 Implementing Changes in Relahonshtps

The three relationship changes listed at the
end of Section 1.2 can be implemented,
respectively, by the string level operations
described in the following:

1) Create, destroy, or rename a string
(e.g., CODASYL record, IMS segment, CO-
DASYL set, or IMS hierarchy).

2) Change the database description
among two groups of fields in a single record
type, two record types related as parent
(OWNER in CODASYL) and child {MEM-
BER in CODASYL), and three record
types related as parent, child, and parent.
Figure 2 uses three data structure dia-
grams [BACH69] to illustrate these changes
for the CODASYL data model. The dia-
grams represent the changing relationships
between a company's projects and its em-
ployees. Similar changes could be illus-
trated in the relational data model by using
one, two, and three relations, respectively.

a) In the first diagram each project em-
ploys exactly one employee, who works
on only that one project. There is a one-
to-one relationship between projects
and employees, represented by two
groups of fields in a single record type.

b) In the second diagram each project em-
ploys any number of employees, each of

Computing Surveys, VoL 11, No. 4, December 1979

376 • G. H. Sockut and R. P. Goldberg

I ROJECT IEMPLOYEE

(I) ONE TO ONE
RELATIONSHIP.

TWO GROUPS OF
FIELDS iN A SINGLE
RECORD TYPE.

(2)

PARENT

PROJECT

ONE TO MANY
RELATIONSHIP. J
TWO RECORD TYPES EMPLOYEE
RELATED AS PARENT
AND CHILD. CHILD

(3) MANY TO MANY
RELATIONSHIP.

THREE RECORD TYPES
RELATED AS PARENT,
CHILD, AND PARENT

PARENT PARENT

PROJECT EMPLOYEE I I I
FRACTION i

CHILD

FIGURE 2 Data structure diagrams to illustrate imp|ementing one-to-one, one-to-many, and
many-to-many relationships.

whom works on only that one project.
There is a one-to-many relationship be-
tween projects and employees, repre-
sented by two record types related as
parent and child.

c) In the third diagram each project em-
ploys any number of employees, each of
whom works on any number of projects.
There is a many-to-many relationship
between projects and employees, repre-
sented by three record types related as
parent, child, and parent, where the
child record indicates the fraction of a
given employee's time that is spent on
a given project.

3) Move a field between parent and
child, as shown by two data structure dia-
grams in Figure 3. The diagrams represent
the relationships among projects, employ-
ees, and phone numbers. In both diagrams
there is a one-to-many relationship be-
tween projects and employees, represented
by project in a parent record type and em-
ployee in a child record type.

a) In the first diagram all the employees

b)

on a project have the same phone num-
ber, since the projects operate on low
budgets. The attribute PHONE NUM-
BER is associated with a project and is
represented as a field in the parent rec-
ord type. In the relational model it
would be an attribute in a project rela-
tion.
In the second diagram the projects are
well funded, and each employee may
have his or her own phone number. The
attribute PHONE NUMBER is repre-
sented as a field in the child record type.
In the relational model it would be an
attribute in an employee relation.

1.3.2 Relmplementmg Unchanged
Relationships

Unchanged relationships can be reimple-
mented with different strings. Below are
three types of reimplementation:

1) Change the implementation of a one-

Computing Surveys, VoL 11, No 4, December 1979

Database Reorganiza t ion- -Pr inc ip les a n d Practice . 377

to-many relationship. For example, Figure
4 shows diagrams of record occurrences
(not data structure diagrams) for three pos-
sible CODASYL implementations of a one-
to-many relationship between projects and
employees. A tutorial writing project em-

ploys Sockut and Goldberg, while a decla-
ration writing project employs Jefferson.

a) In the first diagram there is a single
record type which contains a nonrepeat-
ing field (or group of fields) for project

(I)

I PHONE
PROJECT NUMBER PARENT

!

I PROJECT [PARENT

(2)

EMPLOYEE NUMBER CHILD

FIGURE 3. Data structure dmgrams to illustrate mowng a field between
parent and child.

FIGURE 4. Occurrence diagrams to illustrate implementing a one-to-many relationship.

i i i] I°EcLA-I I TUTORIAL SOCKUT GOLDBERG RATION JEFFERSON WRITING WRITING

(1)

J TUTORIAL J

JEFFERSON r

(2) EXPANDED.

TUTORIAL
WRITING I SOCKUT J

(3) COMPRESSED.

rUTO"A'Ioo, o.E OI J DECtA I I RATION IJEFFERSONI
WRIT'NGI I

Computing Surveys, Vol. 11, No. 4, December 1979

378 • G. H. Sockut and R. P. Goldberg

and a repeating field (or group of fields)
for employee. There is one record occur-
rence for each project. This corresponds
to an unnormalized relation [CHAM76]
in the relational model.

b) In the second diagram there are two
record types, where the parent contains
a nonrepeating field for project and the
child contains a nonrepeating field for
employee. There is one parent record
occurrence for each project and one
child record occurrence for each em-
ployee. The University of Michigan's
Data Translation Project calls this ar-
rangement expanded [NAVA76]. In the
relational model the second and third
diagrams correspond to relations that
are in first (or higher) normal form.

c) In the third diagram there is a single
record type which contains a nonrepeat-

ing field for project and a nonrepeating
field for employee. There is one record
occurrence for each employee. The Data
Translation Project calls this arrange-
ment compressed.

Changing from embedded attribute values
to pointers to attribute values is similar to
changing from compressed to expanded ar-
rangements, where an OWNER pointer is
used in the expanded case to point to the
attribute value.

2) Change the implementation of a one-
to-many relationship involving two (or
more) types of descendants. For example,
Figure 5 shows data structure diagrams for
three possible CODASYL implementations
of a one-to-many relationship between
projects and employees where we wish to
distinguish permanent from temporary em-

FIGURE 5.
m a one - to -many relat ionship.

I PROJECT I

l

I
II} MERGED.

Data s t ruc ture d iag rams to i l lustrate d m t m g u i s h m g two types of descendan t s

PARENT

CHILD

I PROJECT I PARENT

(2}

CHILD EMPLOYEE I J TEMPORARY J EMPLOYEE J CHILD

CHILD

(3) PARTITIONED.

I
IPERMANENT~

EMPLOYEE /

I PARENT

 TEMPORARYJ EMPLOYEE J CHILD

PROJECT

Computing Surveys, Vol 11, No 4, December 1979

Database Reorganization--Principles and Practice •

J TUTORIAL J WRITING

SOCKUT H

(1) HIERARCHICAL POINTERS.

GOLDBERG
J (; w °

I j
SOCKUT H GOLDBERG I

(2) CHILD/TWIN POINTERS.
FIGURE 6.

PARENT

CHILD

DECLA-
RATION
WRITING

JEFFERSON

Hierarchical versus chi ld / twin pointers in an IMS hierarchy occurrence.

379

ployees. In all three diagrams there is one
parent record type.

a) In the first diagram there is one child
record type, which contains a field
(LONGEVITY) that indicates perma-
nent or temporary. The Data Transla-
tion Project and the entity-relationship
model call this arrangement merged. In
the relational model LONGEVITY
would be an attribute in an employee
relation.

b) In the second diagram two child record
types (one for permanent employees and
one for temporary employees) are mem-
bers of the same set. Similarly, the re-
lational model would use two relations
for employees.

c) In the third diagram two child record
types are members of different sets. The
Data Translation Project calls this ar-
rangementpartitioned, while the entity-
relationship model calls it split. The re-
lational model would again use two re-
lations for employees.

