
Wrapper-Based Evolution of Legacy
Information Systems

PHILIPPE THIRAN and JEAN-LUC HAINAUT

Facultés Universitaires Notre-Dame de la Paix, Namur

GEERT-JAN HOUBEN

Vrije Universiteit Brussel

and

DJAMAL BENSLIMANE

Université Claude Bernard, Lyon

System evolution most often implies the integration of legacy components, such as databases,

with newly developed ones, leading to mixed architectures that suffer from severe heterogeneity

problems. For instance, incorporating a new program in a legacy database application can create an

integrity mismatch, since the database model and the program data view can be quite different (e.g.

standard file model versus OO model). In addition, neither the legacy DBMS (too weak to address

integrity issues correctly) nor the new program (that relies on data server responsibility) correctly

cope with data integrity management. The component that can reconciliate these mismatched

subsystems is the R/W wrapper, which allows any client program to read, but also to update the

legacy data, while controlling the integrity constraints that are ignored by the legacy DBMS.

This article describes a generic, technology-independent, R/W wrapper architecture, a method-

ology for specifying them in a disciplined way, and a CASE tool for generating most of the corre-

sponding code.

The key concept is that of implicit construct, which is a structure or a constraint that has not

been declared in the database, but which is controlled by the legacy application code. The implicit

constructs are elicited through reverse engineering techniques, and then translated into validation

code in the wrapper. For instance, a wrapper can be generated for a collection of COBOL files in

order to allow external programs to access them through a relational, object-oriented or XML inter-

face, while offering referential integrity control. The methodology is based on a transformational

approach that provides a formal way to build the wrapper schema and to specify inter-schema

mappings.

Authors’ addresses: Ph. Thiran, Department of Business Administration, Facultés Universitaires

Notre-Dame de la Paix, Rempart de la Vierge 8, 5000 Namur, Belgium; email: pthiran@fundp.ac.be;

J.-L. Hainaut, Institute of Informatics, Facultés Universitaires Notre-Dame de la Paix, 21, rue

Grandgagnage, 5000 Namur, Belgium; email: jlh@info.fundp.ac.be; G.-J. Houben, Department

of Computer Science, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium; email:

gjhouben@vub.ac.be; D. Benslimane, IUT A Informatique, Université Claude Bernard, Lyon 1,

Bâtiment Nautibus, 8, boulevard Niels Bohr, 96922 Villeurbanne cedex, France; email: dja-

mal.benslimane@liris.cnrs.fr.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is

granted without fee provided that copies are not made or distributed for profit or direct commercial

advantage and that copies show this notice on the first page or initial screen of a display along

with the full citation. Copyrights for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,

to redistribute to lists, or to use any component of this work in other works requires prior specific

permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn

Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2006 ACM 1049-331X/06/1000-0329 $5.00

ACM Transactions on Software Engineering and Methodology, Vol. 15, No. 4, October 2006, Pages 329–359.

330 • Ph. Thiran et al.

Categories and Subject Descriptors: D.2.7 [Software Engineering]: Distribution, Maintenance,

and Enhancement—Restructuring, reverse engineering, and reengineering; D.2.12 [Software
Engineering]: Interoperability—Data mapping; H.2.5 [Database Management]: Heterogeneous

Databases—Data translation

General Terms: Design, Management, Reliability

Additional Key Words and Phrases: Schema transformation, data reverse-engineering, CASE tool,

wrapper, legacy database, data consistency, evolution

1. INTRODUCTION

Information system evolution and migration are clearly among the most chal-
lenging engineering processes to date. Besides the complexity of making dif-
ferent technologies coexist in the same system, the architectural issues have
become a major problem. Indeed the shift from centralized to distributed and
cooperative paradigms has made the structure of legacy applications much
more difficult to evolve than one or two decades ago [Ross 1993]. In particu-
lar the functional architecture of many of these applications is no longer fitted
to the capabilities of modern technologies. That is what we will show for data
consistency.

1.1 Semantic and Technology Mismatches

Legacy data-intensive applications were developed for data management sys-
tems that offered little help as far as data integrity was concerned. File man-
agement systems, early relational systems, hierarchical and even network data
systems (despite their richness in data structuring) were notably insufficient to
guarantee the level of data consistency required by modern client applications.
As a consequence, consistency management has long been the responsibility of
the client application code, an approach that resulted in the insertion in this
code of data validation and consistency management sections. The code related
to integrity constraints or data structures that were not explicitly taken care
of by the data management system (what we will call implicit constraints and
structures) had to be scattered in hundreds to thousands of places throughout
the application code. These sections were written by different developers, with
different skills, and in different styles and languages.

For example, in a legacy application based on standard files, the field PR of
record type ORDER, that is used to reference a definite PRODUCT record, clearly
is an implicit foreign key. Since file management systems ignore referential in-
tegrity, the latter must be ensured procedurally. In particular, before storing an
ORDER record, a program must check the existence of a PRODUCT record identified
by the value of field PR.

Plugging a new application component into such a legacy architecture of-
ten implies developing it according to these obsolete practices, notably by once
again writing the validation code for the implicit data properties ignored by the
data management system. Considering the example above: any new applica-
tion program working on records of types ORDER and PRODUCT is forced to include
referential integrity validation sections.

ACM Transactions on Software Engineering and Methodology, Vol. 15, No. 4, October 2006.

Wrapper-Based Evolution of Legacy Information Systems • 331

At the opposite end, reusing a legacy component and integrating it in a mod-
ern system poses similar problems. For instance, developing a new application
on a legacy, but quite efficient, database creates an important semantic mis-
match. Indeed, many important constraints and structures are ignored by the
data management system, which generally offers semantically poor data struc-
tures (even modern RDBMS for instance still offer little more than uniqueness
and referential built-in constraints). On the other hand, modern coding prac-
tices such as aspect-oriented programming naturally ignore these constraints
as well. Indeed, data integrity codes, which were formerly included in the ap-
plication code, are now supposed to have moved from the client application to
the data server.

One of the most illustrative examples is the way referential integrity has
been coped with before and now. In early data management systems, such con-
straints were either ignored (file systems, or Oracle up to V6 for example), or
translated into simple and strongly limited one-to-many links (TOTAL, CODA-
SYL and IMS DBMS for example). Therefore, the databases developed one or
two decades ago generally include, whatever their technologies, thousands of
implicit, undeclared, foreign keys, the management of which was ensured by
the application code, as discussed above. When redeveloping such databases
with modern relational technology, all these constraints can be explicitly de-
clared or procedurally controlled (through triggers for instance), and therefore
centrally managed by the DBMS itself. Clearly, when we couple a newly devel-
oped application component with a legacy database, the referential integrity is
no longer ensured, neither by the DBMS nor by the client application.

1.2 Data Wrappers

In such a context, the problem of deficiencies in data integrity management can
be addressed by dedicated components inserted between the legacy database
and the application component, namely wrappers.

A wrapper is often used to extend the lifetime of components of existing
data systems by facilitating their integration into modern distributed systems.
In general, using data wrapping is an attractive strategy for several reasons.
First, it does not alter the host system of the database. Second, it addresses
the challenge of database heterogeneity by providing a standard and common
interface. Third, it allows developers and data administrators to transparently
incorporate new capabilities, such as statistics collection, performance moni-
toring, or integrity control. Finally, it provides a smooth path to a step-by-step
modernization of a complex legacy system [Brodie and Stonebraker 1995].

The interface provided by a wrapper is made up of: (1) a wrapper schema
of the wrapped database, expressed in some abstract canonical1 data model
and (2) a common query language for the data as viewed through the wrapper
schema. Queries/updates on the wrapper schema are also known as wrapper
queries/updates, while native ones directly performed on the legacy schema will
be called database queries/updates.

1The term canonical is borrowed from the domain of Federated databases [Bouguettaya et al. 1998],

to which this technology is strongly related.

ACM Transactions on Software Engineering and Methodology, Vol. 15, No. 4, October 2006.

332 • Ph. Thiran et al.

Fig. 1. The role of wrappers in the coexistence of legacy and new components in system evolution

(left) and system migration (right).

In this article, we focus on database wrappers that both query and update
the actual data, and in which the issue of data integrity control is of major
importance. Such wrappers are sometimes called R/W wrappers, a term that
we will use in this article.

1.3 Wrapper-Based Strategies for Information Systems Evolution and Migration

Though the reasoning we develop can apply to different resources, provided
they can be wrapped, we will focus on the data component of information sys-
tems. Among the disruptions that can threaten the integrity of the data, system
evolution due to technology change, and system migration certainly are the most
demanding. Both can be made easier by integrating appropriate wrappers in
the system architecture. We will discuss the role of data wrappers through the
scenarios depicted in Figure 1.

The first scenario (Figure 1, left) is that of an evolving information system.
It shows how a new application component can be added to a legacy system.
Both legacy database and code are kept unchanged, while the new component
is designed and developed following modern practices. In particular, (1) it is
given a clean view of the data, devoid of any idiosyncrasy, such as redundancy
and unnormalized structures, inherited from the legacy structures, and (2) it
is not concerned with data integrity, which, according to current approaches,
is the exclusive responsibility of the data server. In this context, the first role
of the wrapper is to translate data and queries from the legacy data model
and interface to those expected by the new component. The second role is to
take charge of the validation logic that ensures data integrity. We will call such
wrappers forward wrappers (f-Wrappers in Figure 1) since they emulate the
new technology based on the legacy one. They will be the subject of this article.

