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Abstract. In this paper, we address the problem of supporting more
flexibility on the schema of object-oriented databases. We describe a
general framework based on an object-oriented data model, where three
levels of objects are distinguished: data objects, schema objects, and meta-
schema objects. We discuss the prerequisites for applying the query and
update operations of an object algebra uniformly on all three levels. As
a sample application of the framework, we focus on database evolution,
that is, realizing incremental changes to the database schema and their
propagation to data instances. We show, how each schema update of a
given taxonomy is realized by direct updating of schema objects, and
how this approach can be used to build a complete tool for database
evolution.

1 Introduction

There is an increasing need for database evolution facilities, offering more flexi-
bility on the logical structure of object-oriented databases (OODBs). On the one
hand, schema evolution is the basic prerequisite for better support of database
extenstbility and reusability, which is a big promise of object-oriented systems;
and on the other hand, database integration has a renaissance, since the inte-
gration of federated databases and interoperability of multidatabase systems has
become urgent. In addition, new aspects arise from the fact that not only the log-
ical schemas of the databases can evolve, but also existing data must be migrated
and integrated. Either of these demand more dynamics of database schemas.
Evolution in databases addresses the problem that the logical structure of a
database is likely to undergo changes during lifetime, even if a database is already
populated with objects. There are many reasons for that [6]: schema design can
be a stepwise development of a schema from scratch; schema tailoring consists
in slight adaptations of existing schemas (e.g. extension with new components);
schema restructuring/reorganization is used after significant, non-trivial changes;
and schema versioning allows to record and manage a history of schemas.
Most current OODBS products and prototypes do not allow free and dynamic
changes of the schema. Some of them provide a limited set of special purpose
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schema update methods, and restrict their application to unpopulated (empty)
databases. If modifications of populated databases are allowed, the problem is
how to propagate the changes to the instances. One either includes a data mi-
gration utility to adapt existing data objects to the changed schema, or an other
mechanism (screening, versioning) has to ensure consistency between data and
structure.

An early investigation of type changes in populated databases exists for EN-
CORE [26]. This work addresses the effects of type changes to objects and to
programs that use objects of the type. The impact of type polymorphism on
schema evolution is investigated in [18]. The first systematic analysis of desir-
able schema evolution possibilities was done for the ORION data model [2, 3],
where a set of necessary schema updates was listed and organized in a taxonomy.
Similar enumeration can also be found for the O3 [31] and the GemStone DBMSs
[21]. The schema update primitives of these taxonomies are realized as special
purpose methods for schema management. Another approach is to provide a
complete end-user tool to assist in transforming database schemas [15].

Schema evolution is in fact an important issue for ER databases, because
even relational, hierarchical, network, or object-oriented databases use an ER-
approach for conceptual DB design [12], or for representation of external schemas
[16].

Our approach was to built a uniform model and general framework for in-
vestigation of the above mentioned database evolution and integration issues.
In the following, we introduce the main components of the framework, which in
turn reflects the structure of this paper:

Object model and algebra: As the basis of the framework, the object-oriented
data model COCOON with its algebraic query and update language is used
(Section 2). However, notice that the basic ideas of the framework are not
strongly bound to this specific object model; it can be replaced by any
object-oriented data model, especially an object-oriented entity-relationship
approach [17, 20] with an algebra or a calculus [19].

Three object levels: In this model, a separation of database objects into three
disjoint subsets is introduced: data objects, schema objects, and meta-schema
objects (Section 3). Hence, also (meta-)schema objects are modeled as ob-
jects like others, we allow that the generic query and update operators can
be applied on objects of each of these three sorts and there is no difference in
the syntax and semantics of the algebraic operators, whether they query or
update data, schema, or meta-schema objects. Even though representation
of the meta-schema within the same model is not a new idea, such meta-
data usually serve only for documentation purposes. That is, only retrieval
is allowed. In contrast, here we investigate also the feasibility of updates to
meta-objects.

Elementary Operations: Based on this separation, we focus into special ap-
plications, implementing elementary operations for database evolution or
database integration (Section 5.1). We thereby concentrate in this paper on
the application of the framework to schema evolution, and show how to re-



alize schema update operations by applying the algebraic query and update
algebra to meta-objects. Consequently, the use of generic update operators
as ”"schema evolution and integration language” | instead of special purpose
schema evolution methods, has the advantage that: (i) the functionality of
these operators is formally defined with a clear semantics [14] and has no
unpredictable side-effects; (ii) they handle integrity constraints, that is, no
update leaves the database in an inconsistent state w.r.t. these constraints.
The remaining problem is to propagate the modifications from the schema
level down to the data object level. We will show that this can be achieved
straight-forward due to the clear semantics of schema updates.