3) Change string options associated with
a one-to-many relationship. Included are

a) Changing from hierarchical pointers
(which follow the depth-first hierarchi-

cal order of occurrences) to child/twin
pointers (which indicate the first child
and next twin) in IMS. These are shown
in the occurrence diagrams in Figure 6,
where we assume that PROJECT (e.g.,
tutorial writing) is not the root of a
hierarchy.

b) Adding or deleting back pointers. Ex-
amples include adding or deleting
PRIOR and LAST pointers in CODA-
SYL, as shown in the occurrence dia-
gram in Figure 7, and changing between
two-way and one-way pointers in IMS.

c) Adding or deleting OWNER pointers in
CODASYL, as shown in the occurrence
diagram in Figure 7.

Since CODASYL and IMS implement
3a)-c) as pointer options, it may appear
odd to classify them on the string level
rather than on the encoding level. However,
they change the direct access paths that
can be followed in a relationship, and thus
they belong at the string level.

1.3.3 Performing Other Changes at the String
Level

A secondary index or CODASYL singular
set (i.e., with OWNER ffi SYSTEM) can be

Computing Surveys, Vol. 11, No. 4, December 1979

380 G. H. Sockut and R. P. Goldberg

j i | ~ l i i i PARENT

N _
_ NEXT POINTER

F
]L FIRST POINTER

(REQUIRED, IF A POINTER CHAIN IS USED)

P
l===,JD..- PRIOR POINTER)

L I (OPTIONAL)
l " l = = D ' LAST POINTER

O
l l , = ~ . - OWNER POINTER (OPTIONAL)

FIGURE 7. Optlonal pointers m a CODASYL set occurrence.

created or destroyed. Such strings serve
primarily as access paths, not as implemen-
tations of relationships.

The contents of strings can be changed,
for example, by adding or removing a key
in a densely indexed record type, physically
duplicating or not duplicating a parent's
field in its children (e.g., CODASYL AC-
TUAL SOURCE versus VIRTUAL
SOURCE}, and storing a field versus cal-
culating its value dynamically {e.g., CO-
DASYL ACTUAL RESULT versus VIR-
TUAL RESULT).

Ordering within strings can be changed
by reordering fields in a record type and
changing the ordering strategy in a CO-
DASYL set or IMS hierarchy. Examples of
such changes in a set are changing the
key(s) on which to order, changing from
ascending to descending order, and chang-
ing the ordering criterion among key, time
of connection into the set, and system de-
fault. Changing from ordering by time of
connection to another ordering may de-
stroy some information at the infological
level.

Changed security controls can be imple-
mented. Mechanisms include Access Con-
trol Locks in CODASYL [CODA78], Pro-
gram Communication Blocks in IMS
[DATE77], and access grants in System R
[GRIF76], a relational DBMS.

1.4 Reorganization at the Encoding Level

In the following examples string and attri-
bute definitions are invariant. Only
their physical representations (encodings)
change.

1) Changes in relationship encoding def-
initions include

a) Changing between sequential and direct
organization in IMS. Sequential organi-
zation (HSAM or HISAM) uses conti-
guity to represent hierarchical relation-
ships, while direct organization (HDAM
or HIDAM) uses pointers. These four
acronyms denote Hierarchical Sequen-
tial Access Method, Hierarchical In-
dexed Sequential Access Method, Hier-
archical Direct Access Method, and
Hierarchical Indexed Direct Access
Method [DATE77], respectively.

b) Changing among embedded, directory,
and bit map pointers [MART77].

These changes may also affect the string
level if they change the direct access paths
that can be followed.

2) Examples of changes in attribute en-
coding definitions appear below. These
changes are performed at the encoding level
if they are to be invisible at the infological
level. A DBMS may interpret encodings
dynamically.

Computing Surveys, Vol 11, No 4, December 1979

Database Reorganizat ion--Principles and Practice • 381

a) Change in basic representation (e.g.,
"APRIL" versus "4").

b) Change in scale (e.g., inches versus cen-
timeters; monthly versus semimonthly
salary).

c) Change in character encoding (e.g.,
ASCII versus EBCDIC).

d) Change in integer encoding (e.g., binary,
packed decimal, decimal characters).

e) Change in field size (e.g., 16-bit inte-
gers).

f) Change in length (between fixed length
and variable length).

g) Change in encryption.
h) Change between data compression and

noncompression [ALSB 75]. Examples of
data compression are eliminating lead-
ing zeros, eliminating trailing blanks,
and encoding common data values. Data
compression may require inclusion of a
length indicator with the data.

1.5 Reorganization at the Physical Device
Level

In this section the representations of attri-
butes and relationships are invariant. Only
their physical placement changes.

Changing frame definitions includes
changing access keys and access methods.
Examples of the latter include changing
from CALC to VIA in CODASYL and from
ISAM (Indexed Sequential Access Method)
[IBM73] to VSAM (Virtual Storage Access
Method) [IBM76], from HSAM to HISAM,
or from HDAM to HIDAM in IMS.

Frame parameters can also change
within an unchanged basic frame definition.
These parameters include the number of
levels in an index hierarchy, the presence
of an index table in CALC page headers,
the distribution of free space for future
insertions, the overflow handling method,
and hash parameters, such as hashing al-
gorithm, bucket size, and hash width (e.g.,
a modulus) [MART77].

The mapping of the lowest level of frames
to physical device subdivisions can be re-
defined. For example, CODASYL areas,
VSAM Control Intervals, and VSAM Con-
trol Areas are mapped to tracks and cylin-
ders. Also, portions of a database can move
to new storage devices permanently or tem-
porarily.

Finally, maintenance operations (chang-
es to frame occurrences) are performed
repeatedly (periodically or upon demand)
to improve access time and/or storage uti-
lization. These operations are specific to
the access method. In steady state (no
growth), certain access methods may per-
form them only rarely (or never). They are
logically device independent, but perform-
ance can be device dependent; so an algo-
rithm may be tailored to a specific device.
Examples are

1) Perform a split in VSAM, which is an
access method that supports growth in
an index hierarchy by splitting data
areas (and, if necessary, indices) in two
when required for insertion of data. In
Figure 8 the first diagram shows part of
an index hierarchy occurrence in which
we wish to insert an entry with key 41.
The appropriate index {23-47) has no
available space. Therefore VSAM splits
this index in two, creates a new entry
(36) in its parent index, and inserts the
entry with key 41, as shown in the sec-
ond diagram. If the parent index had
had no available space for the new key
and pointer, then the parent would have
been split in two, and a new entry would
have been inserted in its parent. Such
propagation of splitting can continue to
the level of the root index, which can be
split if necessary (in which case the
depth of the index hierarchy increases
by 1).

2) Eliminate or reduce overflow, e.g., re-
move ISAM overflow or move a hash
synonym to its home slot if the record
there is deleted. Figure 9 shows an ex-
ample of the latter. In the first diagram,
record occurrence 1 is in its home hash-
ing slot, while synonym records 2, 3, and
4 form a chain. After record 1 is deleted,
one of the synonym records can be
moved to the home slot, as shown for
record 4 in the second diagram.

3) In a linked list of unallocated areas,
merge two contiguous areas into one
larger one [ARME70].

4) Balance an index hierarchy.
5) Compact to make space occupied by

deleted records contiguous.
6) If physical order is logically unimpor-

Computing Surveys, Vol. 11, No. 4, Decembdr 1979

382 • G.H. Sockut and R. P. Goldberg

INDEX

INDEX INDEX INDEX

(1) PART OF INDEX HIERARCHY OCCURRENCE BEFORE INSERTION OF 41.

INDEX

INDEX INDEX INDEX INDEX

(2) PART OF INDEX HIERARCHY OCCURRENCE AFTER INSERTION OF 41.

FIGURE 8 A VSAM split.

FIGURE 9 Occurrence diagram to illustrate moving a hash synonym to its home slot.