The second scenario (Figure 1, right) supports the complex process of sys-
tem migration, especially according to the database first approach [Wu et al.

ACM Transactions on Software Engineering and Methodology, Vol. 15, No. 4, October 2006.

Wrapper-Based Evolution of Legacy Information Systems • 333

1997]. The database is migrated first, preferably following a semantic procedure
that consists in translating the semantics of the legacy database into the new
technology.2 The new components are developed on this new database, while
the legacy components are interfaced, through wrappers, in order to allow them
to read and write the new data. Since data integrity is ensured by both the new
DBMS and the legacy applications,3 the wrapper does not need to take care
of this validation, so that its primary responsibility is model conversion. Such
wrappers will be called backward wrappers (b-Wrappers in Figure 1), since
they emulate the legacy technology on top of the new one. They are simpler
than forward wrappers. Since backward wrappers do not support data consis-
tency, they will be ignored in this article. The second scenario has been studied
in Henrard et al. [2002], where various strategies for migrating structures, data
and programs have been proposed and discussed.

In this article, we will study important architectural and design issues of
forward R/W wrappers as far as data consistency management is concerned.

1.4 Bridging the Semantic Gap with Wrappers

The context stated so far is that of a new application component that updates
the contents of a legacy database.

In the source system, that includes the legacy data and programs, the data
are organized according to a set of constructs (structures and constraints) that
can be classified in two categories. The first ones have been explicitly declared
through the DDL code of the database schema, and are controlled by the legacy
data management system. The schema that is made up of the explicit constructs
will be called the physical schema. The other constructs are managed through
different techniques external to the database, mainly validation sections in the
application code and in the user interface. These constructs are called implicit
from the database viewpoint. The logical schema of the database comprises
both the explicit and implicit constructs. The new application components are
supposed to access the data through their logical schema, and no longer include
validation code for implicit constructs. As we have shown, the latter code will
form the core of the forward wrapper.

To summarize, it is the responsibility of the wrapper to guarantee legacy
data consistency by rejecting updates that violate implicit constraints, so that
both legacy applications and new applications that update the data through
the wrapper can coexist without threatening data integrity (Figure 1, left).

2As opposed to the physical approach, which consists in mapping physical structures of the legacy

database in the closest physical structure of the new technology. For instance, a COBOL record type

is converted into a relational flat table, and each top-level field into a column. Such an approach

is fast and inexpensive, but results in poor database structures. This approach will be ignored in

this discussion. See Henrard et al. [2002] for further details.
3This redundancy in data validation is a common problem in evolving systems that include compo-

nents with different ages. Actually, it mainly poses a performance problem, since possibly expensive

validation can be carried out twice. Its best known incarnation was the migration of Oracle V5/V6

databases to V7, which was the first version to effectively manage referential integrity. The experts

suggested (1) to upgrade the schema by declaring foreign keys and (2) to deactivate their validation

when legacy applications were running.

ACM Transactions on Software Engineering and Methodology, Vol. 15, No. 4, October 2006.

334 • Ph. Thiran et al.

For example, the logical schema of a database that comprises a collection
of coordinated COBOL files will include unique keys and foreign keys. In gen-
eral, the former are explicitly translated into record keys and alternate record
keys, while the referential integrity implied by the foreign keys are implic-
itly managed by the application code. New application components will rely on
the forward wrapper to ensure both referential and (transitively) uniqueness
integrity.

The process through which the implicit constructs can be identified and
the full logical schema can be recovered is called Database reverse engineer-
ing [Aiken 1996]. Its scope generally is wider than is strictly needed in system
evolution (the goal of the whole process is to recover the conceptual schema
of the legacy database). However, its first step, namely recovering the logical
schema, as well as the physical-to-logical mappings, is precisely what is re-
quired to develop forward R/W wrappers.

1.5 Current Approaches

Several prototype wrapper systems for legacy databases have been developed.
They share two common characteristics against which we can compare our ap-
proach, namely the level of transparency and the update facilities they provide:

1. Wrapper transparency. Several approaches: Lim and Lee [1999], Roth and
Schwarz [1997], and more recently those intended to produce XML views of
relational schemas Bergamaschi et al. [2001], Carey et al. [2000], Fernandez
et al. [2000], or Shanmugasundaram et al. [2001] consider a wrapper as
a pure model converter, a software component that translates data and
queries from the legacy DBMS model, to another, more abstract and DBMS-
independent model. That is, the wrapper is only used to overcome the data
model and query heterogeneity in database systems, leaving aside the added
value that can be expected from wrapping. In such approaches, the semantic
contents of both database and wrapper schemas are identical: the wrapper
schema just translates explicit constructs and ignores implicit ones.

2. Update facilities. From the application point of view, it is natural that an
update request expressed on the wrapper schema be automatically mapped
onto the underlying legacy database. However, very few of the current wrap-
pers supply this kind of support (e.g., Carey et al. [2000] or Fernandez et al.
[2000] provide support for insertable and updateable XML views). Addi-
tionally, wrappers that support updates generally do not consider implicit
constraints: they only provide update query mappings without any data con-
sistency verification. In Carey et al. [2000] or Fernandez et al. [2000], only
the (explicit) constraints declared in the relational database are controlled
by the DBMS.

1.6 Objectives

In previous references [Thiran and Hainaut 2001; Thiran et al. 2005a], we
described a general architecture for read-only wrappers, in which we addressed
the query translation function. We also stated the principles of a methodology

ACM Transactions on Software Engineering and Methodology, Vol. 15, No. 4, October 2006.

Wrapper-Based Evolution of Legacy Information Systems • 335

for developing such wrappers and described briefly a CASE tool that supports it.
The architecture and the methodology are both based on the transformational
paradigm that provides a rigorous framework for automatically translating
queries and assembling the requested data.

In the present article, we extend these results by addressing the problem
of update translation in forward wrappers that include the control of implicit
constructs of legacy databases. We consider wrappers that export a wrapper
schema augmented with integrity constraints and structures that are not de-
fined in the database schema. Updating data through such a wrapper poses
the problem of guaranteeing legacy data consistency by rejecting updates that
violate all the constraints, whether they are implicit or explicit.

This article partly relies on the contents of previously published references
(notably Thiran et al. [2004], of which it is an extended version). It has been
made self-contained in such a way that only readers interested in more in-depth
detailed development will need to consult them.

This article is organized as follows. Section 2 develops a small case study that
allows us to identify some of the main problems to be solved. Section 3 presents
the main aspects of the architecture of wrappers that guarantee legacy data
consistency with respect to both explicit and implicit constraints. Section 4
presents our schema transformation framework for specifying query and up-
date mappings as well as implicit constraints. Section 5 deals with develop-
ing wrappers for legacy databases in a semiautomated way. The generation is
supported by an operational CASE-tool, namely DB-MAIN. Section 6 presents
some metrics of the wrapper development cost. They illustrate the necessity of
wrapper development or construction. Finally, Section 7 concludes this article.

2. BUILDING R/W WRAPPERS—A FIRST INTUITIVE APPROACH

In this section, we develop a small example that illustrates some of the problems
we intend to address in this article. We consider the sales administration of a
company, which is based on a legacy relational DBMS, such as Oracle V5, in
which no primary or foreign keys could be declared.

New economic trends force the company to evolve its information system.
The company decides to keep its database unchanged but to build a wrapper
that must allow new applications to retrieve and update the sales data. Legacy
local applications are preserved while new ones can be developed through a
safe interface. This safe interface is ensured by the wrapper, which guarantees
the integrity and quality of the data flowing between the database and the new
applications.

This objective raises the critical problem of developing a wrapper that allows
updates that satisfy a set of constraints that can be either explicit or implicit.
In particular, the wrapper should be able to make explicit, and manage, hidden
constraints such as foreign and primary keys that are absent from the legacy
physical model. This allows the behavior of the local applications that access
the legacy database to be preserved.

The main problems in building such a wrapper are to define the wrapper
schema from the database schema and to define the mappings between them.

ACM Transactions on Software Engineering and Methodology, Vol. 15, No. 4, October 2006.

336 • Ph. Thiran et al.

Fig. 2. The physical database, logical and wrapper schemas.

For practical reasons, we express the wrapper schema in a canonical model that
is compliant with both physical and logical legacy models such as standard files,
SQL-2, hierarchical, and network models. However, the nature of this model is
not relevant to the architecture we are discussing (see Hainaut [2005] for more
detail).

2.1 Wrapper Schema Definition

By analyzing the SQL DDL code, we can extract the database physical schema
of the legacy database (Figure 2). The physical schema comprises the tables
Customer and Order. Optional (nullable) columns are represented by the [0-1]
cardinality constraint and indexes by the acc(ess key) constructs.