Advanced Operations: Next, the elementary operations are encapsulated into
advanced, user-oriented tools for database evolution. The purpose of this is
to capture more semantics and insure higher level integrity constraints (Sec-
tion 5.2). Database integration using the framework, as an other sample
application of the framework is presented in [25].

2 An Object Model and Algebra

The framework we present throughout this paper is based on the COCOON
object model. We very briefly review the key concepts of the object model and
the algebra, referring to the literature for more details [24, 23].

2.1 Basic Concepts

The COCOON object model is an object-function model in the sense of [4, 5].
Its basic constituents are objects, functions, types, and classes:

Besides data, which can be atomic (numbers, strings) or constructed (tuples,
sets), there are objects that are instances of abstract object types (AOTs).
Objects can be manipulated by a set of applicable operations.

Functions are the generalized abstraction of attributes (stored or com-
puted), relationships between objects, and update methods (with side-effects).
They can be single- or set-valued. Functions are described by their name and
signature. The implementation is given separately, in the object implementation
language (OIL), which is not described here any further.

Types describe the common interface to all of its instances. So, a type is
defined by a name and a set of applicable functions. This set is the union of the
functions explicitly defined to belong to the type and those inherited from the
types of the acyclic isa relationship. The subtype relationship that is used for
type-checking corresponds to the subset relationship of the function sets. Thus,
instances of one type are also instances of its supertypes (multiple instantiation).
The root of this lattice is the predefined type object.

Classes are strictly distinguished from types [4]. Classes are typed collections
of objects. So every class ¢ has an associated member type mitype(c) and an actual
extension extent(c), the set of objects in the class. We define the extent of a class
to include the members of all its subclasses. Thus, objects can be member of



multiple classes at the same time (multiple class membership). Besides the subset
property the subclass relationship states that the member type of a subclass must
be the same type or a subtype of its superclasses’” member types. The top class
of the subclass hierarchy is the class Objects.

COCOON features that are usually not found in other object-oriented models
are the possibilities to define class predicates and views. Class predicates are
either necessary or necessary and sufficient conditions that have to be fulfilled
by the class members. Views can be defined by queries of arbitrary complexity
and can be regarded as a special kind of classes, because their extent and their
member type is sufficiently defined by the query. Thus, classes with necessary
and sufficient predicates are regarded as a special kind of views, since also their
extent is populated automatically.!

EXAMPLE 1: As a running example, we use the following database Business,
defined by COOL type and class declaration statements.?
define database Business ;
define type person isa object = name: unique string not null |
age: integer ;
define type employee isa person = salary: integer
empl: company inverse staff ;
define type company isa object = ident: unique string, city: siring ,
staff: setof employee inverse empl
bran: setof company not cyclic ;
define class Persons : person some Objects ;
define class Youngs : person all Persons where age<30 ;
define class Employees : employee some Persons ;
define class Companies : company some Objects ;
define view PublEmpls as project [name,empl] (Employees) ;
enddb .

The two classes Persons and Youngs have both the same type, person. Moreover,
the class Youngsis defined as a subclass of Persons, holding exactly those persons
that satisfy the class predicate age < 30. The selector all in the where clause
(in contrast to some) indicates that the class predicate is necessary and suffi-
cient, such that the member objects of class Youngs are automatically computed
from those of Persons. The projection view PublEmpls hides the age and salary
properties, such that users of this view only see name and empl functions.

In addition to class predicates, there is a possibility to define constraints for
functions: (i) not null functions are not allowed to have undefined values, (ii)
unique functions must have distinct values, (iii) not cyclic functions ensure
that no object has itself as result of that function (even if applied repeatedly),
and (iv) inverse means that two functions are inverse to each other. <&

! Updating views is discussed in [23].
2 We use the convention that type names are in lower-case letters and in singular,
whereas class or view names are in plural and start with an upper-case letter.