HOME "~ - - - -
SLOT CHAIN OF HASH S Y N O N Y M S

(1) BEFORE DELETION OF RECORD OCCURRENCE 1

r m m ~
I I
I I

I [___J
HOME - - - - - - AVAILABLE
SLOT CHAIN OF HASH S Y N O N Y M S SPACE

(2) AFTER DELETION OF RECORD OCCURRENCE I

tant, move frequently accessed objects
to easily accessible positions.

7) Make occurrences of physical proximity
reflect occurrences of logical proximity.
Examples are moving children closer to
each other or to their parents and ar-
ranging a VSAM file so that the cylinder
sequence reflects the key sequence
{which may not be the case after a series
of splits).

1 .6 O t h e r T e r m i n o l o g y
There is no universally used set of terms
for types of reorganization. Several re-

search groups interested in conversion and
logical reorganization (e.g., see SHU75,
SHOS75, NAVA76) call logical reorganiza-
tion restructuring and physical reorgani-
zation reformatting, and they use reorga-
nization (as we do) as a generic term to
cover both. For CODASYL databases,
BCS75 defines restructuring as changing
the schema, strategy reorganization as
changing the description using the Data
Storage Description Language (DSDL)
[CODA78], and physical placement reor-
ganization as changing the physical ar-
rangement below the DSDL level.

Computing Surveys, VoL 11, No. 4, December 1979

Database Reorganization--Principles and Practice

Another dimension of classification is the
distinction between one-shot and mainte-
nance operations. One-shot operations
(e.g., adding a secondary index) change def-
initions of constructs and generally are not
planned to be performed repeatedly for a
database with stable characteristics. Main-
tenance operations {e.g., eliminating over-
flow in an indexed sequential access
method) only change occurrences, not def-
initions, and they are performed repeatedly
(either periodically or upon demand).
Maintenance operations appear only at the
lowest (physical device) level in the classi-
fication, while there are one-shot opera-
tions at all levels. Several researchers in
maintenance [SHNE73, YAO76, MARU76,
TUEL78] use the term reorganization to
denote what we call maintenance.

2. PRAGMATIC ISSUES

In this section we describe issues important
to the implementation and management of
the types of reorganization described ear-
lier. The issues include strategies for reor-
ganization, commercial facilities, case stud-
ies, and database administration consider-
ations. BERG80a also describes case studies

• 383

and database administration considerations
for conversion.

2.1 Strategies for Reorganization

We describe four strategies for reorganizing
a database. Current DBMSs commonly use
the first three, as shown in Section 2.2. The
fourth appears to be used mainly for data-
base unloading in some DBMSs. For the
first two strategies, the database, or at least
the portion to be reorganized, is usually
taken off-line (i.e., is made unavailable for
normal usage) overnight or over a weekend.

Strategy 1. In step I of reorganization in
place (Figure 10), users can access the da-
tabase normally. Step 2 blocks all user ac-
cess (as symbolized by the wall in the fig-
ure) while reorganization is performed in
place. After reorganization ends, normal ac-
cess resumes, as in step 3. A variation on
this strategy, which is possible in some
cases, is merely to redefine the database
without physically reorganizing it.

Strategy 2. Step 1 of reorganization by
unloading and reloading (Figure 11) allows
normal user access. Step 2 (unloading onto
an unload area) and step 3 (reloading in

FIGURE 10. Reorganization in place.

~ READ

UPDA

STEP1 NORMAL ACCESS

~ R E A D ~

j U P D A T E

STEP2 REORGANIZE IN PLACE

r

IN PLACE J

~ REA[

UPDI

STEP3 NORMAL ACCESS

Computing Surveys, Vol 11, No. 4, December 1979

384 • G. H. Sockut and R. P. Goldberg

reorganized format) block all user access.
When reorganization ends, normal access
resumes, as in step 4. A variation on this
strategy is to reorganize by copying from
one area to another without using an inter-
mediate unload area.

Strategy 3. A strategy that does not in-
volve bringing the database off-line is incre-
mental reorganization triggered by refer-
ences to objects. In this strategy any needed
reorganization occurs incrementally when
a user references an object in the database.
For example, the system may move a hash
synonym to its home slot when a user de-
letes the record that was in the home slot.

Strategy 4. Another strategy that does
not involve bringing the database off-line is
reorganizing concurrently with usage of the
database. Under this strategy users have
access to the reorganized portion of the
database while one or more processes re-

organize it (in place or by unloading and
reloading), as shown in Figure 12.

2.2 Commercial Facilities

Current commercial and special-purpose
DBMSs provide facilities for performing
various types of reorganization using the
strategies described above. The number of
applicable types may vary from one system
to another, but every system requires some
type. Below we survey functional capabili-
ties of reorganization facilities for several
well-known commercial DBMSs: ADA-
BAS, DMS 1100, IDMS, IMS, SYSTEM
2000, and TOTAL. FRY76 lists these and
other systems. For each system we survey,
some types of reorganization require cus-
tomer-written programs that use the nor-
mal user interface. Most of the information
comes from the vendors, not from first-

FIGURE II Reorgamzahon by unloading and reloading.

~ ~ READ
UPDA

STEP 1 NORMAL ACCESS

~ R E A D f

: U PDATE~

STEP2 UNLOAD

UNLOAD

%UPDATE ~/
:ELOAD

STEP3 RELOAD AND REORGANIZE

~ READ •

UPDATE

STEP4 NORMAL ACCESS

Computing Surveys, Vol 11, No 4, December 1979

Database Reorgan i za t ion - -Pr inc ip l e s a n d Pract ice • 385

DATA
BASE

FIGURE 12 Concur ren t reorgamzat ion and usage

hand experience. The survey illustrates the
current state of the art in types and meth-
ods of reorganization. It does not compare
the merits of the systems on the basis of
their reorganization capabilities.

attribute's representation or reordering
fields, require customer-written programs,
although a schema-subschema mapping
can perform such changes in a subschema
interpretively.

2.2.1 ADABAS

ADABAS [SOFT77] performs some types of
maintenance incrementally as objects are
referenced. When a record occurrence is
deleted, that space within its physical block
is recovered by compaction. As a file grows,
filled blocks in its hierarchical index are
split in two dynamically.

Database redefinition can change secu-
rity controls without physical reorganiza-
tion. Similarly, a field can be added (or
deleted) at the end of a record type by just
redefining the record type. When the sys-
tem then fetches a record occurrence, it
takes the field value to be null until a
nonnull value is stored.

To optimize performance of sequential
processing, an unload and reload utility can
reorder the data in a file or portion of a file,
thus making the physical order correspond
to the logical order. This utility can also
add or delete a field elsewhere than at the
end of a record, change between data
compression and noncompression, and
change to or from hashed access. An unload
and reload utility can balance an index
hierarchy without reorganizing the data.

A utility can read a file and create a
specified index, and another utility can read
files and create a specified relationship by
writing in a coupling structure. Most reor-
ganization utilities lock at the file level, not
at the whole database level. Certain
changes in a schema, such as changing an

2 .22 DMS 1100

DMS 1100 is a CODASYL DBMS. One
reorganization utility [SEER78] operates by
unloading and reloading specified areas.
Currently available functions include add-
ing, deleting, or renaming areas; moving a
record type and its occurrences from one
area to another; rebuilding access linkages
(hash chains, index sequential chains, and
pointer arrays); moving set occurrence
members closer to each other; moving dis-
placed record occurrences back to their
home pages; and changing parameters such
as hashing functions, page load factors,
page sizes, the number of pages, and over-
flow page distributions.

A new field can be added at the end of a
record type by redefining the record type,
without using a reorganization utility, if the
original definition specifies a large enough
blank filler area at the end.

When a user program deletes a record
occurrence, the system marks the space as
deleted but does not make it immediately
available for reuse. If there is no room on a
page for a new record occurrence, then the
system compacts the page in an attempt to
avoid creating an overflow page. A utility
can operate in place to compact each page
within a specified area.