This process is fairly straightforward since it is based on the analysis of
declarative code fragments or data dictionary contents. However, it recovers ex-
plicit constraints only, ignoring all the implicit constraints that may be buried
in the procedural code of the programs. Hence the need for a refinement pro-
cess that cleans the physical schema and enriches it with implicit constraints,
providing the logical schema. Their elicitation is carried out through reverse
engineering techniques such as program analysis and data analysis [Hainaut
2002], that are illustrated below:

1. Program analysis: before inserting a new order, the local applications check
whether the customer number is already recorded in the database (implicit
foreign key).

1. Data analysis: if Reference is a primary key of Customer, then its values
must be unique, a property that will be checked through a query such as the

ACM Transactions on Software Engineering and Methodology, Vol. 15, No. 4, October 2006.

Wrapper-Based Evolution of Legacy Information Systems • 337

following:
select * from Customer
group by Reference
having count(Reference)> 1

The data analysis can also find hints that suggest the presence of a redundant
attribute Account expressed by a functional dependency: Customer → Account.
We therefore obtain the logical schema shown in Figure 2. New constraints now
appear, such as primary keys (id constructs), foreign keys (ref constructs), and
a functional dependency: fd: Customer → Account.

The next phase consists in interpreting and exporting the logical schema,
therefore providing the wrapper schema through which the new client appli-
cations will view the legacy data. The logical schema expressed in an abstract
data model must comply with the operational data model of the wrapper. In
addition, this schema still includes undesirable constructs, such as redundan-
cies and other idiosyncrasies, which must be managed but also hidden from the
client applications, and therefore discarded from the wrapper schema.

The logical schema of Figure 2 includes a property stating that Address is
often split into three pertinent fragments. Moreover, it depicts a structural
redundancy: the attribute Account of Order is a copy of the attribute Account
of Customer. To hide this redundancy, the attribute Account of Order does not
appear anymore in the wrapper schema.

2.2 Mapping Definition

Once the wrapper schema has been built, we have to state how wrapper re-
trieval and update queries can be mapped onto legacy data. In the schema
hierarchy mentioned above, the transitions between physical and wrapper
schemas can be expressed as formal transformations on structures (such as
discarding, renaming or aggregating), and on constraints (such as adding
primary keys, foreign keys and functional dependency). The complexity of
the transformation depends on the distance between the logical and wrap-
per schemas. For instance, an XML-based wrapper schema would require
more sophisticated mapping rules than those mentioned above [Thiran et al.
2005b].

The database/wrapper mappings can then be built by interpreting the trans-
formations on structures as two-way data conversion functions whereas the
implicit constraint management can be emulated by transformations on con-
straints. For instance, let us assume the wrapper update shown in Figure 3,
which inserts an instance of Order. By analyzing the update statement, the
wrapper dynamically generates a sequence of operations that emulate and man-
age the implicit structures and constraints.

As exhibited through references (1) to (5) in Figure 3, the main operations
carried out by an R/W wrapper when executing an update, are the following:

1. Implicit constraint management: the wrapper checks the satisfaction of the
constraints implied by the implicit identifier (1) and the implicit foreign
key (2).

ACM Transactions on Software Engineering and Methodology, Vol. 15, No. 4, October 2006.

338 • Ph. Thiran et al.

Fig. 3. Example of update translation and implicit constraint management.

2. Data error management: the wrapper reports possible implicit constraint
violation (3).

3. Redundancy management: the wrapper controls the redundant attributes
by assigning the value it gets from the source data (4).

4. Query translation: translation of the wrapper update against the wrapper
schema into updates on the physical database schema (5).

3. WRAPPER ARCHITECTURE

3.1 General Architecture of an R/W Wrapper

In this section, we develop a generic architecture for R/W wrappers that pro-
vides both extraction and update facilities and that controls the implicit con-
structs of the source databases. This leads these wrappers to emulate advanced
services such as integrity control and transaction and failure management, if
the underlying DBMS does not support them.

The functionalities of such a wrapper are classified into functional services
(Figure 4), among which we mention those that are relevant to the update
aspects:

1. Query/update analysis. The wrapper query is first analyzed so that incorrect
updates are detected and rejected as early as possible.

ACM Transactions on Software Engineering and Methodology, Vol. 15, No. 4, October 2006.

Wrapper-Based Evolution of Legacy Information Systems • 339

Fig. 4. R/W wrapper architecture.

2. Error reporting. The wrapper reports errors back to the client application.

3. Query/update and data translation. This refers to operations that convert
data and queries/updates from one model to another.

4. Implicit constraint control. The wrapper emulates the implicit integrity
constraints.

5. Security. The wrapper protects the data against unauthorized access and
accident that may affect the integrity of the data.

6. Concurrency and transaction management. This function controls concur-
rent updates of the underlying legacy databases. This includes transaction
and failure management.

The latter two services will be ignored in this article, in which we only develop
and discuss the first four classes of functionalities (see Lawrence et al. [1998]
for concurrency management, and Souder and Mancoridis [2000] for security
management).

3.2 Wrapper Query/Update Analysis

Query analysis enables rejection of queries for which further processing is either
impossible or unnecessary. The main reason for rejection is that the query is
syntactically or semantically incorrect, which means that it refers to attributes
or entity types that are undefined in the wrapper schema, or which have the
wrong type. When one of these cases is detected, a diagnostic is returned to the
user (see Section 3.3). Otherwise, query processing goes on.

ACM Transactions on Software Engineering and Methodology, Vol. 15, No. 4, October 2006.

340 • Ph. Thiran et al.

3.3 Error Reporting

A wrapper returns a value that indicates the success or the failure of a wrapper
query. An error can occur at two levels:

1. At the legacy DBMS level: legacy DBMS return some indicators on comple-
tion of query execution.

2. At the wrapper level: the wrapper catches internal errors. For example, it de-
tects query syntax errors (see Section 3.2) or violation of implicit constraints
(see Section 3.5).

In addition to the error codes a wrapper detects, it must provide standardized
error codes of DBMS-specific errors to give new applications a standard way
of dealing with error conditions. Although DBMS of the same family return
similar kinds of errors, each does it in a different way, through different error
numbers, message types, programming styles (return code, exception, triggered
procedure). A wrapper must therefore simplify error information processing by
providing:

—A unified return code mechanism that reports success or failure for each data
access whatever the source (DBMS or wrapper);

—A standardized error code. A standard error code can be, for instance, the
five-character sequence defined by the ISO SQL-92 standard.

3.4 Query/Update and Data Translation

Query translation is the core function of a wrapper. It refers to operations that
translate queries between two schemas (the database and wrapper schemas)
and two languages (the database and wrapper query languages).

3.4.1 Correctness and Efficiency. The main function of the translation ser-
vice is to transform wrapper queries into queries understandable by the under-
lying DBMS. Such transformation must ensure both correctness and efficiency:

—Correctness. This issue is addressed by the transformational paradigm. Since
the mappings are based on reversible transformations that are proved to
be correct, all the wrappers that are built according this approach can be
considered correct. In Section 4, we describe the formal framework of these
reversible transformations, which allows the queries and updates to be auto-
matically translated in either direction between two non-necessarily equiv-
alent schemas.

—Efficiency. Producing an efficient execution strategy relies on the legacy
query processing capabilities. The same wrapper can lead to several execu-
tion strategies according to the way queries are processed by the underlying
legacy DBMS. The access plan, optimization, and processing of the wrapper
queries must use the legacy query capability and optimization.

3.4.2 Query Translation Principles. The translation service relies on the
use of schema transformations that provide mechanisms for formally defin-
ing schema correspondence between the database and wrapper schemas. By

ACM Transactions on Software Engineering and Methodology, Vol. 15, No. 4, October 2006.

Wrapper-Based Evolution of Legacy Information Systems • 341

replacing the schema construct names in the wrapper query with their map-
ping expression in terms of database schema, we produce a database query that
directly addresses the actual data.

As is typical in multilanguage translation, wrapper queries are first con-
verted into an internal pivot language. Query transformations are applied, and
then the result is translated into the DBMS language. The pivot language,
which is based on a generic data model (Section 4), is independent of DBMS
query and manipulation languages. We can now state the three main successive
steps of query translation:

—Wrapper query mappings: syntactic translation of the wrapper query into the
internal pivot language;

—Inter-schema mappings: translation of the internal query following the
schema transformation between the database and the wrapper schemas;

—Language mappings and optimization: translation of the internal query in
the DBMS query language. Producing an efficient execution strategy depends
on the syntax and expressiveness of both the wrapper (or internal) and DBMS
processing capabilities.

3.4.3 Complexity of a Wrapper Update Query. The main factor affecting
the complexity of a wrapper update query is that its translation can lead to
a set of database updates. To illustrate this, consider the update of a cus-
tomer account according to the wrapper schema of Figure 2. Such an op-
eration involves not only updating the Account column value in the table
Customer, but also updating all the duplicated Account instances in the table
Order.

When a set of database updates is needed, transaction techniques must be
used to keep the legacy data consistency. The challenge is to permit wrapper up-
dates to the underlying databases without violating their autonomy. Although
this subject is somewhat beyond the scope of this article, we discuss it briefly
for the sake of completeness. Transaction management can be viewed in two
dimensions: autonomy and heterogeneity.