2.2 Generic Query and Update Operations

The query and object manipulation language COOL was designed as an ex-
tension of (nested) relational algebra. It provides a collection of generic query
operators with object-preserving semantics. That is, they return (some of) the
already existing input objects, instead of generating new (copies of) objects.

As query operations we provide selection of objects ( select [P](C') ), pro-
jection ( project [f1,..., fa](C) ), extension ( extend [f; ;=< expr; >,...](C)
), and the set operations (union, intersection, difference). Variables can be
used as temporary names (”handles”) for objects, since objects are typically un-
named, due to the set-oriented style of the language. So this is the way how to
refer to objects and results of previous algebra expressions.

Besides query operators, COOL also provides a collection of generic update
operators (cf. [14] for a formal definition). The main advantage of general purpose
update operations is that their semantics is known by the system. That is, they
maintain model-inherent integrity constraints like uniqueness or acyclicity of
functions, and class predicates. We will see later how we exploit by this property,
when schema updates are defined by such generic update operations. In the
remainder of this paper we will make use of the following operations:

Insert takes as argument a class €' and a list of assignments of values to
functions. If the function assignments in the assignment list do not conflict with
the respective constraints of all functions, a new object as instance of C'’s member
type is created, and initialized with the function values given in the assignment
list. In case the new object satisfies C’s class predicate, it is also added to the
extent of class C. As a result, a reference to the newly created object is returned,
and can therefore be assigned to a variable, e.g.:

john = insert [name:="John Smith’, age:=31] (Persons);

Delete destroys objects consistently. It takes an object as its only argument.
This object is removed from all classes, sets, and variables, in case that no
function constraint is violated. For example:

delete (paul);

Add and remove have a ”weaker” effect: they have no impact on the existence
of objects. Rather, an existing object can be added to or removed from classes
or sets. They take an object and a set of objects as parameter:

add [john] (staff(ibm));

remove [dec| (Companies);

Both operators may change the type of objects dynamically. Consider john,
which is an instance of type person. Adding it to the class of Employees, makes
john an instance of type employee, in addition to including him in IBM’s staff.

Set assigns new function values for given arguments. It takes two arguments:
a list of assignments and an object. As in the case of the insert operation, the
newly assigned function values must respect the function constraints.



set [salary:= 1.1*salary] (john);

It is essential to notice that generic update operations are refused and therefore
not processed, if they would conflict with any function constraints (unique, not
null, not cyclic). Consider for example the insert -statement above, where a
new person object with name ”John Smith” is created. Since the name function
is defined to be unique, the update would be rejected, if there already were a
person with this name.

Violation of class predicates is handled different [23]. The class predicate is
checked after execution of the update operation, and if necessary, the changed
objects are reclassified. Note that changing values of objects, for example with
the set-operator, may need such a reclassification of objects. Consider for exam-
ple the object john. Changing its age from 31 to 29 would immediately classify it
down in the hierarchy, by adding it to the class Youngs. The treatment of inverse
functions is similar to reclassification: If a function value is changed, this update
is propagated automatically to the inverse function, such that the constraint is
maintained.

3 Three Levels of Objects

For every COCOON database, the set of actually stored persistent objects is
denoted by @ = {...,0,...}. Each of these objects has a specific state o, such
that v;; := o(fi)(0;) is the actual value returned by applying function f; on
object 0; € 0.% The states of all objects in O together form the actual state of
the database.

Definition 3.1 (Database) A database is a tuple DB = < O, 0 >, where

1. O 1s the finite set of persistent objects in the database, and
2. o 1s the state of the database. O

Consider for example the variable john of type person and the function name that
is applicable on instances of that type (name: person — string). The actual value
of function name might be the set: {{john, John Smith’}), (mary, 'Mary Hughs’)},
such that for instance, o(name)(john) = *John Smith’.

3.1 Meta-Schema, Schema, and Data Objects

A closer look at the set of objects O reveals, that they are build up of three
pairwise disjoint sorts, each of which is placed on a different level: the meta-
schema level, the schema level, and the data level:

® In our model, all functions are partial, such that when applied on an object, their
values can be undefined. For this case, the state o(fi)(0;) is defined to be the null
value L. Later, we will see, that this lazy evaluation strategy is very useful for schema
update propagation.



e meta-schema level objects: the objects describing the meta-schema of the
database. There is a predefined fixed set of meta-objects, building the data-
base kernel, being always part of a database. Meta level objects are the
meta-types Tps, the meta-functions Fjs, and the meta-classes Cyy.