Some other types of reorganization re-
quire customer-written programs. Exam-
ples are changing an attribute's represen-

Computing Surveys, Vol. 11, No. 4, December 1979

386

tation and changing from a one-to-one to a
one-to-many relationship.

The user program library includes a
DMS 1100 reorganization utility [EDEL76],
which involves five steps:

1) Unload selected record tapes.
2) Delete them from the database and

compact their pages.
3) Manipulate the unloaded records with a

data editor (a processor for a program-
ming language described below).

4) Reload the records.
5) Relink sets.

A user of this utility specifies old and
new schemata and writes a data editor pro-
gram that explicitly scans the old data and
manipulates them from the old schema
form into the new. The data editor's lan-
guage includes variables, control, data ma-
nipulation facilities similar to CODASYL
DML, and editing facilities similar to those
of a general-purpose text editor. Some types
of reorganization that the utility can per-
form are changing a hashing function,
changing a set's ordering criterion, chang-
ing a set's pointers between a chain and an
array, renaming or reordering fields in a
record type, moving a record type from one
area to another, changing the physical for-
mat of fields, changing from VIA to CALC,
and adding or deleting record types, set
types, fields, OWNER pointers, or PRIOR
pointers. Difficulties in manipulating indi-
vidual fields make it hard to perform some
other types of reorganization, such as
changing from a one-to-one to a one-to-
many relationship or changing an attri-
bute's logical representation. The data ed-
itor's language has approximately the same
power as an ordinary application program-
ming language, but it is oriented toward
reorganization.

• G.H. Sockut and R. P. Goldberg

2 2.3 IDMS

IDMS is a CODASYL DBMS. One reor-
ganization utility [CULL78] operates in
place. Its capabilities include adding, delet-
ing, or reordering fields in a record type;
changing all occurrences of a field to a
constant value; changing the length of a
field; adding or deleting a set; adding or
deleting optional PRIOR or OWNER

pointers in a set; changing a record type
between fixed and variable length; and add-
ing or deleting a database procedure for a
record type (e.g., to change between data
compression and noncompression). It is
also possible to execute a database proce-
dure when the utility operates (e.g., to
change an attribute's representation). After
reorganization, new sets are empty until an
application program explicitly connects rec-
ord occurrences into them.

An unload/reload utility permits chang-
ing an area's size and changing between
hashing and indexing. Another utility can
change page sizes by copying without using
an intermediate unload file.

When a user deletes a record occurrence
that is a member of a set without PRIOR
pointers, the system physically deletes the
data but merely flags the occurrence's
header as deleted. If the system later tra-
verses that part of the set in update mode,
it unlinks the record occurrence, checks to
see if the occurrence still has links to other
such sets, and physically deletes the header
if it has no links. Utilities axe also available
to identify, unlink, and delete (physically)
such flagged occurrences.

The system performs some other types
of maintenance incrementally as objects are
referenced: 1) When a record occurrence is
physically deleted, that space within its
page is recovered by compaction; 2) if all or
part of a record occurrence moves off its
home page when it grows, and if space later
becomes available, then the occurrence can
move back when it is next updated.

A new field can be added at the end of a
record type by redefining the record type,
without physically reorganizing it, if the
original definition specified a large enough
blank fill area at the end.

Some types of logical reorganization re-
quire customer-written programs. An ex-
ample is changing from a one-to-one to a
one-to-many relationship.

2 2 4 IMS

IMS provides utilities [IBM77b] that per-
form maintenance (recovering space and
making the physical order reflect the hier-
archical order) by unloading and reloading
a file or a portion of a file. These utilities

Computmg Surveys, Vol 11, No 4, December 1979

Database Reorganization--Principles and Practice • 387

can also perform some other types of reor-
ganization if a new database description is
specified for reloading. There can be no
change in the hierarchical relationship of
existing segment (record) types that remain
in the reorganized database. Changes that
are allowed, subject to the above restric-
tion, include deleting a segment type (if all
occurrences have already been deleted),
adding a segment type, changing pointer
options, changing, adding, or deleting a
nonkey field in a segment type, changing a
segment size, changing access methods,
adding or deleting a secondary index, and
changing a hash parameter. During unload-
ing, users can read from the area being
unloaded.

It is possible to add a new field at the end
of a variable-length segment type by rede-
fining the segment type without physically
reorganizing it. When the system later
reads a segment occurrence, the occur-
rence's length field indicates whether a
value has been stored in the new field.

The system performs some types of
maintenance incrementally as objects are
referenced. Under HDAM and HIDAM
(but not under HISAM), space occupied by
a deleted segment occurrence is available
for reuse. VSAM, which IMS often utilizes,
will support a growing hierarchical index by
splitting data areas and indices in two dy-
namically, as shown in Figure 8 and de-
scribed earlier.

Customer-written programs must per-
form some other types of reorganization,
e.g., changing an attribute's representation,
changing a relationship, and reordering
fields.

2.2.5 SYSTEM 2000

SYSTEM 2000 [MRI78] can unload rec-
ords and indices in logical order and then
reload in physical order; this reorganization
makes the logical and physical orders the
same and makes available space contig-
uous. Noncontiguous space may become
available when record occurrences are de-
leted. The reload command can be directed
to reload only those record occurrences that
satisfy specified criteria. A record type or
field is added or deleted by unloading and
reloading with a new database definition, if

occurrences of the record type or a descen-
dant record type exist. If no occurrences
exist, then these operations require only
database redefinition, not physical reorga-
nization.

A command is available to add or delete
one or more indices without reorganizing
the actual data. An index can be rearranged
to make its entries contiguous without re-
organizing the actual data. These opera-
tions block users from only the affected
portion of the database.

Certain types of logical reorganization
require customer-written programs. The
user interface provides for operations upon
all occurrences of a record type, e.g., halving
an attribute to change from monthly to
semimonthly salary.

2.2.6 TOTAL

TOTAL [CINC78] performs a type of main-
tenance incrementally when a record oc-
currence to be deleted is located in its home
hashing slot: A hash synonym, if any (usu-
ally the physically most distant one), is
moved to the home slot. When any record
occurrence is deleted, the space that it (or
a synonym) occupies is made available for
reuse.

If a record type's original definition spec-
ified a large enough blank fill area at the
end, e.g., for the purpose of adding new
fields later, then a new field can be added
at the end by redefining the record type,
without physically reorganizing it. If there
is no such fill area, or if a field is to be
added somewhere else than at the end, then
unload and reload utilities are used. Unload
and reload utilities can also move record
occurrences closer together, move a field
from one record type to another, change
relationships, and change a file's size (at
which time the hash width may be
changed). During unloading, users can read
from the area being unloaded. A new record
type and its relationships can be added
without unloading and reloading existing
record types if the old record types have
been defined to include enough blank space
for new pointers.

An in-place reorganization utility can
change all occurrences of a field from one
set of specific values to another, e.g., from
"APRIL" to "4," but customer-written pro-

Computing Surveys, Vol. 11, No. 4, December 1979

388 • G. H. Sockut and R. P. Goldberg

grams must perform more general field
changes, e.g., changing from monthly to
semimonthly salaries by halving all occur-
rences.

2.3 Case Studies

Several installations have provided statis-
tics on the types of reorganization they
perform, the strategies and facilities they
use, and the amount of time and effort
these operations require. One large data-
base [DARD77] occupies 22 disk packs, each
having a capacity of 200 megabytes. This
installation reorganizes by unloading and
reloading the entire database. Users can
read (but not update) during unloading,
and no access is allowed during reloading,
which requires approximately 40 hours.
Tape I/O errors and other factors have
caused failures on several reloads, which
have had to be restarted from the begin-
ning, since at this installation reloading
cannot continue if an error occurs.