—Autonomy. It requires that the transaction management function of a wrap-
per be performed independently of the database transaction management
execution functions. In other words, the database schema and rules are not
modified to accommodate wrapper updates.

—Heterogeneity. It has the additional implication that the wrapper transaction
manager of each database family may employ different concurrency control
and commit protocols. Heterogeneity adds further difficulty since it becomes
difficult to make uniform assumptions about the functionality provided by
the legacy database. Some old database systems do not support any commit
protocol. However, if a legacy database has ad hoc techniques that enable
concurrent and recoverable access to a local data source, the wrapper can
use them with minimal effort. Most recent database commit protocols con-
tain specific operators, such as begin, commit and abort, which allow pro-
grammers to mark the code that is implied in a transaction. Other DBMS,

ACM Transactions on Software Engineering and Methodology, Vol. 15, No. 4, October 2006.

342 • Ph. Thiran et al.

defined for advanced commit protocols, include more sophisticated behavior.
For instance, in order to use the two-phase commit protocol [Gray 1993], a
prepare to commit operator must be available.

3.5 Implicit Constraint Control

While the DBMS manages the explicit constraints defined in the physical
schema, the wrapper emulates the implicit constraints by rejecting updates
that violate them. To prevent inconsistencies, pretest services are implemented
in the wrapper. For simplicity, the method is restricted to insertion or deletion
of single instances of an entity type.

This method is based on the production, at wrapper development time, of
implicit constraint checking components that are used subsequently to prevent
the introduction of inconsistent data in the database. An implicit constraint
checking is defined by a triple <ET,T,C> in which:

1. ET is an entity type of the physical schema;

2. T is an update type (e.g., insert or delete);

3. and C is an implicit constraint assertion ranging over entity type ET in an
update of type T.

When an implicit constraint I is defined, a set of implicit constraint checking
assertions can be produced for entity types used by I. Whenever an entity of
type ET involved in I is updated, the implicit constraint checking assertions that
must be checked to enforce I are only those defined on I for the update type.
Implicit constraint checking assertions are associated with transformations
that make implicit integrity constraints explicit during the reverse engineering
phase that produces the wrapper schema (Section 5.2). To illustrate this con-
cept, we consider the example of Figure 2. The implicit primary key of Order is
associated with the triple <Order, INSERT, C> where C, defined in an SQL-like
expression, is

“NOT EXISTS(SELECT * FROM Order WHERE Number = :Number)”

Assertion Enforcement Efficiency. Checking consistency assertions has a cost
that depends on the physical constructs implemented in the legacy database.
For instance, checking uniqueness (primary or candidate key) or inclusion (for-
eign key) assertions can be very costly if such a construct is not supported by an
index. While legacy applications easily cope with missing indexes, for instance
through sort/merge batch operations, new, generally transactional, applications
cannot afford relying on such off-line batch procedures.

The order in which the assertions are evaluated is often relevant. The critical
parameter to be considered is the evaluation cost. That is, the order depends
among others, on the classes of the checking assertions and the amount of data
access they involve. If no statistics information is available, we can only use
heuristics rules for ordering the checking assertion enforcements using the
physical access plan. We push the checking assertions that only access data by
means of index (or access key) to the top of the list so that they are evaluated
as early as possible.

ACM Transactions on Software Engineering and Methodology, Vol. 15, No. 4, October 2006.

Wrapper-Based Evolution of Legacy Information Systems • 343

Another approach consists in complementing the legacy database with new
data structures, such as secondary indexes, intended to improve the perfor-
mance of wrapper operations, and in particular assertion checking. Such tech-
niques are not addressed in this article.

4. ABSTRACT SPECIFICATION OF A WRAPPER

Wrapping is a process that relies on schemas expressed according to different
paradigms. Our previous work [Hainaut 2005] defined a wide spectrum entity-
relationship model, the so-called Generic Entity-Relationship Model (GER) that
can express data structure schemas whatever their underlying data model and
their abstraction level. For instance, the GER is used to describe physical struc-
tures such as relational or COBOL file data structures, as well as canonical data
structures (Figure 2).

An essential aspect of the GER is its ability to generate submodels, such as
legacy physical and logical models through a three-step specialization mecha-
nism. The generation of a model M from the GER proceeds in three steps. First,
the constructs of the GER that are parts of M are retained, while the others
are discarded. Second, the constructs are renamed according to the terminol-
ogy of M . Third the construct assemblies that are valid in M are described by
structural predicates. The core of the SQL2 relational model can be defined as
follows.

1. Subsetting. SQL2 includes the following GER constructs: entity type, at-
tribute, identifier and inclusion constraint. ISA relations and relationship
types are ignored.

2. Renaming. An entity type is called a table, an attribute a column, an iden-
tifier a candidate/primary key, and the columns forming the LHS of an in-
clusion constraint a foreign key.

3. Constraining. An entity type comprises from 1 to (say) 254 attributes; at-
tributes are atomic; attributes are single-valued (cardinality [0-1] or [1-1]).

Any GER schema that obeys these rules can be called SQL2-compliant.
CODASYL, IMS, standard file, and XML Schema models, among others, have
been defined similarly.

This kind of specialization brings an important advantage, that is, all inter-
model transformations and conversions appear to be intramodel processes. As
a consequence, a limited set of primitive operators is sufficient to model most
database engineering processes, such as logical design, or reverse engineering.
In wrapper generation, this also means that different legacy models can be
treated with similar transformations.4

The way submodels are defined in the GER is similar to the concept of UML
profile, though it appears to be more powerful and more expressive.

The GER is a high level model that encompasses in an abstract way, the con-
structs of a large family of models. Another approach, illustrated by McBrien

4For instance, strong similarities appear between the IMS hierarchical model of the 70s and XML

Schema data structures. Consequently, many conceptual-to-logical transformations for IMS still

are valid for producing XML structures.

ACM Transactions on Software Engineering and Methodology, Vol. 15, No. 4, October 2006.

344 • Ph. Thiran et al.

Fig. 5. Graphical representation of some GER constructs.

and Poulovassilis [1998], is based on low level models that comprise the inter-
section of such a family of models. Both approaches are discussed and compared
in Hainaut [2005]. In this section, we present the main ideas of our previous
work and extend it to show how the implicit structures and constraints can be
specified by schema transformations on the GER.

4.1 Model and Schema Specification

For the needs of this article, the GER can be perceived as an enriched variant
of the standard entity-relationship model that encompasses current physical,
logical, and conceptual models. It is defined as a set of constructs compris-
ing structures (including entity type, attribute, value domain, and relationship
type) and constraints.

The major constructs of the GER are the entity types, the attributes, and
the relationship types (Figure 5). Entity types are organized in single or multi-
ple inheritance hierarchies. Attributes can be atomic (e.g., Name) or compound
(e.g., Address), single-valued (e.g., Address or Email) or multi-valued (Phone). A
cardinality constraint (e.g., Phone[0-5]) defines the minimum and maximum
numbers of values associated with each parent instance, with default value
[1-1]. Each role of a relationship type (e.g., responsible) can be labeled (e.g.,
dependent). It has a cardinality constraint stating the range of the number of
relationships in which any entity can appear.

The GER includes a set of built-in constraints such as primary identi-
fiers (e.g., id: PersID), secondary identifiers (e.g.,id′: Email), foreign keys
(e.g., PROJECT.(For) → CLIENT.(CliName), noted ref: For), generalized in-
clusion constraints and functional dependencies (e.g., CLIENT: CliAddress →
ZipCode, noted fd:CliAddress, ZipCode). It also offers several existence con-
straints such as coexistence (all the components are null or all are not null; e.g.,
coex(Contract, Fund)), exclusion (at most one of the components; e.g., excl
(Budget,Contract)), at-least-one (at least one of the components) and exactly-
one (exactly one component). A semantic annotation can be associated with any
object, for instance for specifying a complex constraint. The GER has no spe-
cific constraint language such as OCL. Instead, its N1NF relational semantics

ACM Transactions on Software Engineering and Methodology, Vol. 15, No. 4, October 2006.

Wrapper-Based Evolution of Legacy Information Systems • 345

allows complex constraints to be built through algebraic expressions [Hainaut
2005].

Constructs such as access keys (e.g., acc: ZipCode), which are abstractions of
such structures as indexes and access paths, and storage spaces (e.g., FILE 05),
which are abstractions of files and any other kinds of record repositories, are
components of the GER as well.

Any concrete model, be it conceptual or physical, can be defined as a special-
ization of the GER.

4.2 Transformational Mapping Specification

The transformational approach has long been proposed as a sound basis for
software engineering in general [Balzer 1981; Fikas 1985],5 and for database
engineering and in database design in particular [Rosenthal and Reine 1998].
Other processes, such as conceptual normalization [Rauh and Stickel 1995],
optimization [Proper and Halpin 1998] and reverse engineering [Hainaut
et al. 1993] have been modeled by transformation plans, notably to ensure
semantics preservation. Transformations can be used to transform a schema
from one model to another one, requiring specific operators for this couple of
models.