Ometa = { type, set-type, fen-type, object-type,

function, class, class-def, view-def,

T
Types, Set-Types, Fen-Types, Object-Types,
Functions, Classes, Class-Defs, View-Defs,

Car

tname, functs, localf , supert, etype, dom, ran,
fname, sign, unique, notnull, notcyclic, inverse,

cname, extent, auto, miype, pred, superc, query }

Fm

e schema level objects: the objects describing the schema of the application
database. They are application dependent and are created as instances of
meta-types. Schema objects are distinguished in application types 74, ap-
plication functions F4, and application classes C4.

Oschema = {tla"'atkafla"'afmacla"'acl}
—_——— —— — —
Ta Fa Ca

e data level objects: the primary level objects, representing the user data stored
in the database. They are created as instances of application-schema types.

Odata = {01, .. 'aOn}

Objects are created top-down: Whereas an ”empty” database holds only meta-
level objects, later, the schema level objects are created during the database
design phase. Finally, the use of the database generates data level objects. Fig-
ure 1 illustrates instance-of relationship between objects and types of the three
different levels.

3.2 Database Schemas

A database schema is a representation of the structure (syntax), semantics, and
constraints on the use of a database in the data model. In our model, this is
given by classes, types, and functions.

Thus, the schema of a COCOON database DB = < O, ¢ > is represented as
atriple < T, F,C >, with T a set of objects representing types, F' a set of objects
representing functions, and C a set of objects representing classes. The set of all
types, functions, and classes in the database is denoted as 7,F,C. These sets
are identical with the active domain of the meta-types (type, function, class)
and the extent of the meta-classes ( Types, Functions, Classes).
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Fig.1. Instance-of relationship (drawn as dashed arrows) between meta-schema,
schema, and data level objects. Data level objects are instances of schema level types.
Schema level types are themselves represented by type objects, that are instances of
meta-level types. The meta-level types are represented by meta-level objects. Notice,
that the object object-type is instance of the type that it represents (which does not
mean that it is "instance of itself”).

The meta-schema is a special schema, the schema of the meta-database. It is
represented by the meta-level objects of Section 3.1 and defines the data model
itself. Figure 2 gives a graphical overview of the meta-schema, and a definition
in COOL notation can be found in Appendix A.

Definition 3.2 (Meta Database Schema) The meta-schema of a database
DB = < 0,0 > 1s given as the triple Spretq = < T, Faa,Caq >. O

The application-schema holds application level objects. It defines the con-
ceptual schema of the database application.

Definition 3.3 (Application Database Schema) The application schema
of a database DB = < O, ¢ > is given as the triple Sapp1 = < T4, F4,Cq >. O

3.3 Queries and Updates to Objects of Different Levels

So far, we introduced a distinction of objects into three sorts, according to the
role they play within a database application. Nevertheless, all of them are or-
dinary objects, such that queries and updates of the COOL language apply. Of
course, the effect of an operation depends on the level of its input objects.

Data Level Operations retrieve or change data level objects. These are the
ordinary operations as we know them from Section 2.2.
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Fig.2. The meta-database schema is a hierarchy of meta-types Tyy (rectangles) with
their meta-functions Far (lines with one arrowhead mean single-valued functions, with
two arrowheads set-valued functions), and a hierarchy of meta-classes Car (ellipses).
Subtype relationship is shown with gray arrows, whereas subclass hierarchy is indicated
using black arrows.

Q1 : name(john) Uy : set [name:="hans’|(john)
Q)2 : select [name="john’|( Persons) U, : delete (john)

For example, getting the name of object john (@), selecting all persons with
name john’ (Q2), changing John’s name to ’hans’ (Uy), or deleting the object
john (Us) .

Schema Level Operations operate on objects representing the schema. Re-
trievals work straightforward without additional effort. As an example, query
s gets the name of the application type person, and )4 returns all objects
representing types with name “person’.

Qs : tname(person) Us : set [tname:="people’|(person)
Q4 : select [tname="person’]( Types) U, : delete (person)

In contrast to query operators, direct manipulation of schema objects (Us, Uy)
needs further consideration, since these updates finally realize schema evolu-



tion. The usual way to make basic updates to the schema objects is by us-
ing a data definition language (DDL), as it was introduced in Section 2.1 (e.g.,
define type employee isa ...). Advanced changes to schema objects, like e.g.
modifying types, are normally implemented in a schema manipulation language
(SML).