Another case study involves the FBI's
National Crime Information Center
[BUEL77, WEIS78], which is available 24
hours per day whenever possible. It main-
tains up-to-date information on crimes such
as car theft. I t does not use a commercial
DBMS, and there are no relationships
among fries, but there are similarities to
DBMSs. Most files use ISAM [IBM73].
Every two weeks maintenance is performed
in two steps:

1) Copy (and reorganize) from disk to disk.
This requires at least 6 hours. Users can
read or delete records (from the old fries)
but cannot perform any other types of
updates. The system keeps track of dele-
tions.

2) Replace the old files by the reorganized
files. This requires approximately 45
minutes and blocks all user access. The
system now performs in the reorganized
files the deletions that it performed in
the 01d files during step 1. Such deletions
must be allowed in order to prevent
situations, for example, like the follow-
ing: A stolen car is recovered during a
reorganization period, the owner then
drives it from the police station, and
shortly thereafter the police spot the car
and mistakenly arrest the owner because

the stolen car record has not yet been
deleted.

Approximately four times per year, other
types of reorganization are performed via
the same copying strategy. Examples are
adding new fields, changing the locations of
fields, adding and deleting secondary indi-
ces, changing the access method used for
secondary indices, changing the number of
levels in index hierarchies, and changing
the locations of master indices.

The final case study involves an airline
reservation system [SIw177], which is avail-
able 24 hours per day whenever possible. It
is not a general-purpose DBMS. An instal-
lation's initial logical structure is designed
carefully, and logical changes are rarely
made later. At least four types of reorgani-
zation have been performed:

1) Occasionally (approximately every 2
years) a record type is added or a file's size
is expanded. Reorganization involves un-
loading all the disks and then reloading
them. During unloading, users can read
from the database, and updates are saved
in a special area. The system later writes
the updates into the database. No user ac-
cess is allowed during reloading. Unloading
and reloading require 5-10 minutes each
per disk pack, and an installation typically
uses 2 to 200 disk packs.

2) One installation transferred its data-
base from one set of disks to a faster set of
disks and moved it geographically at the
same time. This move required approxi-
mately 24 hours, during which users could
read from the old area, while updates were
saved in a special area. The system later
wrote the updates into the new area. The
careful planning and writing of the special
programs that were used required several
months.

3) At any time, flights for the next n days
have a fine index for quick access, while
flights for later days have a coarse index to
save space. Every night, the system purges
records for flights that have already flown
and constructs fine indices for the flights
for the nth day. The granularity of locking
is fine enough so that this maintenance
blocks a user transaction for only a few
seconds. The system marks as deleted the
space occupied by purged records but does
not make it immediately available for reuse.

Comput ing Surveys, Vol 11, No. 4, December 1979

Database Reorganization--Principles and Practice * 389

4) A second type of maintenance involves
traversing the records and indicating in a
storage allocation table that the space oc-
cupied by purged records is available for
reuse. No compacting is performed, since
all records within one area are of the same
size. The system performs this type of
maintenance, like the first type, concur-
rently with usage. It is performed at least
once a week and typically requires 3 to 20
hours.

2.4 Database Administration Considerations

The database administrator (DBA)
[MELT75, LYON76, LEON78] usually man-
ages reorganization of databases like those
described above. The DBA is the individual
(or group of individuals} responsible for
logical and physical definition of the data-
base, setting security and integrity policies,
monitoring performance, and, in general,
supervising use of the database. The DBA
determines that reorganization is neces-
sary. The DBA must consider the following
issues in connection with reorganization:

• Recognize the need to reorganize. The
reasons for reorganization have been set
forth earlier in the paper.

• Decide what new structures are to result
from reorganization, for example, a new
hash placement, balanced index hierar-
chies, or a new set.

• Decide when to perform reorganization.
It may be necessary to reorganize over-
night or over a weekend. For mainte-
nance, there may be an optimal period
between reorganizations.

• Know how to execute the reorganization.
1) Strategies may involve unloading and
reloading, reorganizing in place but off-
line, reorganizing incrementally as ob-
jects are referenced, or reorganizing con-
currently with usage. 2) The DBA must
select the appropriate reorganization fa-
cilities. FRY78 and TUFT79 discuss DBA
tools for reorganization and other pur-
poses. 3) If reexecution of reorganization
would take longer than recovery, then
journaling facilities would be useful to
recover from errors.

• Determine how much the enterprise will
benefit from reorganization. Benefits may

include improved performance, increased
functional capabilities, or better storage
utilization. In the case of reorganization
to improve performance, performance
prediction tools (see, e.g., BUZE78,
DEUT78) are useful.

• Assess how much reorganization will cost.
Costs include 1) human and computa-
tional resources consumed during plan-
ning, actual reorganization, software
changes (if any}, and personnel retraining
(if any); 2) either the denial of resources
to users during off-line reorganization or
degraded user performance during con-
current reorganization.

• Be aware of who and what will be af-
fected by reorganization. The fLrst phase
of at least one reorganization utility
[SPER78] analyzes a proposed reorgani-
zation and lists the affected portions of
the database. Another tool that often can
determine effects of reorganization is a
data dictionary~directory [LEON 77],
which maintains information such as
what structures are in the database and
which applications use them. Coome ap-
plications may benefit from the reorga-
nization, while others may suffer if the
database is no longer optimized toward
them. The DBA must act as arbitrator.
The DBA must also see that affected
software is revised and that any affected
users are retrained.

• Document any changes that result from
reorganization. The data dictionary/di-
rectory may provide some of this docu-
mentation.

• Certify that reorganization has yielded
the desired result; for example, check to
determine that new pointers correctly im-
plement a new relationship.

3. RESEARCH EFFORTS

We have seen that many situations require
reorganization and that reorganization re-
quires time and effort. In this section we
survey research efforts in three aspects of
reorganization: 1) conversion, 2) mainte-
nance, and 3) concurrent reorganization
and usage. BERG80a also surveys research
in conversion. Concepts that have been
studied may lead to future DBMS trends.

Computing Surveys, Vol 11, No. 4, December 1979

390 • G. H. Sockut and R. P. Goldberg

SOURCE
DATA
BASE

SOURCE
FILES IN

C O M M O N
FORMAT

TARGET
FILES IN

C O M M O N
FORMAT

TARGET
DATA
BASE

READER

RESTRUCTURER

WRITER

DATA
DESCRIPTION
LANGUAGE
STATEMENTS
FOR SOURCE

DATA
TRANSLATION

LANGUAGE
STATEMENTS

DATA
DESCRIPTION
LANGUAGE
STATEMENTS
FOR TARGET

FIGURE 13. A data translation procedure.

3.1 Conversion

Several research groups, e.g., those at the
University of Pennsylvania [SMIT71,
RAm74], the University of Michigan
[SIBL73, FRY74, LEWI75, NAVA76,
SWAR77], the University of Florida [Su74,
NATX78], the IBM San Jose research labo-
ratory [SHU75, SHU77], and System Devel-
opment Corp. [SHoS75], have been devel-
oping semantics and languages for specifi-
cation of logical reorganization. These lan-
guages are to be used during database con-
version--e.g., changing from one DBMS's
definition (a source) to another's (a tar-
get)mwithin a procedure such as that
shown in Figure 13. The DBA defines old
and new structures in a data description
language and defines their correspondence
in a data translation (logical reorganiza-
tion) language. Data translation language
statements indicate how source structures
are mapped into target structures. A
reader, which is driven by the data descrip-

tion language statements for the source,
converts the source into a common format
for reorganization. A restructurer, which is
driven by the data translation language
statements and by both sets of data descrip-
tion language statements, produces a trans-
lated target file in common format. Finally,
a writer, which is driven by the data de-
scription language statements for the tar-
get, converts the target file into its final
format. A system might compile rather
than interpret the translation procedure.