In Hainaut [2005], we define a set of transformations valid for GER schemas.
These transformations can be applied by a developer to build mappings between
schemas expressed in the same or different data models. The use of the GER
as the unifying data model allows constructs from different data modeling lan-
guages to be mixed in the same intermediate schema (as in the logical schema
of Figure 2).

A transformation consists in deriving a target schema S′ from a source
schema S by replacing construct C (possibly empty) in S with a new construct C′

(possibly empty).
More formally, considering instance c of C and instance c’ of C’, a trans-

formation � can be completely defined by a pair of mappings <T,t> such that
C′ = T(C) and c′ = t(c). T is the structural mapping, which explains how to
replace construct C with construct C′ while t, the instance mapping, states how
to compute instance c′ of C′ from any instance c of C.

A transformation can be specified through its signature, which states the
name of the transformation, the names of the concerned constructs in the source
schema, and the names of the new constructs in the target schema.

4.2.1 Inverse Transformation. Each transformation �1 ≡ <T1,t1> can be
given an inverse transformation �2 ≡<T2,t2>, usually denoted �−1, such that,
for any structure C, T2(T1(C)) = C.

So far, �2 being the inverse of �1 does not imply that �1 is the inverse of �2.
Moreover, �2 is not necessarily reversible. These properties can be guaranteed

5They consider that “the process of developing a program [can be] formalized as a set of correctness-
preserving transformations [. . .] aimed to compilable and efficient program production.” Replacing

the term program with database schema leads to a perfectly correct assertion.

ACM Transactions on Software Engineering and Methodology, Vol. 15, No. 4, October 2006.

346 • Ph. Thiran et al.

only for a special variety of transformations,6 called symmetrically reversible
transformations. �1 is said to be a symmetrically reversible transformation,
or more simply semantics-preserving, if it is reversible and if its inverse is
reversible too.

From now on, unless mentioned otherwise, we will work on the structural
part of transformations, so that we will denote a transformation through its T
part.

4.2.2 Transformation Sequence. A transformation sequence is a list of n
primitive transformations: S1-to-S2 = (T1 T2...Tn). For instance, the appli-
cation of S1-to-S2 = (T1 T2) on a schema S1 is defined by S2 = T2(T1(S1)).

As for schema transformation, a transformation sequence can be inverted.
The inverse sequence S2-to-S1 can be derived from the sequence S1-to-S2
and can be defined as follows: if S1-to-S2 = (T1 T2...Tn) then S2-to-S1 =
(Tn−1...T2−1T1−1) where Ti−1 is the inverse of Ti; and hence S1 =
S2-to-S1(S2). In other words, S2-to-S1 is obtained by replacing each ori-
gin schema transformation by its inverse and by reversing the operation
order.

The concepts of sequence and its inverse are used for defining the direct
and inverse mappings between two schemas. The transformational approach
then consists in defining a (reversible) transformation sequence which, applied
to the source schema, produces the target schema. The underlying sequence of
structural mappings reflects the structural mappings between the two schemas
whereas the chain of instance mappings reflects the correspondence at the data
level.

The concept of transformation sequences, their properties and the processes
that can be applied on them, such as inversion, slicing and agregation, are
studied in Hainaut et al. [1996]. In particular, the condition under which two
transformations can be swapped in a sequence without altering the effect of
this sequence is precisely stated.

4.2.3 Transformation Categories. The notion of semantics of a schema has
no generally agreed upon definition. We assume that the semantics of S1 include
the semantics of S2 if and only if the application domain described by S2 is a
part of the domain represented by S1. Though intuitive and informal, this def-
inition is sufficient for this presentation. In this context, three transformation
categories can be distinguished:

—T+ collects the transformations that augment the semantics of the schema
(for example adding a constraint).

—T= is the category of transformations that preserve the semantics of the
schema (for example transforming a foreign key into a relationship type).

—T- is the category of transformations that reduce the semantics of the schema
(for example, discarding an attribute). These transformations allow defining
a wrapper schema as a subset (view) of the physical schema. As such, the

6In Hainaut [2005], a proof system has been developed to evaluate the reversibility of a

transformation.

ACM Transactions on Software Engineering and Methodology, Vol. 15, No. 4, October 2006.

Wrapper-Based Evolution of Legacy Information Systems • 347

Fig. 6. Five transformation operators dealing with the interpretation of three structures.

usual problems associated with view updates must be addressed [Masunaga
1984].

To simplify the discussion, we assume that T+ applies on constraints only,
whereas T= can transform structures and constraints. Moreover, we ignore the
transformations of type T- because they are not relevant for our discussion.
From now on, we will only consider transformations of types T+ and T=.

4.2.4 Implicit Constraints and Schema Interpretation. Transformations
will be used for two different goals. First, T+ transformations will be used to
make implicit constraints explicit. Second, producing the wrapper schema from
the legacy logical schema involves applying T= transformations to improve the
view the wrapper provides to the client applications, a process we will call
interpretation.

We propose in Figure 6 and Figure 7, two sets of representative transforma-
tional operators. The first set is made up of T= transformations used for schema

ACM Transactions on Software Engineering and Methodology, Vol. 15, No. 4, October 2006.

348 • Ph. Thiran et al.

Fig. 7. Transformation operators dealing with two typical implicit constraints.

interpretation, namely, transformation of a foreign key into a relationship type,
and interpretation of multivalued attributes and compound attributes. These
transformations are used in the query mapping [Thiran et al. 2005a]. The sec-
ond set comprises transformations dealing with implicit constraints expres-
sion. Due to space limitations, the figure presents only two representative
transformations, namely uniqueness and referential constraints, and sample
associated constraint assertions.

These transformations will be used to build the wrapper schema from the
physical schema, during the reverse engineering processes.

5. WRAPPER DEVELOPMENT

5.1 Generic Methodology

As we have seen through the previous section, wrapper specification addresses
the challenge of legacy data heterogeneity and consistency through a generic
data model, the GER, and a transformation paradigm that allow a description
of query translation rules and implicit constraint checking at a high level of
abstraction, independent of a specific source technology. In this section, we will
describe the successive steps of a general methodology and of the tool compo-
nents that support them. The key features of the approach can be summarized
as follows:

—Database reverse engineering. Since most legacy databases have no up-
to-date associated documentation, the latter must first be rebuilt through
database reverse engineering techniques. These techniques yield all the nec-
essary information to specify and develop the wrapper.

—Semi-hardcoded wrapper. A wrapper is developed as a program compo-
nent dedicated to a specific database model and to a specific database. It
comprises two parts, namely a model layer, in which the aspects specific
to a given data model (e.g., RDB or standard files) are coped with, and a
database layer that is dedicated to the specific database schema. While the
model layer is common to all the databases built in this model, the wrap-
per/database schemas mapping is hardcoded rather than interpreted from

ACM Transactions on Software Engineering and Methodology, Vol. 15, No. 4, October 2006.

Wrapper-Based Evolution of Legacy Information Systems • 349

Fig. 8. The DBRE process yields schemas and mappings. The three mappings needed for devel-

oping the wrapper are underlined.

tables mapping as is the case in other approaches. Though such a wrapper
may be larger than table-driven ones for large schemas, it provides better
performance.

—Schema transformation-based wrapper generation. In Thiran et al. [2005a],
the mapping rules were defined as schema transformations of type T=, which
are used to automatically generate the internal query mapping and the data
mapping. In this article, we use the same transformational paradigm, but ex-
tended to T+ transformations, for specifying the implicit constraint assertions
that have to be controlled by the wrapper.

—Operational CASE support. Schema processing, mapping processing and
wrapper generation are each supported by a specific module of the CASE
tool DB-MAIN.

5.2 Database Reverse Engineering for Schema Definition (DBRE)

In Section 2, we mentioned that the database schema, merely derived from
the DDL code, most often is incomplete, and must be enriched with hidden
constructs and constraints made explicit. To this end, we build on a proven
approach, namely the DB-MAIN DBRE methodology. The key feature of this
approach is threefold. First, all the schemas, whatever their DBMS and their
abstraction level, are expressed in the GER. Second, it uses the same transfor-
mational approach than that of this article. Third, this approach is supported
by an operational CASE tool.

The execution of the methodology produces two result types (Figure 8): (1)
the wrapper schema, including implicit and explicit constructs expressed in the

ACM Transactions on Software Engineering and Methodology, Vol. 15, No. 4, October 2006.

350 • Ph. Thiran et al.

canonical data model; and (2) the schema transformation sequences (and their
inverse) applied on the physical schema to get the wrapper schema.

Since this methodology has been presented in former papers (Hainaut [2002]
and Hainaut et al. [1993]), we will only recall those processes that are relevant
to wrapper development.

5.2.1 Physical Extraction. This phase consists in recovering the (exist-
ing) physical schema made up of all the structures and constraints explicitly
declared. This process is often easy to automate since it can be carried out by
a simple parser that analyses the DDL texts, extracts the data structures, and
expresses them as the physical schema.

5.2.2 Logical Extraction. This process relies on four main sources that can
bring information of various certainty levels. Some of them can be used to find
clues of possible implicit constructs while others can confirm or discard such
hypotheses. We will briefly discuss these sources and some of the associated
techniques.

