
Meta Object Management
and its Application to Database Evolution�

Markus Tresch and Marc H� Scholl

Department of Computer Science� Databases and Information Systems
University of Ulm� D�W ���� Ulm� Germany

�tresch�scholl��informatik�uni�ulm�de

Abstract� In this paper� we address the problem of supporting more
	exibility on the schema of object�oriented databases� We describe a
general framework based on an object�oriented data model� where three
levels of objects are distinguished
 data objects� schema objects� andmeta�
schema objects� We discuss the prerequisites for applying the query and
update operations of an object algebra uniformly on all three levels� As
a sample application of the framework� we focus on database evolution�
that is� realizing incremental changes to the database schema and their
propagation to data instances� We show� how each schema update of a
given taxonomy is realized by direct updating of schema objects� and
how this approach can be used to build a complete tool for database
evolution�

� Introduction

There is an increasing need for database evolution facilities� o�ering more �exi�
bility on the logical structure of object�oriented databases �OODBs�� On the one
hand� schema evolution is the basic prerequisite for better support of database
extensibility and reusability� which is a big promise of object�oriented systems	
and on the other hand� database integration has a renaissance� since the inte�
gration of federated databases and interoperability of multidatabase systems has
become urgent� In addition� new aspects arise from the fact that not only the log�
ical schemas of the databases can evolve� but also existing data must be migrated
and integrated� Either of these demand more dynamics of database schemas�

Evolution in databases addresses the problem that the logical structure of a
database is likely to undergo changes during lifetime� even if a database is already
populated with objects� There are many reasons for that
��
 schema design can
be a stepwise development of a schema from scratch	 schema tailoring consists
in slight adaptations of existing schemas �e�g� extension with new components�	
schema restructuring�reorganization is used after signi�cant� non�trivial changes	
and schema versioning allows to record and manage a history of schemas�

Most current OODBS products and prototypes do not allow free and dynamic
changes of the schema� Some of them provide a limited set of special purpose

� Work done while at Department of Computer Science� ETH Z�urich� Switzerland

schema update methods� and restrict their application to unpopulated �empty�
databases� If modi�cations of populated databases are allowed� the problem is
how to propagate the changes to the instances� One either includes a data mi�
gration utility to adapt existing data objects to the changed schema� or an other
mechanism �screening� versioning� has to ensure consistency between data and
structure�

An early investigation of type changes in populated databases exists for EN�
CORE
���� This work addresses the e�ects of type changes to objects and to
programs that use objects of the type� The impact of type polymorphism on
schema evolution is investigated in
���� The �rst systematic analysis of desir�
able schema evolution possibilities was done for the ORION data model
�� ���
where a set of necessary schema updates was listed and organized in a taxonomy�
Similar enumeration can also be found for the O�
��� and the GemStone DBMSs

���� The schema update primitives of these taxonomies are realized as special
purpose methods for schema management� Another approach is to provide a
complete end�user tool to assist in transforming database schemas
����

Schema evolution is in fact an important issue for ER databases� because
even relational� hierarchical� network� or object�oriented databases use an ER�
approach for conceptual DB design
���� or for representation of external schemas

����

Our approach was to built a uniform model and general framework for in�
vestigation of the above mentioned database evolution and integration issues�
In the following� we introduce the main components of the framework� which in
turn re�ects the structure of this paper

Object model and algebra� As the basis of the framework� the object�oriented
data model COCOON with its algebraic query and update language is used
�Section ��� However� notice that the basic ideas of the framework are not
strongly bound to this speci�c object model	 it can be replaced by any
object�oriented data model� especially an object�oriented entity�relationship
approach
��� ��� with an algebra or a calculus
����

Three object levels� In this model� a separation of database objects into three
disjoint subsets is introduced
 data objects� schema objects� and meta�schema
objects �Section ��� Hence� also �meta��schema objects are modeled as ob�
jects like others� we allow that the generic query and update operators can
be applied on objects of each of these three sorts and there is no di�erence in
the syntax and semantics of the algebraic operators� whether they query or
update data� schema� or meta�schema objects� Even though representation
of the meta�schema within the same model is not a new idea� such meta�
data usually serve only for documentation purposes� That is� only retrieval
is allowed� In contrast� here we investigate also the feasibility of updates to
meta�objects�

Elementary Operations� Based on this separation� we focus into special ap�
plications� implementing elementary operations for database evolution or
database integration �Section ����� We thereby concentrate in this paper on
the application of the framework to schema evolution� and show how to re�

alize schema update operations by applying the algebraic query and update
algebra to meta�objects� Consequently� the use of generic update operators
as �schema evolution and integration language�� instead of special purpose
schema evolution methods� has the advantage that
 �i� the functionality of
these operators is formally de�ned with a clear semantics
��� and has no
unpredictable side�e�ects	 �ii� they handle integrity constraints� that is� no
update leaves the database in an inconsistent state w�r�t� these constraints�
The remaining problem is to propagate the modi�cations from the schema
level down to the data object level� We will show that this can be achieved
straight�forward due to the clear semantics of schema updates�

Advanced Operations� Next� the elementary operations are encapsulated into
advanced� user�oriented tools for database evolution� The purpose of this is
to capture more semantics and insure higher level integrity constraints �Sec�
tion ����� Database integration using the framework� as an other sample
application of the framework is presented in
����

� An Object Model and Algebra

The framework we present throughout this paper is based on the COCOON
object model� We very brie�y review the key concepts of the object model and
the algebra� referring to the literature for more details
��� ����

��� Basic Concepts

The COCOON object model is an object�function model in the sense of
�� ���
Its basic constituents are objects� functions� types� and classes

Besides data� which can be atomic �numbers� strings� or constructed �tuples�
sets�� there are objects that are instances of abstract object types �AOTs��
Objects can be manipulated by a set of applicable operations�

Functions are the generalized abstraction of attributes �stored or com�
puted�� relationships between objects� and update methods �with side�e�ects��
They can be single� or set�valued� Functions are described by their name and
signature� The implementation is given separately� in the object implementation
language �OIL�� which is not described here any further�

Types describe the common interface to all of its instances� So� a type is
de�ned by a name and a set of applicable functions� This set is the union of the
functions explicitly de�ned to belong to the type and those inherited from the
types of the acyclic isa relationship� The subtype relationship that is used for
type�checking corresponds to the subset relationship of the function sets� Thus�
instances of one type are also instances of its supertypes �multiple instantiation��
The root of this lattice is the prede�ned type object�

Classes are strictly distinguished from types
��� Classes are typed collections
of objects� So every class c has an associated member typemtype�c� and an actual
extension extent�c�� the set of objects in the class� We de�ne the extent of a class
to include the members of all its subclasses� Thus� objects can be member of

multiple classes at the same time �multiple class membership�� Besides the subset
property the subclass relationship states that the member type of a subclass must
be the same type or a subtype of its superclasses� member types� The top class
of the subclass hierarchy is the class Objects�

COCOON features that are usually not found in other object�oriented models
are the possibilities to de�ne class predicates and views� Class predicates are
either necessary or necessary and su�cient conditions that have to be ful�lled
by the class members� Views can be de�ned by queries of arbitrary complexity
and can be regarded as a special kind of classes� because their extent and their
member type is su�ciently de�ned by the query� Thus� classes with necessary
and su�cient predicates are regarded as a special kind of views� since also their
extent is populated automatically��

Example �� As a running example� we use the following database Business�
de�ned by COOL type and class declaration statements��

define database Business �
de�ne type person isa object � name� unique string not null �

age� integer �
de�ne type employee isa person � salary� integer �

empl� company inverse sta� �
de�ne type company isa object � ident� unique string� city� string �

sta	� setof employee inverse empl �
bran� setof company not cyclic �

de�ne class Persons � person some Objects �
de�ne class Youngs � person all Persons where age�
� �
de�ne class Employees � employee some Persons �
de�ne class Companies � company some Objects �
de�ne view PublEmpls as project
name�empl� �Employees� 	

enddb �

The two classes Persons and Youngs have both the same type� person� Moreover�
the class Youngs is de�ned as a subclass of Persons� holding exactly those persons
that satisfy the class predicate age � ��� The selector all in the where clause
�in contrast to some� indicates that the class predicate is necessary and su��
cient� such that the member objects of class Youngs are automatically computed
from those of Persons� The projection view PublEmpls hides the age and salary
properties� such that users of this view only see name and empl functions�

In addition to class predicates� there is a possibility to de�ne constraints for
functions
 �i� not null functions are not allowed to have unde�ned values� �ii�
unique functions must have distinct values� �iii� not cyclic functions ensure
that no object has itself as result of that function �even if applied repeatedly��
and �iv� inversemeans that two functions are inverse to each other� �

� Updating views is discussed in �
���
� We use the convention that type names are in lower�case letters and in singular�
whereas class or view names are in plural and start with an upper�case letter�

��� Generic Query and Update Operations

The query and object manipulation language COOL was designed as an ex�
tension of �nested� relational algebra� It provides a collection of generic query
operators with object�preserving semantics� That is� they return �some of� the
already existing input objects� instead of generating new �copies of� objects�

As query operations we provide selection of objects � select
P ��C� �� pro�
jection � project
f�� � � � � fn��C� �� extension � extend
fi
�� expri �� � � ���C�
�� and the set operations �union	 intersection	 di�erence�� Variables can be
used as temporary names ��handles�� for objects� since objects are typically un�
named� due to the set�oriented style of the language� So this is the way how to
refer to objects and results of previous algebra expressions�

Besides query operators� COOL also provides a collection of generic update
operators �cf�
��� for a formal de�nition�� The main advantage of general purpose
update operations is that their semantics is known by the system� That is� they
maintain model�inherent integrity constraints like uniqueness or acyclicity of
functions� and class predicates� We will see later how we exploit by this property�
when schema updates are de�ned by such generic update operations� In the
remainder of this paper we will make use of the following operations

Insert takes as argument a class C and a list of assignments of values to
functions� If the function assignments in the assignment list do not con�ict with
the respective constraints of all functions� a new object as instance ofC�s member
type is created� and initialized with the function values given in the assignment
list� In case the new object satis�es C�s class predicate� it is also added to the
extent of class C� As a result� a reference to the newly created object is returned�
and can therefore be assigned to a variable� e�g�

john
� insert
name��
John Smith
� age��
�� �Persons�	

Delete destroys objects consistently� It takes an object as its only argument�
This object is removed from all classes� sets� and variables� in case that no
function constraint is violated� For example

delete �paul�	

Add and remove have a �weaker� e�ect
 they have no impact on the existence
of objects� Rather� an existing object can be added to or removed from classes
or sets� They take an object and a set of objects as parameter

add
john� �sta	�ibm��	
remove
dec� �Companies�	

Both operators may change the type of objects dynamically� Consider john�
which is an instance of type person� Adding it to the class of Employees� makes
john an instance of type employee� in addition to including him in IBM�s sta��

Set assigns new function values for given arguments� It takes two arguments

a list of assignments and an object� As in the case of the insert operation� the
newly assigned function values must respect the function constraints�

set
salary�� ����salary� �john�	

It is essential to notice that generic update operations are refused and therefore
not processed� if they would con�ict with any function constraints �unique� not
null� not cyclic�� Consider for example the insert �statement above� where a
new person object with name �John Smith� is created� Since the name function
is de�ned to be unique� the update would be rejected� if there already were a
person with this name�

Violation of class predicates is handled di�erent
���� The class predicate is
checked after execution of the update operation� and if necessary� the changed
objects are reclassi�ed� Note that changing values of objects� for example with
the set�operator� may need such a reclassi�cation of objects� Consider for exam�
ple the object john� Changing its age from �� to �� would immediately classify it
down in the hierarchy� by adding it to the class Youngs� The treatment of inverse
functions is similar to reclassi�cation
 If a function value is changed� this update
is propagated automatically to the inverse function� such that the constraint is
maintained�

� Three Levels of Objects

For every COCOON database� the set of actually stored persistent objects is
denoted by O � f� � � � o� � � �g� Each of these objects has a speci�c state �� such
that vij
� ��fi��oj� is the actual value returned by applying function fi on
object oj � O�� The states of all objects in O together form the actual state of
the database�

De�nition
�� �Database� A database is a tuple DB � � O� � �� where

�� O is the �nite set of persistent objects in the database� and
�� � is the state of the database� �

Consider for example the variable john of type person and the function name that
is applicable on instances of that type �name� person� string�� The actual value
of function namemight be the set
 fhjohn� �John Smith�i� hmary� �Mary Hughs�ig�
such that for instance� ��name��john� �
John Smith
�

�� Meta
Schema	 Schema	 and Data Objects

A closer look at the set of objects O reveals� that they are build up of three
pairwise disjoint sorts� each of which is placed on a di�erent level
 the meta�
schema level� the schema level� and the data level

� In our model� all functions are partial� such that when applied on an object� their
values can be unde�ned� For this case� the state ��fi��oj� is de�ned to be the null
value �� Later� we will see� that this lazy evaluation strategy is very useful for schema
update propagation�

� meta�schema level objects� the objects describing the meta�schema of the
database� There is a prede�ned �xed set of meta�objects� building the data�
base kernel� being always part of a database� Meta level objects are the
meta�types TM � the meta�functions FM � and the meta�classes CM �

Ometa � f type� set�type� fcn�type� object�type�

function� class� class�def� view�def� �z �
TM

�

Types� Set�Types� Fcn�Types� Object�Types�

Functions� Classes� Class�Defs� View�Defs�� �z �
CM

tname� functs� localf � supert � etype� dom� ran�

fname� sign� unique� notnull � notcyclic� inverse�

cname� extent � auto�mtype� pred � superc� query� �z �
FM

g

� schema level objects� the objects describing the schema of the application
database� They are application dependent and are created as instances of
meta�types� Schema objects are distinguished in application types TA� ap�
plication functions FA� and application classes CA�

Oschema � ft�� � � � � tk� �z �
TA

� f�� � � � � fm� �z �
FA

� c�� � � � � cl� �z �
CA

g

� data level objects� the primary level objects� representing the user data stored
in the database� They are created as instances of application�schema types�

Odata � fo�� � � � � ong

Objects are created top�down
 Whereas an �empty� database holds only meta�
level objects� later� the schema level objects are created during the database
design phase� Finally� the use of the database generates data level objects� Fig�
ure � illustrates instance�of relationship between objects and types of the three
di�erent levels�

�� Database Schemas

A database schema is a representation of the structure �syntax�� semantics� and
constraints on the use of a database in the data model� In our model� this is
given by classes� types� and functions�

Thus� the schema of a COCOON database DB � � O� � � is represented as
a triple � T�F�C �� with T a set of objects representing types� F a set of objects
representing functions� and C a set of objects representing classes� The set of all
types� functions� and classes in the database is denoted as T �F � C� These sets
are identical with the active domain of the meta�types �type� function� class�
and the extent of the meta�classes �Types� Functions� Classes��

type classfunction ClassesTypes Functions

Meta-Schema Level Objects

Schema Level Objects

Data Level Objects

object-type view-defclass-def

person Persons

john ibmpaul

Youngscompany Companies

dec

Employees PublEmplemployee

Object-Types View-DefsClass-Defs Views

Fig� �� Instance�of relationship 	drawn as dashed arrows
 between meta�schema�
schema� and data level objects� Data level objects are instances of schema level types�
Schema level types are themselves represented by type objects� that are instances of
meta�level types� The meta�level types are represented by meta�level objects� Notice�
that the object object�type is instance of the type that it represents 	which does not
mean that it is �instance of itself�
�

The meta�schema is a special schema� the schema of the meta�database� It is
represented by the meta�level objects of Section ��� and de�nes the data model
itself� Figure � gives a graphical overview of the meta�schema� and a de�nition
in COOL notation can be found in Appendix A�

De�nition
�� �Meta Database Schema� The meta�schema of a database
DB � � O� � � is given as the triple SMeta � � TM�FM� CM �� �

The application�schema holds application level objects� It de�nes the con�
ceptual schema of the database application�

De�nition
�
 �Application Database Schema� The application schema
of a database DB � � O� � � is given as the triple SAppl � � TA�FA� CA �� �

�
 Queries and Updates to Objects of Di�erent Levels

So far� we introduced a distinction of objects into three sorts� according to the
role they play within a database application� Nevertheless� all of them are or�
dinary objects� such that queries and updates of the COOL language apply� Of
course� the e�ect of an operation depends on the level of its input objects�

Data Level Operations retrieve or change data level objects� These are the
ordinary operations as we know them from Section ����

tname type function class

object

set-type fcn-typeobject-type

supert

functs fname

 cname

inverse

etype

ran dom
sign

 unique
 notnull
 notcyclic

localf

 auto

extent

mtype

pred

superc

 queryclass-def view-def

Types Functions Classes

Objects

Set-Types Fcn-TypesObject-Types Class-Defs View-Defs

Fig� �� The meta�database schema is a hierarchy of meta�types TM 	rectangles
 with
their meta�functions FM 	lines with one arrowhead mean single�valued functions� with
two arrowheads set�valued functions
� and a hierarchy of meta�classes CM 	ellipses
�
Subtype relationship is shown with gray arrows� whereas subclass hierarchy is indicated
using black arrows�

Q�
 name�john� U�
 set
name��
hans
��john�
Q�
 select
name�
john
��Persons� U�
 delete �john�

For example� getting the name of object john �Q��� selecting all persons with
name
john
 �Q��� changing John�s name to
hans
 �U��� or deleting the object
john �U�� �

Schema Level Operations operate on objects representing the schema� Re�
trievals work straightforward without additional e�ort� As an example� query
Q� gets the name of the application type person� and Q� returns all objects
representing types with name
person
�

Q�
 tname�person� U�
 set
tname��
people
��person�
Q�
 select
tname�
person
��Types� U�
 delete �person�

In contrast to query operators� direct manipulation of schema objects �U�� U��
needs further consideration� since these updates �nally realize schema evolu

tion� The usual way to make basic updates to the schema objects is by us�
ing a data de�nition language �DDL�� as it was introduced in Section ��� �e�g��
de�ne type employee isa ����� Advanced changes to schema objects� like e�g�
modifying types� are normally implemented in a schema manipulation language
�SML��

Such a special language is used� because these operations can yield �side�
e�ects�� that must be regarded carefully� Consider for example update U�� chang�
ing the name of type person to
people
� or U� even deleting the type person� We
will cover the following questions
 There are some functions applicable to in�
stances of type person �name� age� ����� should they be deleted together with
the type� When the type person is removed� what will be the member type of
the classes Persons and Youngs� What will be the new supertype of employee�
What about propagation of schema changes to existing data objects like john�
What happens with the instances of a deleted type�

Meta
Schema Level Operations operate on objects representing the meta�
schema� Again� queries can be used quite straightforward� So� Q� returns the
name of the meta�type type� and Q� selects a set of all types with name
type
�

Q�
 tname�type� U�
 set
tname��
interface
��type�
Q�
 select
tname�
type
��Types� U�
 delete �type�

Updates U�� U� are changes to the meta�schema� As an example� U� renames
the type type to
interface
� and U� even destroys the type type� These updates
are generally not allowed� since they change the basic ingredients of the data
model� Anyway� some elementary modi�cation to the meta�schema could be very
useful� i�e� for model tailoring by adding specialized types and classes� derived
functions� or meta�views
���� and for preparing for the coupling of multiple
DBMS
����

Mixed Level Operations involve di�erent levels within one operation� To do
this� we need an additional operator� that provides the possibility to change the
level
 apply
 f � � �set�expr� �� It applies a function f to a set of objects in
�set�expr�� E�g� query Q� �rst �nds all classes c from the meta�class Class�Defs�
where the function name can be applied	 then the expression select
name �

john
��d� is run for each of these classes� now called d�

Q�
 apply
select
name �
john
��d��
�d
 select
name � functs�mtype�c��� �c� Class�Defs ��	

Notice� that the selection on Class�Defs returns a set of schema level objects�
whereas the later selection gives data level objects� Such mixed level facilities give
additional expressive power to the language� but static type checking becomes
impossible in some cases
����

� Prerequisites for Updating Schema Objects

Direct changes to schema objects �cf� U�� U�� U�� U� in Section ���� have addi�
tional �side�e�ects�� Thus� before we show how the schema updates are imple�
mented� we investigate the feasibility of these operations� namely completeness
and correctness� as well as the propagation of meta�schema and schema level
updates to other levels�

��� A Taxonomy of Schema Updates �Completeness�

Some schema changes are quite simple� whereas others need complete reorga�
nization of the database� The latter can often be decomposed in a sequence of
more elementary changes�

Below� a taxonomy of primitive schema updates is presented� which is min�
imal and complete in the sense that all possible schema transformations can
be built up by �a combination of� these updates� Since a schema is a triple
� T�F�C �� we categorize schema changes into updates to type� function� and
class objects respectively

��� UPDATING TYPES ��� UPDATING CLASSES
����� create�delete a type object ����� create�delete a class object
������� create a new type object ������� create a new class object
������� delete an existing type object ������� delete an existing class object
����� changes a type object ����� change a class object
������� change the name ������� change the name
������� change the supertypes ������� change the auto tag
������� change the local functions ������� change the member type

������� change the class predicate
��� UPDATING FUNCTIONS ������� change the superclasses
����� create�delete a function object ������� change the query expression
������� create a new function object
������� delete an existing function object
����� change a function object
������� change the name
������� change the function signature
������� change the function constraints

A similar taxonomy was �rst introduced for the ORION data model
��� where
all supported schema changes are classi�ed into changes to an edge� changes to
a node� and changes to the contents of a node�

��� Insuring Schema Correctness

Since not every arbitrary triple � T�F�C � of types� functions� and classes is a
correct schema� we must make sure that schema updates transform a database
structure into another correct state� Thus� the ORION� O�� and GemStone data

models provide a set of schema invariants� These are conditions that have to be
satis�ed by any valid schema� Similar� in our model the schema constraints R��
���� R�� below determine the basic characteristics of a COCOON schema� such
that a schema is correct� if it satis�es these conditions�

To ensure that these conditions are respected at any time� they are translated
into integrity constraints of the meta�schema �unique� not null� not cyclic�� In
the sequel� we explain the constraints in the COCOON meta�schema
 �

Unique Naming Constraints �R�� R�� R�� guarantee� that there are no two
types� functions� or classes with the same name� Notice that these are the in�
ternal names� after solving any naming con�icts from multiple inheritance� or
overloading respectively�

�R�� for all types t� t� � T� t �� t�
 tname�t� �� tname�t ��
�R�� for all functions f� f � � F� f �� f �
 fname�f � �� fname�f ��
�R�� for all classes c� c� � C� c �� c�
 cname�c� �� cname�c��

The unique naming constraints are expressed by declaring the meta�functions
tname� fname� cname to be unique in the meta�type de�nition�

Closure Constraints �R�� ���� R��� ensure schema closure in the sense that the
following objects must be part of the schema

�R�� for all object�types t � T
 localf �t� � F� supert�t� � T

�R�� for all set�types t � T
 etype�t� � T

�R�� for all function�types t � T
 dom�t� � T� ran�t� � T

�R�� for all functions f � F
 sign�f � � T

�R�� inverse�f � � F � inverse�f � � �
�R�� inverse�f � � f � 	
 inverse�f �� � f

�R��� for all class�defs c � C
 mtype�c� � T� superc�c� � C

�R��� pred�c� � F

�R��� for all view�defs v � C
 query�v� � expression
To implement closure constraints� the meta�schema must follow two restrictions�
First� in the meta�schema� all functions� that are not allowed to be unde�ned�
have a not null constraint� Second� the active domain of the meta�types are by
de�nition identical to the extent of the corresponding meta�class �cf� Section
�����

Acyclicity Constraints �R��� R��� ensure that supertype and superclass re�
lationship do not end up in a cycle� Thus� no type can be supertype of itself�
and no class superclass of itself�

�R��� for all object�types t � T
 t �� supert��t�
�R��� for all class�defs c � C
 c �� superc��c�

The acyclicity of the supertype�superclass relationship is implemented by adding
a not cyclic constraint to the meta�function supert�superc� and is therefore
checked automatically�

� The semantics of the meta�functions tname� localf� supert� ��� is explained in the meta�
schema in Appendix A� In addition� supert�� superc� are de�ned as the transitive
closure of supert� and superc respectively�

Implementing schema invariants for unique naming� closure� and acyclicity as
constraints in the meta�schema is a very natural approach
 since the application
schema includes constraints for data level objects� constraints for schema level
objects must be de�ned in the meta�schema� We use the generic update oper�
ations of COOL to change the schema level� Since they are de�ned to respect
constraints� schema invariants are maintained automatically�

Thus� whenever a COOL update is performed to a schema level object in
order to implement schema modi�cations� which would result in an incorrect
database schema� this update will be rejected by the system�

��
 Propagation to Data Level Objects �Type
Validness�

Figure � showed the instance of relationship between types and objects� We men�
tioned that types de�ne the interface �a set of functions� to their instances� The
following de�nition gives the notion of type�valid databases
���� which means
that every instance must match the de�nition of its type at any time

De�nition ��� �Type
Valid� A database DB � � O� � � is type�valid� i�
� types t � T
 o instance of t
 �� ��f��o� � range�f �� �f � functs�t�� �

In other words� a database must ful�ll two requirements to be type�valid

�i� whenever the type�checker allows a function f to be applied on an object o
�that is� i� f is in the interface of a type t and o is an instance of t�� then the
state ��f��o� must be well de�ned	 and �ii� the value of the state must match
the range type of f �

Since types are represented by schema objects� we have therefore strong con�
sistency requirements between objects of the schema level and of the data level�
such that updates to objects representing types must propagate to updates on
objects of the data level below�� However� we allow direct updating of schema
level objects� but want to avoid that afterwards a migration utility must be
called to adapt data level objects�

��� Implementation Considerations

A type evolution strategy� where all objects are kept type�valid on the physical
level at any time� is usually called propagation by immediate �eager� conversion
�e�g�� realized in the GemStone system
����� In the context of schema evolution�
this is a very costly strategy
 after any type change all instances may have to be
converted� Therefore� two main alternatives to eager instance conversion have
been proposed
 �i� delayed �lazy� conversion is a strategy� where instances are
only converted on demand� i�e�� at the moment when they are touched the �rst
time after the type change by a read or write operation� In combination with
screening� one can even avoid to convert instances after a read� because screening
is a kind of �logical� instance conversion� where objects are interpreted in the

� Notice� that the same situation shows between the meta�schema level and the schema
level as well�

new de�nition �e�g�� ORION
���	 and �ii� type versioning is a strategy where a
new version of a type is created whenever a type is modi�ed� Instances created
after the change� belong to the new version
��� ��� and the same object may be
viewed through di�erent versions of the schema��

Our approach was to realize a more �sophisticated� state function �� based on
a combination of the above strategies� that keeps databases type�valid without
any instance conversion� For this purpose� the database state of Section � was
enhanced� such that each value of a function is carrying in addition information
about its type �type�f��o��� Whenever� the type checker allows the application
of function f to object o� � looks up in the database for the state ��f��o��

��f��o�
�

����
���

��f��o� � if type�f��o�
 range�f��
cast���f ��o� � � if type�f��o�
 object and range�f�
 object�
transf ���f ��o� � � if type�f��o� �
 object or range�f� �
 object�
� � otherwise�

If there is no actually de�ned value for f�o� in the database � for example�
because f was added by a schema update after o has been created � � returns
a null value ���� If there is a value and it matches the range type of f � which is
the ordinary case� ��f��o� is retrieved�

Moreover� � transforms values that do not match the range type of f � for
example� because the signature of f was modi�ed by a schema update in between
�� using the cast or transf operator� The cast operator maps objects from one
object type into an other object type� as it is known from other strictly typed
languages
���� The transf operator does a similar transformation for value types�
It is mainly a table of mapping rules between integers� strings� booleans� etc�

With this de�nition of �� we can show

Theorem All schema changes of the taxonomy� performed on a COCOON
database � O� � � using COOL algebra operators� leave the database type�
valid� w�r�t� to the modi�ed state function ��

Implementing the database state like this� direct updates to schema objects
can be performed� and the database is kept type�valid without explicit propaga�
tion to instances� The proof is just a case analysis following the explanations in
Section ����

� Database Evolution as a Sample Application

So far� the framework is built such that we can allow a user to make direct
schema object updates� We make now use of the above prerequisites and turn
to a speci�c purpose of the framework
 database evolution�

� It is �nally a matter of performance trade�o�s� which of these alternatives is chosen
����� gives a performance comparison of immediate vs� delayed conversion��

��� The Taxonomy with Direct Updates to Schema Objects

The �rst step towards realizing schema evolution operations is to �nd a corre�
sponding COOL algebra expression on schema objects for each of the update
primitives in the presented taxonomy� We do that in the following and mention
the constraints that are checked to satisfy schema correctness as well as how
propagation to existing instances �data level objects� is resolved�

Creating new Schema Objects� Schema objects are created with the generic
insert statement� by inserting a new object into one of the meta�classes Object�
Types� Functions� Class�Defs or View�Defs� Thereby� the initial values of the new
objects are to be speci�ed� All given parameters must satisfy unique naming� not
null� and not cyclic constraints�

������� t
� insert
tname�� nt� localf�� f f�� � � � � fn g� supert�� f t�� � � � � tl g�
�Object�Types�	

Since the set of functions localf�t� that is associated with the newly created type
is already existing� this schema update is simply the assignment of a type name
the a set of functions� and does not propagate to data level objects�

������� f
� insert
fname�� nf � sign�� dom ran� unique�� uq�
notnull�� nn� notcyclic�� nc� inverse�� fi� �Functions�	

After creation� the new function is not in a type interface� no object has a value
for the new function� and therefore no explicit propagation is needed�

������� c
� insert
cname�� nc� auto�� as� mtype�� tm�
pred�� pc� superc�� f c�� � � � � cn g � �Class�Defs�	

v
� insert
cname�� nc� query�� qr� �View�Defs�	

Classes can be created either by a class de�nition �insertion into the meta�class
Class�Defs� or as a view �insertion into the meta�class View�Defs�� Since the
extents of views and all�classes are de�ned by necessary and su�cient conditions�
they are populated automatically if necessary�

Deleting schema objects� Applying the delete operator to a type� function�
or class object removes it from the database schema� Deletion of schema objects
may be refused� if it violates the closure constraint�

������� delete �t�	

Deletion of a type does not propagate to the instance level� This operation simply
removes the assignment of a named type object to a set of applicable functions
�cf� generating a type�� The instances of that type remain in the database� and
all functions of the type interface are still applicable�

������� delete �f�	

After deletion of a function object� that state of this function becomes useless�
Nevertheless� there is no need for immediate removal of the values of f for data
objects� because the type checker would no longer permit the application of f
to an object��

In case that the function f is part of a class predicate or query de�ning a
view� deleting f could result in a run�time error� We discuss this problem below�

������� delete �c�	

Deletion of a class has no in�uence on the class members�

Changing the name of schema objects� Names of types� functions� or classes
can be changed� using the generic set operator to assign a new name string�

������� set
tname�� nt� �t�	 ������� set
cname�� nc� �c�	
������� set
fname�� nf � �f�	

These changes must follow the unique naming constraint� Changing object names
does not need to be propagated any further�

Changing the type interface� Using the generic add and remove operators�
a type object ti can be added or removed to�from the type interface in order to
change the set of supertypes� Similarly� a new function object fi can be added
or removed to�from the set of locally de�ned functions�

������� add
ti� �supert�t��	 ������� add
fi� �localf�t��	
remove
ti� �supert�t��	 remove
fi� �localf�t��	

In case of adding supertypes or local functions� new functions become applicable
to all instances of t
 e�g�� if o is an existing instance of t� then ��fi��o� becomes
type�valid� But� following our lazy propagation strategy �cf� Section ����� the
state of the data objects can remain unchanged� because � returned a null value
anyway�

After removing the function fi from the type interface� the application of fi
to an object o in context of this type would not pass the type checker� Thus� it
does not matter whether the actual value is kept in the database state�

Changing the function signature� The signature of a function object can
be changed directly� by assigning a new object ft �of type fcn�type�� using the
generic set operator��

������� set
sign�� ft� �f�	

� Deleting the values of f from the database is an implementation issue� It could be
done later� e�g� in a clean�up phase� cf� Section ����

� For the considerations here� we assume� that for each desired combination of domain
and range� there already exists a function type object that represents it� For example�
obj set employee for signature with domain object and range set of employee�

Altering the range of a function may cause that existing instance values must
be transformed to other types� This is done by the cast�option in the state
function� If the domain is restricted� the type�checker avoids the use of these
function for an object that is not instance of the new domain	 if the range gets
more general� substitutability guarantees that function values are still valid�
Anyhow� all changes of the signature are handled by the ��function according
to Section ����

Changing the function constraints� For changing the function constraints�
one must distinguish between two cases
 those making the constraint more re�
strictive �setting unique� not null� not cyclic to true� and those making it less
restrictive �setting constraints to false�� Only the former ones give problems�
because there could be data objects already in the database that do not follow
the new more restrictive constraints�

������� set
unique�� uq� �f�	 set
notnull�� nn� �f�	
set
notcyclic�� nc� �f�	 set
inverse�� fi� �f�	

Changing class properties� Properties of classes can be changed by assigning
new selector as� membertype tm� or class predicate pc�

������� set
auto�� as� �c�	 ������� add
ci� �superc�c��	
������� set
mtype�� tm� �c�	 remove
ci� �superc�c��	
������� set
pred�� pc� �c�	 ������� set
query�� qr� �c�	

Since the extent of a class is not stored but computed �no matter whether de�ned
as a class or as a view�� changing these class properties has no e�ect on instances�
but simply needs recomputation of the extent� Assigning a new query or an new
predicate needs of type�checking �see below��

��� Embedding Schema Updates into Methods

Although all schema update primitives have been mapped into an algebra ex�
pression� isolated use of these updates may not be adequate or desirable for
many reasons

� Since a small update on a schema object may have serious e�ects on data�
bases� it may be useful to ensure additional pre and post conditions for such
an update�

� If a direct update violates model inherent integrity constraints �uniqueness�
not null� or not cyclic�� the operation is just rejected� It may be more ade�
quate� if meaningful error messages were returned�

� The user�s authorization to make the schema update must be checked� In
general� this is done using a normal authorization model for objects
����
and applying it to the schema objects� Anyway� some special restrictions to
schema updates may be checked globally� e�g� forbidding that meta�types are
deleted�

� The meta�schema does not contain any information about physical design
issues� Physical descriptors for the classes and functions may be given ex�
plicitly together with a schema update� As an example� consider that some
views or derived �computed� functions may be materialized� indexes should
be created� objects may be clustered� or statistics on the transaction load
should be kept�

� Run�time information for dynamic type�checking or function bindings is not
part of the meta�schema as well� If for example the predicate of a class is
changed� it must be type�checked for that no run�time error can occur	 and
since functions �e�g�� queries of a view de�nition� can be derived from others�
we have to represent dependencies between functions� This problem is known
as �behavioral consistency�
����

� Finally� user de�ned semantics may be added� For example� one may want
to enforce� that deleting a class includes deletion of all instances�

Example �� Consider deletion of type objects �U������� The following method
requires that before type t is deleted� t is not a meta�type and that t is not used
somewhere else�

procedure delete type �t
 object�type� is
� delete an existing type object �update ����� of the taxonomy�

require
t �� MetaTypes and
select �t � supert� �Object�Types� � � and
select �t � etype� �Set�Types� � � and
select �t � dom or t � ran� �Fcn�Types� � � and
select �t � mtype� �Class�Defs� � �

begin
delete �t��

end � delete type �

We therefore propose that updates to schema objects should only happen encap�
sulated into save schema update methods� In an object�oriented system� these
methods can be implemented as overriding of the standard methods of the meta�
types�

� Conclusion and Future Work

We presented a general framework for investigation of database evolution based
on an object�oriented data model and an object algebra for queries and updates�

The contribution of this framework is threefold� First� we introduced a system
where schema and meta�schema objects are treated as ordinary objects� and the
meta�schema is fully available to the user� Beyond� we de�ned the semantics
of the generic update operators such that they can be applied on any object�
independent of whether it belongs to a schema or the data level� Finally� we
showed that this approach is powerful enough to realize schema evolution� such

that a taxonomy of desirable schema change primitives can be implemented as
direct updates to schema objects� They will respect integrity constraints on the
schema and they will also leave the database in a type�valid state�

The object model COCOON and its algebra COOL are currently being im�
plemented as a prototype system� respecting the separation of database object
into the three di�erent levels
���� We have de�ned all primitives for schema
updates� and have been setting up a collection of higher level evolution oper�
ations� based on these primitives� They will facilitate complete schema design�
tailoring� and restructuring� Finally� as a long time goal� we are working towards
a tool that supports users in extending and reusing databases� The framework
is open in the sense that schema evolution is only one sample application� As a
second one� we started to study the feasibility of database integration
���� We
showed� how the distinction of the three object levels can be used for making
multidatabases interoperable�

Furthermore� we are extending our meta�schema for physical database design
and �behavioral consistency�� Information must be included about the imple�
mentation �computed�stored� of functions� materialization of class�view extents�
and clustering of objects� To detect run�time type errors� function bindings and
dependencies between function and query expressions are to be stored�

Acknowledgments� The authors are indebted to Hans�J org Schek� Christian
Laasch� and Klaus Ga!ner for their helpful discussion on the paper� A prelimi�
nary version of the framework was presented in
����

References

�� J� Andany� M� Leonard� and C� Palisser� Management of schema evolution in data�
bases� In Proc� ��th Int�l Conf� on Very Large Data Bases 	VLDB
� Barcelona�
Spain� September �����

� J� Banerjee� H� Chou� J�F� Garza� W� Kim� D� Woelk� and N� Ballou� Data model
issues for object�oriented applications� ACM Trans� on O
ce Information Sys�
tems� ����� January �����

�� J� Banerjee� W� Kim� H�J� Kim� and H�F� Korth� Semantics and implementation
of schema evolution in object�oriented databases� In ACM SIGMOD Record �����
San Francisco� February �����

�� C� Beeri� Formal models for object�oriented databases� In DOOD�� ����
�� C� Beeri� New data models and languages � the challenge� In Proc� ACM Symp�

on Principles of Database Systems� San Diego� California� June ���
�
�� E� Casais� Managing Evolution in Object�Oriented Environments� An Algorithmic

Approach� Phd thesis� Centre univ� d�informatique� Universit�e Gen�eve� �����
�� Proc� �st Int�l Conf� on Deductive and Object�Oriented Databases 	DOOD
� Kyoto�

Japan� December �����
�� Proc� �nd Int�l Conf� on Deductive and Object�Oriented Databases 	DOOD
� Mu�

nich� Germany� December �����
�� Proc� �th Int�l Conf� Entity�Relationship Approach� Rome� Italy� November �����
��� J� G�oers and A� Heuer� De�nition and application of metaclasses in an object�

oriented database model� Inst� f�ur Informatik� TU Clausthal� Germany� June �����

��� G� Harrus� F� Velez� and R� Zicari� Implementing schema updates in an object�
oriented database system
 A cost analysis� Technical report� GIP Altair� Le Ches�
nay Cedex� France� �����

�
� G� Kappel and M� Schre	� A behavior integrated entity�relationship appraoch for
the design of object�oriented databases� In ER�� ����

��� W� Klas� A Metaclass System for Open Object�Oriented Data Models� PhD thesis�
Technische Universit�at Wien� January �����

��� C� Laasch and M� H� Scholl� Generic update operations keeping object�oriented
databases consistent� In Proc� �nd GI�Workshop on Information Systems and
Arti�cial Intelligence 	IS�KI
� FAW Ulm� Germany� February ���
�

��� B�S� Lerner and A�N� Habermann� Beyond schema evolution to database reorga�
nization� In Proc� Int�l Conf� OOPSLA�ECOOP� Ottawa� Canada� October �����

��� T�W� Ling� External schemas of entity�relationship based data base management
systems� In ER�� ����

��� S�B� Navathe and M�K� Pillalamarri� OOER
 toward making the E�R appraoch
object�oriented� In ER�� ����

��� S�L� Osborn� The role of polymorphism in schema evolution in an object�oriented
database� IEEE Trans� on Know� and Data Engineering� ����� September �����

��� C� Parent� H� Rolin� K� Y�etongnon� and S� Spaccapietra� An ER calculus for the
entity�relationship complex model� In Proc� �th Int�l Conf� Entity�Relationship
Approach� Toronto� Canada� October �����

�� C� Parent and S� Spaccapietra� About entities� complex objects and object�
oriented data models� In Information System Concepts � An In�depth Analysis�
Proc� of IFIP WG ��� Working Conference� Namur� October �����

�� D�J� Penney and J� Stein� Class modi�cation in the GemStone object�oriented
DBMS� In Proc� Int�l Conf� on Object�Oriented Programming Systems and Lan�
guages 	OOPSLA
� October �����

� F� Rabitti� E� Bertino� W� Kim� and D� Woelk� A model for authorization for
next�generation database systems� ACM TODS� ������ March �����

�� M�H� Scholl� C� Laasch� and M� Tresch� Updatable views in object�oriented data�
bases� In DOOD�� ����

�� M�H� Scholl and H��J� Schek� A relational object model� In Proc� �rd Int�l Conf�
on Database Theory 	ICDT���
� Paris� �����

�� M�H� Scholl� H��J� Schek� and M� Tresch� Object algebra and views for multi�
objectbases� In Proc� Int�l Workshop on Distributed Object Management� Edmon�
ton� Canada� August ���
�

�� A�H� Skarra and S�B� Zdonik� Type evolution in an object�oriented database� In
Research Directions in Object�Oriented Programming� �����

�� L� Tan and T� Katayame� Meta operations for type management in object�oriented
databases� In DOOD�� ����

�� M� Tresch� A framework for schema evolution by meta object manipulation� In
Workshop on Foundations of Models and Languages for Data and Objects� Aigen�
Austria� September �����

�� M� Tresch and M�H� Scholl� Implementing an object model on top of commer�
cial database systems� In Workshop on Foundations of Database Systems� Volkse�
Germany� May �����

��� E� Waller� Schema updates and consistency� In DOOD�� ����

��� R� Zicari� A framework for schema updates in an object�oriented database system�
In Proc� �th Int�l Conf� on Data Engineering 	ICDE
� Kobe� Japan� April �����

A The Meta Schema

In the sequel� we de�ne the COCOON meta�schema� Usually the purpose of a
meta�schema is twofold
 �i� to describe the object model using its own notation�
and �ii� to represent data dictionary information� Nevertheless� since the scope
of this paper is schema evolution� our meta�schema is only given and explained
as far as it is necessary to de�ne the semantics of schema updates�

As proposed in De�nition ���� the meta�schema is composed of meta�types
and meta�classes� The �rst meta�type represents data and object types� That is�
each COCOON type is represented by an object� being instance of the following
meta�type

type type isa object �
tname � unique string 	 �� type name
functs � set of function � �� functions� applicable to

the type�s instances

Most types are de�ned by users in order to specify the interface of an abstract
object type �i�e� to de�ne the signatures of the applicable functions�� As usual
in object�oriented systems� such types can be ordered in type�hierarchies� The
meta�type object�type is a specialized subtype

type object�type isa type �
localf � set of function not null 	 �� local functions� inde�

pendent of inheritance
supert � set of object�type �� explicitly de�ned

not null not cyclic 	 supertypes of the type

Whereas localf�t� are the functions de�ned to be applicable to t�s instances in�
dependent of inheritance� for an abstract object type� the set of all applicable
functions functs�t� is derived by the union of the local functions localf�t� and the
functions inherited from the supertypes

functs�t� �� localf�t�
�

ti�supert	t

functs�ti�

Notice� that type checking is based on all functions functs�t�� not only on the local
ones� We distinguish for each type t between explicit and implicit supertypes�
The former ones are those explicitly assigned with the meta�function supert�t��
whereas the implicit ones are derived from the set of applicable functions as
follows

t
 t� 	
 functs�t� � functs�t��

That is� a type t� is supertype of t� if the applicable functions of t are a superset
the functions of t��

In addition to abstract object types� two more subtypes represent constructed
data types
 the set and function types� Since these types are normally created
and managed internally by the system� most of them are unnamed�

type set�type isa type �
etype � type not null � �� the type of the elements in the set

type fcn�type isa type �
dom � type not null 	 �� the domain type of the function
ran � type not null � �� the range type of the function

The second meta�type represents COCOON functions� They are named� have
a signature� and their values can be restricted by a set of constraints�

type function isa object �
fname � unique string not null 	 �� function name
sign � fcn�type not null 	 �� function signature
unique � boolean not null 	 �� uniqueness constraint
notnull � boolean not null 	 �� not undef constraint
notcyclic � boolean not null 	 �� cycle free constraint
inverse � function inverse inverse � �� inverse function

Information about the implementation of the function �e�g� whether the function
result is stored or computed�� is intentionally excluded from the meta�schema�
since this is irrelevant for schema evolution�

The third meta�type represents COCOON classes�

type class isa object �
cname � unique string not null 	 �� class name
extent � set of object � �� actual class members

Since we treat views as classes with implicitly de�ned type and extension� two
subtypes of meta�type class are distinguished
 those de�ned as a class� and those
de�ned as a view�

type class�def isa class �
auto � boolean not null 	 �� �see below�
mtype � type 	 �� explicit member type
pred � function 	 �� the class predicate
superc � set of class �� explicit super classes

not null not cyclic 	
pmemb � set of object � �� potential class members

type view�def isa class �
query not null � expression 	 �� query de�ning the view

The value of auto�c� is true� i� the class c is de�ned with the selector all� In
these cases the system can decide whether an object belongs to the extent of
a class� If classes are de�ned by the selector some there are just necessary
conditions de�ned� The information about class membership is speci�ed by the
user in terms of adding and removing objects to�from a class explicitly� This
information is stored by the set pmemb that represents the potential members

of a class� These are objects that are added to a class� but need not to ful�ll
the class predicate �for more detail see
����� extent�c� derives the actual set of
member objects �extent� of a class� i�e� a subset of pmemb which elements ful�ll
the class predicate� The actual derived member type of the class objects is either
equal to mtype�c�� if a member type is explicitly de�ned� or otherwise� it must
be derived from the member type of c�s superclasses and class predicate�

Together with each meta�type� there is a meta�class holding the actual in�
stances of the meta�type�

class Types � type some Objects �
class Set�Types � set�type some Types �
class Fcn�Types � fcn�type some Types �
class Object�Types � object�type some Types �

class Functions � function some Objects �

class Classes � class some Objects �
class Class�Defs � class�def some Classes �
class View�Defs � view�def some Classes �

In addition� the following view collects all classes with implicitly de�ned
extent� That is� the view�de�ned classes and the class�de�ned ones with an all �
selector

view Views as View�Defs union select
auto�c�� �c� Class�Defs�	

Table of Contents

� Introduction �

� An Object Model and Algebra �
��� Basic Concepts �
��� Generic Query and Update Operations � � � � � � � � � � � � � � �

 Three Levels of Objects �
��� Meta�Schema� Schema� and Data Objects � � � � � � � � � � � � � �
��� Database Schemas �
��� Queries and Updates to Objects of Di�erent Levels � � � � � � � � �

Data Level Operations �
Schema Level Operations �
Meta�Schema Level Operations ��
Mixed Level Operations ��

� Prerequisites for Updating Schema Objects � � � � � � � � � � � ��
��� A Taxonomy of Schema Updates �Completeness� � � � � � � � � � ��
��� Insuring Schema Correctness ��
��� Propagation to Data Level Objects �Type�Validness� � � � � � � � ��
��� Implementation Considerations ��

� Database Evolution as a Sample Application � � � � � � � � � � ��
��� The Taxonomy with Direct Updates to Schema Objects � � � � � ��

Creating new Schema Objects� ��
Deleting schema objects� ��
Changing the name of schema objects� � � � � � � � � � � � � � � � ��
Changing the type interface� ��
Changing the function signature� � � � � � � � � � � � � � � � � � � ��
Changing the function constraints� � � � � � � � � � � � � � � � � � ��
Changing class properties� ��

��� Embedding Schema Updates into Methods � � � � � � � � � � � � ��

� Conclusion and Future Work ��

A The Meta Schema ��

This article was processed using the LaTEX macro package with LLNCS style

	Title
	Abstract
	Table of Contents
	1 Introduction
	2 An Object Model and Algebra
	2.1 Basic Concepts
	2.2 Generic Query and Update Operations

	3 Three Levels of Objects
	3.1 Meta Schema, Schema, and Data Objects
	3.2 Database Schemas
	3.3 Queries and Updates to Objects of Different Levels

	4 Prerequisites for Updating Schema Objects
	4.1 A Taxonomy of Schema Updates (Completeness)
	4.2 Insuring Schema Correctness
	4.3 Propagation to Data Level Objects (Type-Validness)
	4.4 Implementation Considerations

	5 Database Evolution as a Sample Application
	5.1 The Taxonomy with Direct Updates to Schema Objects
	5.2 Embedding Schema Updates into Methods

	6 Conclusion and Future Work
	References
	The Meta Schema