3.2 Maintenance

Several research efforts (see, e.g., SHNE73,
YAO76, MARU76, TUEL78) have modeled
database performance deterioration, im-
provement through maintenance, and
maintenance costs. Section 1.5 describes
some types of maintenance, such as over-
flow removal. Figure 1.4 illustrates roughly
how storage structure deterioration, file
growth, and maintenance affect the average

Computing Surveys, Vol 11, No 4, December 1979

Database R e o r g a n i z a t m n - - P r i n c i p l e s a n d Pract ice , 391

ACCESS COST
B ~INCREASE DUE

~ ~ T O STORAGE
C I STRUCTURE

J ~____" ~ DETERIORATION

<~ ACCESS COST
" ~ INCREASE DUE

TO FILE GROWTH
o s.J

i v
LM

USAGE USAGE

Z

ELAPSED TIME

FIGURE 14

Z USAGE

Access costs and maintenance.
cost per file access. Point A marks the end
of a period of maintenance and the start of
a period of usage. During usage, access time
and cost increase owing to both file growth
and deterioration of storage structures. At
point B, the file is taken off-line for main-
tenance. The "cost" we plotted during the
maintenance period represents the im-
provement in the storage structures. When
maintenance ends and usage resumes at
point C, the storage structures are optimal,
but the access cost can still exceed that of
point A because of file growth. The research
efforts have analyzed such factors as char-
acteristics of access cost increases due to
file growth, characteristics of access cost
increases due to storage structure deterio-
ration, and the cost of performing mainte-
nance. The models differ in their assump-
tions regarding linearity of deterioration
and growth, and uniformity of usage period
lengths. Results include policies for decid-
ing when to perform maintenance so as to
minimize the total cost of access and main-
tenance over a period of time.

3.3 Concurrent Reorganization and Usage

Another research area deals with perform-
ing reorganization concurrently with data-

base usage. Off-line reorganization is unsat-
isfactory for two classes of databases. 1) If
an essential computer utility, such as a
military, hospital, police, or reservation da-
tabase, is to be available 24 hours per day,
then it cannot be brought off-line for sig-
nificant periods of time. 2) For a very large
database, such as census data, reorganiza-
tion might require much longer than a hol-
iday weekend. "A very large database is a
database whose reorganization by reloading
takes a longer time than the users can af-
ford to have the database unavailable"
[WIED77, p. 449]. Also, many DBAs prefer
24-hour availability, even if it is not essen-
tial. Thus it is appropriate and increasingly
necessary to use techniques such as reor-
ganizing concurrently with full usage of the
reorganized portion.

Several research studies have dealt with
this area. One study [SOCK77] has produced
requirements for concurrent reorganization
[SocK76] {e.g., locking), the classification
of types of reorganization described earlier,
and a performance model [SOCK78]. The
model predicts degradation of user response
time and reorganization time under concur-
rent reorganization and usage. Another
study [WILS79] has produced a set of op-
erational rules to ensure correctness of con-

Computing Surveys, Vol. 11, No 4, December 1979

392 • G. H. S o c k u t a n d R. P. Goldberg

current reorganizat ion and usage for
CODASYL databases. A pro to type imple-
men ta t ion can add, delete, and reorder
fields within a record type. An al ternat ive
to in-place concurrent reorganizat ion is to
record a t t e m p t e d user upda tes during un-
loading and reloading and to execute t h e m
later. SEVE76 describes a technique for
managing this s t ra tegy and determining
which objects have been updated. Another
a l ternat ive is to reorganize incrementa l ly as
objects are referenced. GERR76 describes
such a s t ra tegy for managing coexisting
"genera t ions" of schemata . BCS79 repor ts
on work in progress on extending the
C O D A S Y L D a t a Storage Descr ipt ion Lan-
guage [CODA78] to suppor t versions of
s torage s tructures , so tha t physical reorga-
nization can proceed off-line, concurrent ly
with usage, or incrementa l ly as objects are
referenced. HULT79 proposes concurren t
main tenance in which the locking granular-
i ty of a given type of main tenance deter-
mines the periods during which the main-
tenance is scheduled.

icy, since reorganizat ion can affect all
users.

• Resul ts o f r e s e a r c h e f f o r t s i n reorganiza-
f i o n w i l l i n c r e a s e in impor tance as very
large da tabases become more common.

ACKNOWLEDGMENTS

The authors would hke to thank Deborah A. Sheetz,
David K. Hsiao, Stuart E. Madnick, Donald R.
Deutsch, John L. Berg, Belkls W Leong-Hong, Peter
S. Mager, Jesse M Draper, and Tom B. Wilson for
reviewing an earher draft of this paper Peter P.-S.
Chen, Ugo O Gagliardl, and Herbert S. Meltzer re-
viewed related earlier work. The late Michael E Senko
provided valuable advice in the classification of types
of reorganizatmn. Several vendor representatives clar-
ified our uhderstanding of their systems. The referees
suggested several improvements.

ALSB75

ALTM72

4. CONCLUSIONS

We draw the following conclusions f rom ARME70
our study:

• Da t abase reorganizat ion is a necessary
function. Failure to reorganize can resul t
in high expense (as extra space and t ime ASTR72
are consumed), user dissatisfaction (as
the mean and variance of response t ime
increase), and l imitat ions on functional
capabili t ies (as desired new informat ion

BACH69 cannot be represented) . All D B M S s re-
quire some type of reorganization, and a
da tabase designer cannot predict all fu- BCS75
ture instances of reorganization.

• M a n y variet ies of reorganizat ion ex i s t - -
e.g., overflow remova l or addit ion of a
relationship. Cur ren t D B M S s generally BCS79
provide facilities to pe r fo rm m a n y but
not all types of reorganization.

• Per forming reorganizat ion can be t ime
consuming and hence expensive, espe-
cially in very large databases . A long pe-
riod of off-line reorganizat ion can be in-
tolerable in essential 24-hour utilities.

• T h e da tabase adminis t ra tor mus t deter-
mine an instal lat ion's reorganizat ion pol-

BERG80a

BERG80b

REFERENCES

ALSBERG, P.A. "Space and tune savings
through large data base compression and
dynamic restructurmg," Proc IEEE 63, 8
(Aug. 1975), 1114-1122.
ALTMAN, E. B., ASTRAHAN, M. M., FEH-
DER, P. L , AND SENKO, M. E
"Specifications in a data independent ac-
cessing model," in Proc. ACM SIGFIDET
Workshop Data Descriptton, Access, and
Control, Nov. 1972, pp. 363-38_2.
ARMENTI, A. W., GALLEY, S. W., GOLD-
BERG, R P., NOLAN, J. F., AND SHOLL,
A. "LISTAR--Lincoln information stor-
age and associative retrieval system," in
Proc. Spring Jt. Computer Conf., Vol. 36,
AFIPS Press, Arlington, Va., May 1970,
pp. 313-322.
ASTRAHAN, M. M., ALTMAN, E. B., FEH-
DER, P. L., AND SENKO, M.E. "Concepts
of a data independent accessing model," in
Proc. ACM SIGFIDET Workshop on
Data Description, Access, and Control,
Nov. 1972, pp. 349-362.
BACHMAN, C. W "Data structure dia-
grams," Data Base 1, 2 (Summer 1969),
4-10.
BCS/CODASYL Data Description Lan-
guage Committee Data Base Admimstra-
tlon Working Group, Report, June 1975
(available from chaucman, DBAWG, Brit-
ish Computer Socmty, London, England).
BCS/CODASYL Data Description Lan-
guage Committee Data Base Admmmtra-
tion Working Group, Reorganizatmn,
standing paper 12, March 1979 (available
from chairman, DBAWG, British Com-

uter Society, London, England)
ERG, J L (Ed.) Data base directtons--

the conversion problem, Nat. Bur. Stand
Special Publ, 1980, to appear in Data
Base and SIGMOD Record (ACM).
BERG, J L., GRAHAM, M, AND WHITNEY,
V. K. (EDs) Database archltectures--a
feas~bd~ty workshop report, Nat Bur
Stand Special Publ, 1980