The simplest, but not so reliable, techniques consist in analyzing the physical
schema. For instance, name structure and data type similarities can suggest a
unique or foreign key. The nonkey attribute Customer of the table Order, the type
of which is the same as that of the primary key Reference of the table Customer
may be a foreign key to the latter. Frequent physical design heuristics can also
be used. For example, most file and database developers associate an index with
each unique key and with most foreign keys. Therefore, the attribute Customer
is more liable to be a foreign key if it is supported by an index.

Data analysis can bring stronger information, but is best performed when
some evidence has already been obtained through other techniques. It consists
in analyzing sample data to check whether or not a definite property holds. Such
techniques are very efficient for finding functional dependencies, uniqueness
and referential constraints and to discover the value set of enumerated domains
[Novelli and Cicchetti 2001].

Program code analysis certainly is the most complex approach, but it brings
the most valuable information as well [Yang and Bennett 1995]. The idea is sim-
ple: the way external data are processed in the application programs strongly
depends on the properties of these data. Therefore, understanding the logic
that underlies the processing of external data leads to the understanding of
many implicit data structures and constraints. The examination of the code
of transactions [Ritsch and Sneed 1993], or of the shape of SQL queries [Petit
et al. 1994; Lopes et al. 2002], generally brings important knowledge on field
value constraints, on correlation among values of different fields, or on interfile
properties such as referential integrity. Dependency graph analysis can show
hidden relationships between data fields [Henrard and Hainaut 2001]. The
mere observation of assignment statements can bring information on implic-
itly structured fields. One of the most common examples is that of anonymous
fields (filler in COBOL or concatenated values in a relational column). Let us
suppose that an application component includes a statement such as:

MOVE ADD OF CUSTOMER-RECORD TO TMP-ADDR

ACM Transactions on Software Engineering and Methodology, Vol. 15, No. 4, October 2006.

Wrapper-Based Evolution of Legacy Information Systems • 351

where CUSTOMER-RECORD is the name of an internal compound variable associ-
ated with table CUSTOMER, and in which the subfield ADD received the value of
atomic column Address, and TMP-ADDR that of another internal compound vari-
able made up of subfields (STREET, ZIP-CODE, CITY). This statement suggests
that the same substructure also applies to the source column Address.

More powerful program understanding techniques, such as program slic-
ing are used to elicit complex relationships between fields. From the original
proposal [Weiser 1984], specific techniques have been developed for data struc-
ture understanding. For instance, Henrard and Hainaut [2001] show how this
technique can be used to collect the statements that contribute to the state of
a record at a given point in the program. This technique is more precise than
mere transaction analysis, since it gives the analyst a clear view of the code
fragment from which data properties can be inferred, though the statements
are scattered throughout thousands of lines-of-code (LOC).

Finally, the analysis of input/output documents and forms generally gives
precise information on format, constraints, relationships and interpretation
of data fields. Indeed, many reports and electronic forms, for data entry for
example, are some kind of views on the data [Lee and Yoo 2000].

5.2.3 Wrapper Schema Derivation. This process of semantic interpretation
consists in exporting and interpreting the logical schema, from which one tries
to extract the wrapper schema WS and the schema transformation sequence
LS-to-WS. Two main different problems have to be solved through specific tech-
niques and reasoning:

—Model translation: the logical schema expressed in the GER must be ex-
pressed in the operational data model of the wrapper. This process can be
fairly straightforward if the logical and wrapper models are similar (e.g.,
DB2-to-ODBC), but it can be quite complex if they are different (e.g., Oracle-
to-XML or COBOL-to-relational). Model translation basically is a schema
transformation. It consists in translating a schema expressed in a source
data model Ms into a schema expressed in a target data model Mt, where Ms
and Mt are defined as two submodels of the GER. Model transformation is
defined as a model-driven transformation within the GER. A model-driven
transformation consists in applying the relevant transformations on the rel-
evant constructs of the schema expressed in Ms in such a way that the final re-
sult complies with Mt [Hainaut 2005]. Operators RT-FK and CompAtt-Serial
(Figure 6) are typical conceptual-to-relational transformations. Therefore,
their inverses are often used in wrapper schema derivation.

—Deoptimization: most developers introduce, intentionally or not, optimization
constructs and transformations in their physical schemas. These practices
can be classified in three families, namely structural redundancies (adding
derivable constructs, such as column Account in table Order in Figure 2), un-
normalization (merging data units linked through many-to-one relations),
and restructuring (such as splitting and merging tables). The deoptimiza-
tion process consists in identifying such patterns, and discarding them, ei-
ther through removal or by transformation. Operators MultAtt-Serial and

ACM Transactions on Software Engineering and Methodology, Vol. 15, No. 4, October 2006.

352 • Ph. Thiran et al.

MultAtt-Single (Figure 6) are examples of relational optimizations. Conse-
quently, their inverses Serial-MultAtt and Single-MultAtt are deoptimiza-
tion transformations.

5.2.4 Mapping Definition. The production of the wrapper schema (WS) from
the physical schema (PS) defined in two distinct or identical models, can be
described by the sequence of transformations PS-to-WS in such a way that:
WS = PS-to-WS(PS) where PS-to-WS = (PS-to-LS LS-to-WS). The inverse of
transformation PS-to-LS is LS-to-PS, while that of LS-to-WS is WS-to-LS. There-
fore, the inverse of PS-to-WS is WS-to-PS = (WS-to-LS LS-to-PS).

As an illustration of mapping definition, we consider the mapping definition
between the physical and wrapper schemas of Figure 3. For readability, we
only consider the most relevant transformations by means of their (simplified)
signature:

T1: () ← Create-Id(Customer,(Reference))

T2: () ← Create-Id(Order,(Number))

T3: () ← Create-Ref(Order,(Customer),Customer,(Reference))

T4: (Address) ← SingleCompAtt(Customer,(Street, Zip, City))

The transformation sequence PS-to-WS is then defined as follows: PS-to-WS =
(T1 T2 T3 T4). The wrapper schema (WS) of the Figure 3 is obtained
by the application of the transformation sequence PS-to-WS on PS:WS =
T4(T3(T2(T1(PS)))). The inverse sequence is defined as follows: WS-to-PS =
(T4−1T3−1T2−1T1−1).

5.3 Wrapper Generation

At this stage, we are provided with the necessary specifications to produce the
wrapper. First, the legacy physical, the legacy logical, and the wrapper schemas
are completely specified. Their data structures will be the basis of the internal
data structures of the wrapper and of the query/update analyzer. Second, the in-
verse of the physical-to-logical mappings (LS-to-PS) is formally defined; it will
be used to code the implicit constraints control component. Third, the struc-
tural part of the wrapper-to-logical mapping (WS-to-LS) will be used to code the
query/update translator, while the instance part of its inverse (ls-to-ws) will
define the data translator.

The relations between the mapping specifications and the wrapper functions
are depicted in Figure 9. Since the mappings are based on a limited but compre-
hensive set T of transformations that are proved to be correct, all the wrappers
that are built according to this approach can be considered correct and com-
plete with respect to T (provided the code generation algorithms based on T are
carefully designed).

5.4 Tool Support

The generation of R/W wrappers is supported by the DB-MAIN tool. DB-MAIN
is a graphical, general-purpose, programmable, CASE environment dedicated
to database application engineering. Besides standard functions such as schema

ACM Transactions on Software Engineering and Methodology, Vol. 15, No. 4, October 2006.

Wrapper-Based Evolution of Legacy Information Systems • 353

Fig. 9. Three mappings built during the reverse engineering process are used to develop major

components of the wrapper.

entry, examination and management, it includes advanced processors such as
DDL parsers, transformation toolboxes, reverse engineering processors and
schema analysis tools. An interesting aspect of DB-MAIN is its meta-CASE
layer through which new models, new methodologies, and new processors can
be developed. The latter are written either in Java or in the specialized lan-
guage Voyager 2, and appear as extensions (plugins) of the CASE tool. Figure 10
depicts the main components of the architecture of DB-MAIN. It shows the role
of the Voyager 2 abstract machine, that executes the extensions requested by
the command interpreter. The method engine controls the engineering pro-
cesses defined by the method engineer, and the definitions of which are stored
in the repository. Two Voyager 2 plugins are of particular interest for wrap-
per development, namely an SQL DDL code analyzer that supports physical
extraction (Section 5.2.1) and the wrapper generator (Section 5.3).

Further details on DB-MAIN can be found in Englebert and Hainaut [1999]
and Hick [2005]. In the limited scope of this article, we describe some of the
DB-MAIN assistants dedicated to schema definition and wrapper code genera-
tion only.

5.4.1 Schema Building. Extraction facilities. Database schemas can be ex-
tracted by a series of processors which identify and parse the declaration part
of the DDL source texts, or analyze catalog tables, and create corresponding ab-
stractions in the repository. Extractors have been developed for SQL, COBOL,
IDMS, IDS2, IMS/DL1, RPG, and XML DTD data structures. Additional ex-
tractors can be developed easily thanks to the Voyager 2 environment.

Logical schema extraction and wrapper schema derivation. These processes
heavily rely on transformation techniques. For some fine-grained reasonings,

ACM Transactions on Software Engineering and Methodology, Vol. 15, No. 4, October 2006.