Computing Surveys, Vol 11, No 4, December 1979

BUEL77

BUZE78

CHAM76

CHEN76

CHEN77

CHEN78

CINC78

CODA71

CODA77

CODA78

CODD70

CULL78

DARD77

DATE77

DEUT78

EDEL76

FRY74

FRY76

Database Reorganization--Principles and Practice • 393

BUELL, F. B. Private communication,
March 1977.
BUZEN, J P., GOLDBERG, R. P , LANGER,
A M., LENTZ, E., SCHWENK, H. S JR,
SHEETZ, D. A., AND SHUM, A W - FRY78
C. "BEST/I - -des ign of a tool for com-
puter system capacity planning," m Proc
1978 AFIPS NCC, Vol. 47, AFIPS Press,
Arlington, Va., June 1978, pp 447-455.
CHAMBERLIN, D. D. "Relational data-
base management systems," Comput.
Surv. (special issue on database manage-
ment systems) 8, 1 (March 1976), 43-66. GERR76
CHEN, P P-S. "The entity-relationship
model--toward a unified view of data,"
ACM Trans. Database Syst. 1, 1 (March
1976), 9-36. GRIF76
CHEN, P.P.-S. "The entity-relationship
model--A basts for the enterprise view of
data," Proe. 1977 AFIPS NCC, Vol. 46,
AFIPS Press, Arlington, Va., June 1977, Hovs77
pp. 77-84
CHEN, P P.-S. The enttty-relatlonship
approach to logical data base design,
Data Base Monograph 6, Q.E.D. Infor- HSIA78
mation Sciences, Inc., Wellesley, Mass.,
1978
CINCOM SYSTEMS, INC TOTAL~8 data
base administration reference manual,
April 1978 HULT79
CODASYL Programming Language Com-
mittee, Data base task group report, April
1971 (available from ACM, New York).
CODASYL Systems Committee, Stored-
Data Definition and Translation Task
Group, "Stored-data descriptmn and data IBM73
translation a model and language," In-
form Syst. 2, 3 (1977), 95-148.
CODASYL Data Description Language IBM76
Committee, Journal of development, Jan.
1978 {available from Materiel Data Man-
agement Branch, Dep. of Supply and Ser- IBM77a
vices, Canadian Gov., Hull, Que., Canada)
CODD, E .F . "A relational model of data
for large shared data banks," Commun. IBM77b
ACM 13, 6 (June 1970), 377-387.
CULLINANE CORP. IDMS utdttws, Re-
lease 5.0, Sept. 1978
DARDWIN, D G "Reloading tough work KERS76
with huge data base," Computerworld 11,
45 (Nov 7, 1977), 38.
DATE, C.J. An introduction to database
systems, 2nd ed., Addison-Wesley, Read-
rag, Mass., 1977.
DEUTSCH, D. R. "Modeling and mea-
surement techniques for evaluation of de- LEON77
sign alternatives in the implementation of
database management software," D.B.A.
Diss., College of Business and Manage-
ment, U. of Maryland, College Park, Md, LEON78
Dec. 1978, Nat Bur Stand. Special Publ.
500-49, July 1979
EDELMAN, J. A, LIAW, Y S, NAZIF, Z. A,
AND SCHEIDT, D. L Reorganzzatton sys-
tem user's reference manual, USE Pro- LEWI75
gram Library Interchange, Sperry Umvac,
Oct 1976.
FRY, J P., AND JERIS, D .W. "Towards
a formulatmn and definition of data reor-
ganization," in Proc. ACM SIGMOD
Workshop on Data Descrtption, Access LYON76
and Control, May 1974, pp. 83-100.
FRY, J P , AND SIBLEY, E H. "Evolutmn MART77

of data-base management systems," in
Comput. Surv. (special issue on database
management systems) 8, 1 (March 1976),
7-42.
FRY, J. P , TEOREY, T. J., DESMITH, D.
A, AND OBERLANDER, L. B. Survey of
state-of-the-art database administration
tools survey results and evaluaaon, Da-
tabase Systems Research Group Tech
Rep. DSRG 78 DE 14.2, Graduate School
of Business Administration, U. of Michi-
gan, Ann Arbor, Mich., Aug. 1978.
GERRITSEN, a , AND MORGAN, H.
L. "Dynamic restructuring of databases
with generation data structures," in Proc.
ACM Ann. Conf., Oct. 1976, pp. 281-286
GRIFFITHS, P. P., AND WADE, B.W. "An
authorization mechanism for a relational
database system," ACM Trans. Database
Syst. 1, 3 (Sept. 1976), 242-255.
HO~SEL, B. C. "A unified approach to
program and data conversion," in Proc.
3rd Int Conf. on Very Large Data Bases,
ACM, New York, Oct. 1977, pp. 327-335.
HSIAO, D. K., KERR, D. S., AND MADNICK,
S E "Privacy and security of data com-
munications and data bases," in Proc. 4th
Int. Conf. on Very Large Data Bases,
ACM, New York, Sept. 1978, pp. 55-67.
HULTEN, C., AND SODERLUND, L. A
framework for concurrent phystcal reor-
ganization of large data bases, 1979
(avadable from authors at Dep of Infor-
mation Processing and Computer Scmnce,
U of Stockholm, Stockholm, Sweden).
IBM CORP 0S/360 data management
servtces gutde, Form GC26-3746-2, July
1973
IBM CORP. OS/VS vwtual storage ac-
cess method (VSAM) programmer's
guide, Form GC20-3838-2, April 1976.
Informatio~ management system/wrtual
storage (IMS/VS) general mformatton
manual, Form GH20-1260-6, July 1977.
IBM CORP. Informatton management
system/vwtual storage (IMS/ VS) utihtws
reference manual, Form SH20-9029-4,
July 1977.
KERSCHBERG, L, KLUG, A. C., AND TsI-
CHRITZIS, D. C. "A taxonomy of data
models," m P. C. Lockemann, and E J
Neuhold, (Eds.), Syst. for Large Data
Bases (Proc 2nd Int Conf on Very Large
Data Bases, Sept. 1976), North-Holland,
Amsterdam, 1977, pp. 43-6a_
LEONG-HONG, B W., AND MARRON,
B. Technical profde of seven data ele-
ment dwtionary/dzrectory systems, Nat.
Bur. Stand. Special Publ. 500-3, Feb 1977.
LEONG-HONG, B W , AND MARRON,
B. Database administratton concepts,
tools, experiences, and problems, Nat.
Bur Stand. Special Publ. 500-28, March
1978.
LEWIS, K., DRIVER, B , AND DEPPE, M.
E A translation definition language for
the version H translator, Data Transla-
tion Project working paper 809, Graduate
School of Business Administration, U of
Mmhigan, Ann Arbor, Mich April 1975.
LYON, J . K . The database admin~stra-
tor, Wiley, New York, 1976.
MARTIN, J. Computer data-base orga-

Computing Surveys, Vol. II, No. 4, December 1979

394

MARU76

MELT75

MRI78

NATI78

NAVA76

RAM174

SCHN 76

SENK73

SENK75

SENK76

SEVE76

SHNE73

SHOS75

SHU75

SHU77

SIBL73

* G.H. Sockut and R. P. Goldberg

nization, 2nd ed., Prentice-Hall, Engle-
wood Cliffs, N J., 1977.
MARUYAMA, S., AND SMITH, S. SIBL76
E. "Optimal reorganization of distrib-
uted space disk files," Commun. ACM 19,
II (Nov 1976), 634-642. Siwi77
MELTZER, H.S. "An overview of the ad-
ministration of data bases," in Proc 2nd
USA-Japan Comput. Conf , AFIPS Press,
Arlington, Va, Aug. 1975, pp. 365-370. SMIT71
MRI SYSTEMS- CORP. System 2000 gen-
eral informatmn manual, 1978.
NATIONS, J., AND SU, S. Y W "Some
DML instruction sequences for applica- SocK76
tion program analysis and conversmn," in
Proc. ACM SIGMOD Int. Conf. Manage-
ment of Data, May 1978, pp. 120-131.
NAVATHE, S B., AND FRY, J. P.
"Restructunng for large databases: three
levels of abstractmn," ACM Trans. Data- SOCK77
base Syst. 1, 2 (June 1976), 138-158.
RAMIREZ, J A., RIN, N. A , AND PRYWES,
N S. "Automatic generation of data con-
versmn programs using a data description
language," in Proe. ACM SIGMOD Work-
shop Data Descr~ptmn, Access, and Con-
trol, May 1974, pp. 207-225. SOCK78
SCHNEIDER, L. S. "A relational view of
the data independent accessing model," m
Proc ACM SIGMOD Int. Conf. Manage-
ment of Data, June 1976, pp 75-90.
SENKO, M. E., ALTMAN, E. B., ASTRAHAN, SOFT77
M. M., AND FEHDER, P L "Data struc-
tures and accessing in data-base systems," SPER78
[BMSyst. J. 12, 1 (1973), 30-93.
SENKO, M. E. "Specification of stored
data structures and desired output results
in DIAM II with FORAL," in Proc. 1st Su74
Int. Conf Very Large Data Bases, ACM,
New Vork, Sept. 1975, pp. 557-571.
SENKO, M. E., AND ALTMAN, E. B.
"DIAM II and levels of abstractmn. The
physical dewce level: a general model for
access methods," m P. C. Lockemann and SWAR77
E. J. Neuhold (Eds.), Syst. for Large Data
Bases (Proc 2nd Int Conf. Very Large
Data Bases, Sept 1976), North-Holland,
Amsterdam, 1977, pp. 79-94.
SEVERANCE, D G., AND LOHMAN, G. TAYL76
M. "Differential fries: their applicatmn
to the maintenance of large databases,"
ACM Trans. Database Syst 1, 3 (Sept
1976), 256-267.
SHNEIDERMAN, B. "Opt~num data base TAYL79
reorganlzatmn points," Commun ACM
16, 6 (June 1973), 362-365.
SHOSHANI, A "A logtcal-hveI approach
to data base conversion," m Proc. ACM
SIGMOD Int. Conf Management of Data,
May 1975, pp. 112-122 TsIc76
SHU, N. C, HOUSEL, B. C., AND LUM, V.
Y. "CONVERT a high level translation
definition language for data conversmn,"
Commun ACM 18, 10 (Oct. 1975), 557-
567 TsIc 77
SHU, N. C, HOUSEL, B. C., TAYLOR, R.
W, GHOSH, S. P., AND LUM, V
Y "EXPRESS: a data extraction, pro-
cessmg and restructuring system," ACM
Trans. Database Syst 2, 2 (June 1977), TUEL78
134-174.
SIBLEY, E. H , AND TAYLOR, a . W . "A
data defimtmn and mapping language,"

Commun. ACM 16, 12 (Dec. 1973),
750-759
SIBLEY, E. H. (Ed.) Comput Surv. (spe-
cial issue on database management syst.)
8, 1 (March 1976).
SIWlEC, J .E . "A high-performance DB/
DC system," IBM Syst. J. 16, 2 (1977),
169-195; and private commumcatlon, June
1977.
SMITH, D. C .P . "An approach to data
description and conversion," Ph.D. Diss.,
Moore School of Elec. Eng., U. of Penn-
sylyania, Phriadelphla, Pa., 1971.
SOCKUT, ~ H., AI~D GOLDBERG, R. P.
"Motivation for data ba~e reorganization
performed concurrently with usage,"
Tech Rep. 16-76, Ctr. for Research in
Computing Technology, Harvard U ,
Cambridge, Mass., Sept. 1976.
SOCKUT, G.H. "Data base performance
under concurrent reorganization and
usage," Ph.D Diss, Div. of Applied Sci-
ences, Harvard U , Cambridge, Mass.,
Nov. 1977; Tech Rep. 12-77, Ctr for Re-
search in Computing Technology, Harvard
U., July 1977.
SOCKUT, G. H. "A performance model
for computer data-base reorgamzation
performed concurrently with usage,"
Oper Res. 26, 5 (Sept.-Oct 1978), 789-
804.
SOFTWARE AG OF NORTH AMERICA, INC
ADABAS mtroductton, 1977.
SPERRY UNIVAC Data management sys-
tem (DMS 1100) level 8R1 system support
functions data admimstrator reference,
Univac Publ. UP 7909.1, 1978.
Su, S. Y. W., AND LAM, H "A semi-au-
tomatic data base translation system for
achmvmg data sharing m a network envi-
ronment," in Proc ACM SIGMOD Work-
shop Data Descr~ptmn, Access, and Con.
trol, May 1974, pp. 227-247.
SWARTWOUT, D. E., DEPPE, M. E., AND
FRY, J . P . "Operational software for re-
structuring network databases," Proc.
1977 AFIPS NCC, Vol 46, AFIPS Press,
Arlington, Va., June 1977, pp. 499-508
TAYLOR, R. W, AND FRANK, R
L. "CODASYL data-base management
systems," Comput. Surv. (special issue on
database management systems) 8, 1
(March 1976), 67-103
TAYLOR, R W., FRY, J. P., SHNEIDERMAN,
B, SMITH, D. C P , AND SU, S. Y.
W "Database program conversion a
framework for research," m Proc. 5th [nt
Conf Very Large Data Bases, ACM, New
York, Oct. 1979, pp. 299-312.
TSICHRITZIS, D C., AND LOCHOVSKY, F
H "Hierarchical data-base manage-
ment: a survey," Comput Surv. (special
issue on database management systems)
8, 1 (March 1976), 105-123.
TSICHRITZIS, D C, AND KLUG, A C.
(Eds.) ANSI/X3/SPARC DBMS frame-
work report of the study group on data
base management systems, AFIPS Press,
Arlington, Va., Nov 1977.
TUEL, W G, JR. "Optimum reorganiza-
tion points for linearly growing fries,"
ACM Trans Database Syst. 3, 1 (March
1978), 32-40.

Computing Surveys, Vol 11, No 4, December 1979

TuPr79

WEIS78

WlED77

D a t a b a s e R e o r g a n i z a t i o n - - P r i n c i p l e s a n d P r a c t i c e • 395

TUFTS, R. J. "Tools for the successful WILS79
DBA," Information Syst.--Effectweness
for the User (Proc. 18th Ann. ACM/NBS
Tech. Syrup.), ACM, Washington, D.C,
Chapter, June 1979, pp. 131-144.
WEISE, R Private communication, Aug YAO76
1978.
W1EDERHOLD, G. Database design,
McGraw-Hill, New York, 1977.

WILSOn, T. B. A general model for dy.
nature data base restructuring, 1979
(available from author at Sperry Univac,
Roseville, Minn.).

YAO, S. B., DAS, K. S., AND TEOREY, T.
J. "A dynamic database reorganization
algorithm," ACM Trans. Database Syst
1, 2 (June 1976), 159-174.

RECEIVED MARCH 1979, FINAL REVISION ACCEPTED AUGUST 1979

Computing Surveys, Vo|. I I, No. 4, December 1979