354 • Ph. Thiran et al.

Fig. 10. Architecture of the DB-MAIN CASE environment.

precise surgical transformations have to be carried out on individual constructs.
This is a typical way of working in refinement tasks. In the case of model trans-
lation, some heuristics can be identified and materialized into a transformation
plan. DB-MAIN offers a dozen predefined model-based transformations includ-
ing ER, UML Class diagrams, SQL, COBOL and XML translation from other
models.

5.4.2 Wrapper Code Generation. History analyzer. DB-MAIN automati-
cally generates and maintains a history log of all the transformations that
are applied when the developer carries out any engineering process such as
wrapper schema definition. This history is completely formalized in such a
way that it can be analyzed, transformed and inverted. A history basically is a
procedural description of inter-schema mappings. The history analyzer parses
history logs and transforms them into nonprocedural annotations that define
the interschema object mappings.

Wrapper encoders. The implicit constraints emulation code is derived from
the constraint assertions that are associated with the transformations of
Figure 7, while the model translation sections (query/update analyzer and
query translation) are generated from the nonprocedural annotations. The data
translation section is derived from the procedural conversion of the ls-to-ws
mapping.

The wrappers are generated for two server protocols, namely SQL-based
through a variant of JDBC, and object-based. At the current time, Voyager 2
wrapper encoders for COBOL files and relational data structures are available.

ACM Transactions on Software Engineering and Methodology, Vol. 15, No. 4, October 2006.

Wrapper-Based Evolution of Legacy Information Systems • 355

Table I. The Two Case Studies And Their Size

Wrapper Transformation Implicit

Application Schema Size Sequence Size Constructs

A 3 entity types 3 transformations 3 implicit constraints

15 attributes

B 30 entity types 30 transformations 30 implicit constraints

120 attributes

6. EXPERIMENTS

The approach described in this article has been applied on several actual sys-
tems; two of them are briefly described in this section. The first application
(A-COB) is a small size COBOL test bed we have developed to precisely check
the various versions of our generator. It includes a 3-file database that com-
prises examples of complex hidden structures and constraints, together with
a 400 LOC application program. The second application (B-RDB) is a collection
of similar INFORMIX relational databases dedicated to tax management in a
Belgian municipality and exhibiting complex redundancy patterns. Wrappers
of application B-RDB have been integrated into a database federation controlled
through a light mediator developed in JAVA/HTML. The latter provided some
functions to arbitrate among conflicting data from the tax databases.

We have also migrated each of them in the other technology, which was a
straightforward process, since both databases comprise flat files/tables only.
This provides us with two additional case studies, namely A-RDB and B-COB.

According to the architecture described in Thiran and Hainaut [2001] and
recalled in this article, the size of a wrapper is the sum of the LOC of the model
layer and of that of the database layer. The first layer has a constant size, which
is, for the current version of the generators, of 7,500 LOC for RDB wrappers
and 4,400 LOC for COBOL wrappers. Evaluating the cost of the database layer
is more complex, since it depends of several factors:

—the underlying DBMS to which the wrapper is dedicated;

—the size of the database and wrapper schemas;

—the number and the type of schema transformations of the sequence.

Table I specifies, for applications A and B, the composition of the wrapper
schema (number of entity types and attributes), the number of transformations
that define the mappings and the number of implicit constraints that have
been emulated. Note that, due to the simplicity of the database schemas (flat
structures only), these figures are valid for both COBOL and SQL technologies,
and therefore apply to the four case studies.

Table II gives the size of the code fragment (COBOL for application A, and
C for application B) that is generated for each of the following constructs of the
wrapper schema: entity type, attribute, implicit identifier, and implicit foreign
key. The table should be augmented with the score of additional constructs for
other case studies.

The size of the wrappers can be computed from these tables. For instance, the
size of the wrapper of application B is about 16,000 LOC in its SQL2/C variant

ACM Transactions on Software Engineering and Methodology, Vol. 15, No. 4, October 2006.

356 • Ph. Thiran et al.

Table II. LOC Size of Explicit Constructs and Implicit Constraints

Constructs COBOL Wrapper RDBMS Wrapper

Entity type 380 125

Attribute 120 40

Implicit identifier 20 30

Implicit reference 15 15

(B-RDB), while it is 17,000 LOC in its file/COBOL variant. The differences be-
tween both technologies stem from the way the database layers are generated.
In COBOL wrappers, each implicit constraint is managed by a specific code
fragment in COBOL while it is emulated by an SQL query in RDB wrappers
(in some sense, the emulation is hard-coded in the wrapper).

To date, we have not carried out any intensive performance measurements
on the use of wrappers. The feeling we have gotten from testing various ap-
plications on both case studies leads us to the following conclusions. First, we
have observed some performance degradation; but that never exceeded 15%
for intensive data access applications, and that obviously came from the in-
terpretation layers (i.e., the CPU resource). Second, the degradation is largely
dependent on the logic of the client application, so that drawing general conclu-
sions without modeling application profiles seems useless. Third, the structure
of the wrapper shows that the performance is not significantly dependent on
the size of the schema.

7. CONCLUSIONS AND PERSPECTIVES

Wrappers that make legacy and deficient databases comply with the require-
ments of new applications have proved to be the core technology that allows
a smooth transition to modern architectures. One the one hand, by convert-
ing a legacy model, such as IMS, CODASYL or early relational structures, to
relational, object, or XML structures better fitted to the interoperable archi-
tectures, a wrapper makes the integration of a legacy database into current
large applications easier. On the other hand, by emulating the implicit con-
straints and structures that are not managed by the legacy DBMS, they relieve
modern client components from the responsibility of controlling data integrity.
The system comprising the legacy database, and the wrapper, form a dedicated
but modern DBMS. The newly developed client components can update the
legacy data without worrying about data integrity, as is standard with current
database servers.

It appears that a database wrapper is not a simple component. Indeed, it
is based on two, possibly quite different, data models, and is in charge of effi-
ciently translating queries, updates and data between both. Moreover, it has
to synchronize different APIs, that possibly have quite different approaches to
managing currency states in sequenced data access. Matching relational cur-
sors, ODBC handles with CODASYL currency registers, or COBOL implicit
current record, implies complex dynamic correspondence that often requires a
third current management system (the internal wrapper currents). Error recov-
ery and transaction management can also be wrapper responsibilities. Finally,

ACM Transactions on Software Engineering and Methodology, Vol. 15, No. 4, October 2006.

Wrapper-Based Evolution of Legacy Information Systems • 357

a wrapper can be a large piece of code that cannot be handwritten, but for small
scale systems.

Hence the importance of precisely defining the architecture of such R/W
wrappers and of elaborating methodologies for their rapid and reliable de-
velopment. However, the current state of the art does not provide us with
many applicable proposals for solving these architectural and methodological
problems.

The approach that has been presented in this article is an attempt to solve
them in a generic framework that is model and technology independent. Based
on reverse engineering techniques, it produces the major components of the
R/W wrappers dedicated to a legacy database, namely the physical schema, the
complete logical schema, which includes the implicit constructs, the wrapper
schema, and the inter-schema mappings. Since these results are completely
formalized, they can be used for automatically generating the code of the wrap-
per. This function is ensured by the DB-MAIN CASE environment.

However, complete automation of the production of R/W wrappers is clearly
unrealistic. Indeed, though some of the most common implicit constraints and
structures have been identified and formalized (Section 4.2), and therefore
are candidates for full automation, the range of idiosyncrasies and non stan-
dard constructs that can be found in actual databases is so large [Blaha and
Premerlani 1995], that providing room for hand-writing some small specific
code sections in the body of a wrapper, is a necessity.

The methodology and its supporting tool have been evaluated in a few aca-
demic and industrial case studies based on COBOL files and (possibly early)
relational databases. Through them, we have learned that the approach is both
applicable and efficient, particularly in large scale databases. The part of the
hand-writing wrapper code was easily identifiable and its complexity was ac-
ceptable.

Experiments have also been carried out in application areas of federated
databases (for a city administration system) and data migration (from legacy
databases to XML [Thiran et al. 2005b]).

Since 2003, we have been integrating this wrapper technology into a devel-
opment environment for business-to-customer applications that are built on
top of legacy databases. At the same time, we are investigating some important
issues that have not been tackled so far, such as optimization processing and
transaction management.

REFERENCES

AIKEN, P., 1996. Data Reverse Engineering. McGraw-Hill.

BALZER, R. 1981. Transformational implementation : An example. IEEE TSE 7, 1, 3–14.

BERGAMASCHI, S., CASTANO, S., BENEVENTANO, D., AND VINCI, M. 2001. Semantic Integration of

Heterogeneous Information Sources. Data Knowl. Eng. 36, Elsevier, 215–249.

BLAHA, M. R. AND PREMERLANI, W. J. 1995. Observed Idiosyncrasies of Relational Database designs.

In Proceedings of the 2nd IEEE Working Conference on Reverse Engineering, Toronto, July, IEEE

Computer Society Press.

BOUGUETTAYA, A., BENETALLAH, B., AND ELMAGARMID, A. 1998. Interconnecting Heterogeneous Infor-
mation Systems. Kluwer Academic Publishers.

BRODIE, M. AND STONEBRAKER, M. 1995. Migrating Legacy Systems, Morgan Kaufmann.

ACM Transactions on Software Engineering and Methodology, Vol. 15, No. 4, October 2006.

358 • Ph. Thiran et al.

CAREY, M. J., FLORESCU, D., ZACHARY, G. I., AND YING, L. 2000. XPERANTO: Publishing Object-

Relational Data as XML. In Proceedings of WebDB (Informal Proceedings), 105–110.

EDWARDS, H. AND MUNRO, M. 1995. Deriving a Logical Model for a System Using Recast Method.

In Proceedings of the 2nd WCRE Conference, Toronto, IEEE Computer Society Press.

ENGLEBERT, V. AND HAINAUT, J.-L. 1999. DB-MAIN: A Next Generation Meta-CASE. Inform. Syst.
J. 24, 2. Pergamon, 99–112.

FERNANDEZ, M., TAN, W., AND SUCIU, D. 2000. Silkroute: Trading between Relations and XML.

Comput. Netw. 33, Elsevier, 723–745.

FIKAS, S., F. 1985. Automating the Transformational Development of Software, IEEE TSE 11,

1268–1277.

GARCIA-MOLINA, H., PAPAKONSTANTINOU, Y., QUASS, D., RAJARAMAN, A., SAGIV, Y., ULLMAN, J. D., VASSALOS,

V., AND WIDOM, J. 1997. The TSIMMIS Approach to Mediation: Data Models and Languages.

J. Intell. Inform. Syst. 8, 2, 117–132.

GRAY, P. 1993. Query Evaluation Techniques for Large Databases. ACM Comput. Surv. 25, 2,

73–170.

HAINAUT, J.-L., CHANDELON M., TONNEAU, C., AND JORIS, M. 1993. Transformational techniques

for database reverse engineering. In Proceedings of the 12th International Conference on ER
Approach, ER Institute, 364–375.

HAINAUT, J.-L., HENRARD, J., ROLAND, D., AND ENGLEBERT, V. 1996. Database Design Recovery,

in Proceedings of the 8th Conference on Advanced Information Systems Engineering (CAiSE),
Springer-Verlag, 272–300.

HAINAUT, J.-L. 2002. Introduction to Database Reverse Engineering. LIBD Lecture Notes, Uni-

versity of Namur. {http://www.info.fundp.ac.be/∼dbm/publication/2002/DBRE-2002.pdf; October

2005}.
HAINAUT, J.-L. 2005. Transformation-Based Database Engineering. In Transformation of Knowl-

edge, Information and Data: Theory and Applications. P. van Bommel, Ed. IDEA Group, 1–28.

HENRARD, J. AND HAINAUT, J.-L. 2001. Data Dependency Elicitation in Database Reverse Engineer-

ing. In Proceedings of the 5th European Conference on Software Maintenance and Reengineering
(CSMR), IEEE Computer Society Press, 11–19.

HENRARD, J., HICK, J.-M. THIRAN, Ph., AND HAINAUT, J.-L. 2002. Strategies for Data Reengineering.

In Proceedings of the WCRE Conference, Richmond, IEEE Computer Society Press, 211–220.

HICK, J.-M., ENGLEBERT, V., HENRARD, J., ROLAND, D., AND HAINAUT, J.-L. 2004. The

DB-MAIN Database Engineering CASE Tool (version 7.1)—Functions Overview, DB-
MAIN Technical Manual, Institut d’Informatique, University of Namur. {http://www.rever-

sa.com/DISTRIBUTION/VERSION.7/DB-MAIN-Reference-Manual.pdf; October 2005}
LAWRENCE, R., BARKER, K., AND ADIL, A. 1998. Simulating MDBS Transaction Management Pro-

tocols. In Proceedings of the CAINE Conference.

LEE, H. AND YOO, C. 2000. A Form Driven Object-Oriented Reverse Engineering Methodology,

Inform. Syst. 25, 3. Elsevier, 235–259.

LIM, E. P. AND LEE, H. K. 1999. Export Database Derivation in Object-Oriented Wrappers. Inform.
Softw. Tech. 41, Elsevier, 183–196.

LOPES, S., PETIT, J.-M., AND TOUMANI, F. 2002. Discovering Interesting Inclusion Dependencies:

application to logical database tuning, Inform. Syst. 27, Elsevier, 1–19.

MASUNAGA, Y. 1984. A Relational Database View Update Translation Mechanism. In Proceed-
ings of the 10th International Conference on Very Large Data Bases, Morgan Kaufmann, 309–

320.

MCBRIEN, P. AND POULOVASSILIS, A. 1998. A General Formal Framework for Schema Transforma-

tion, Data Knowl. Eng. 28, 1, Elsevier, 47–71.

NOVELLI, N. AND CICCHETTI, R. 2001. Functional and Embedded Dependency Inference: a Data

Mining Point of View, Inform. Syst. 26, 477–506.

PETIT, J.-M., KOULOUMDJAN, J., BOULIAUT, J.-F., AND TOUMANI, F. 1994. Using Queries for Improv-

ing Database Reverse Engineering. In Proceedings of the 13th International Conference on ER
Approach, Manchester, Springer-Verlag.

PROPER, H. A. AND HALPIN, T. A. 1998. Database Schema Transformation & Optimization. In

Proceedings of the 14th International Conference on Conceptual Modeling, LNCS, 1021, Springer,

191–203.

ACM Transactions on Software Engineering and Methodology, Vol. 15, No. 4, October 2006.

Wrapper-Based Evolution of Legacy Information Systems • 359

RAUH, O. AND STICKEL, E. 1995. Standard Transformations for the Normalization of ER Schemata.

In Proceedings of the CAiSE95 Conference, Jyväskylä, Finland, LNCS, Springer-Verlag, 313–326.

RITSCH, H. AND SNEED, H. 1993. Reverse Engineering Programs via Dynamic Analysis. In Proceed-
ings of the 1st IEEE Working Conf. on Reverse Engineering. Baltimore, IEEE Computer Society

Press, 192–201.

ROSENTHAL, A. AND REINER, D. 1988. Theoretical Sound Transformations for Practical Database

Design. In Proceedings of Entity-Relationship Approach. LNCS, Springer-Verlag, 115–131.

ROSS, W. 1993. Hewlett-Packard’s Migration to Client/Server Architecture. In Distributed Com-
puting: Implementation and Management Strategies, Prentice Hall, ed. Khanna, M.

ROTH, M. AND SCHWARZ, P. 1997. Don’t Scrap It, Wrap it! A Wrapper Architecture for Legacy Data

Sources. In Proceedings of the VLDB Conference. Morgan Kaufmann, 266–275.

SHANMUGASUNDARAM, J., KIERNAN, J., SHEKITA, E. J., FAN, C., AND FUNDERBURK, J. 2001. Querying

XML Views of Relational Data. In Proceedings of the 27th VLDB Conference. Morgan Kaufmann,

261–270.

SOUDER, T. AND MANCORIDIS, S. 1999. A Tool for Securely Integrating Legacy Systems into Dis-

tributed Environment. In Proceedings of the 6th WCRE Conference. IEEE CS Press, 47–55.

THIRAN, Ph. AND HAINAUT, J.-L. 2001. Wrapper Development for Legacy Data Reuse. In Proceed-
ings of the WCRE Conference. Stuttgart, Germany, October, IEEE CS Press, 198–207.

THIRAN, Ph., HOUBEN, G.-J. , HAINAUT J.-L. AND BENSLIMANE, D. 2004. Updating Legacy Databases

through Wrappers: Data Consistency Management. In Proceedings of WCRE’04, IEEE CS Press,

58–67.

THIRAN, Ph., HAINAUT, J.-L., HOUBEN, G.-J. 2005a. Database Wrappers Development. Towards

Automatic Generation. In Proceedings of the CSMR Conference. Manchester, March, IEEE Com-

puter Society Press, 207–216.

THIRAN, Ph., ESTIEVENART, F., HAINAUT, J.-L. AND HOUBEN, G. J. 2005b. A Generic Framework for

Extracting XML Data from Legacy Databases. Journal of Web Engineering, 4, 3, Rinton Press,

205–223.

WEISER, M. 1984. Program Slicing, IEEE TSE 10, 352–357.

WU, B., LAWLESS, D., BISBAL, J., GRIMSON, J., WAD, V., O’SULLIVAN, D., AND RICHARDSON, R. 1997.

Legacy System Migration: A Legacy Data Migration Engine, In Proceedings of the 17th Interna-
tional Database Conference (DATASEM ’97), Ed. Czechoslovak Computer Experts, 129–138.

YANG, H. AND BENNETT, K. H. 1995. Acquisition of ERA Models from Data Intensive Code. In

Proceedings of the International Conference on Software Maintenance, ICSM ’95, Opio (Nice),

France, October 17–20. IEEE Computer Society, 116–123.

Received April 2005; revised November 2005, December 2005; accepted January 2006

ACM Transactions on Software Engineering and Methodology, Vol. 15, No. 4, October 2006.