Such a special language is used, because these operations can yield ”side-
effects”, that must be regarded carefully. Consider for example update Us, chang-
ing the name of type person to ’people’, or Uy even deleting the type person. We
will cover the following questions: There are some functions applicable to in-
stances of type person (name, age, ...), should they be deleted together with
the type? When the type person is removed, what will be the member type of
the classes Persons and Youngs? What will be the new supertype of employee?
What about propagation of schema changes to existing data objects like john.
What happens with the instances of a deleted type?

Meta-Schema Level Operations operate on objects representing the meta-
schema. Again, queries can be used quite straightforward. So, (J5 returns the
name of the meta-type type, and Qg selects a set of all types with name ’“type’.

Qs : tname(type) Us : set [tname:="interface|(type)
Qs : select [tname="type|( Types) Us : delete (type)

Updates Us, Us are changes to the meta-schema. As an example, Us renames
the type type to “interface’, and Ugs even destroys the type type. These updates
are generally not allowed, since they change the basic ingredients of the data
model. Anyway, some elementary modification to the meta-schema could be very
useful, i.e. for model tailoring by adding specialized types and classes, derived
functions, or meta-views [13], and for preparing for the coupling of multiple

DBMS [25].

Mixed Level Operations involve different levels within one operation. To do
this, we need an additional operator, that provides the possibility to change the
level: apply [ f ] ( <set-expr> ). It applies a function f to a set of objects in
<set-expr>. F.g. query @7 first finds all classes ¢ from the meta-class Class-Defs,
where the function name can be applied; then the expression select [name =
john'|(d) is run for each of these classes, now called d.

Q7 : apply [select [name = ’john’(d)]
(d : select [name € functs(mtype(c))] (c¢: Class-Defs ));

Notice, that the selection on Class-Defs returns a set of schema level objects,
whereas the later selection gives data level objects. Such mixed level facilities give
additional expressive power to the language, but static type checking becomes
impossible in some cases [10].



4 Prerequisites for Updating Schema Objects

Direct changes to schema objects (cf. Us, Uy, Us, Us in Section 3.3) have addi-
tional ”side-effects”. Thus, before we show how the schema updates are imple-
mented, we investigate the feasibility of these operations, namely completeness
and correctness, as well as the propagation of meta-schema and schema level
updates to other levels.

4.1 A Taxonomy of Schema Updates (Completeness)

Some schema changes are quite simple, whereas others need complete reorga-
nization of the database. The latter can often be decomposed in a sequence of
more elementary changes.

Below, a taxonomy of primitive schema updates 1s presented, which is min-
imal and complete in the sense that all possible schema transformations can
be built up by (a combination of) these updates. Since a schema is a triple
< T, F C >, we categorize schema changes into updates to type, function, and
class objects respectively:

(1) UPDATING TYPES (3) UPDATING CLASSES
(1.1) create/delete a type object (3.1) create/delete a class object
(1.1.1) create a new type object (3.1.1) create a new class object
(1.1.2) delete an existing type object (3.1.2) delete an existing class object
(1.2) changes a type object (3.2) change a class object
(1.2.1) change the name (3.2.1) change the name
(1.2.2) change the supertypes (3.2.2) change the auto tag
(1.2.3) change the local functions (3.2.3) change the member type
(3.2.4) change the class predicate
) UPDATING FUNCTIONS (3.2.5) change the superclasses
1) create/delete a function object (3.2.6) change the query expression

1) create a new function object

2) delete an existing function object
2) change a function object

2.2.1) change the name

2.2.2) change the function signature
(2.2.3) change the function constraints

(2
(2.
(2.1.
(2.1.
(2.
(
(

A similar taxonomy was first introduced for the ORION data model [3], where
all supported schema changes are classified into changes to an edge, changes to
a node, and changes to the contents of a node.

4.2 Insuring Schema Correctness

Since not every arbitrary triple < 7', F, C' > of types, functions, and classes is a
correct schema, we must make sure that schema updates transform a database
structure into another correct state. Thus, the ORION, Os, and GemStone data



models provide a set of schema invariants. These are conditions that have to be
satisfied by any valid schema. Similar, in our model the schema constraints R1,
..., R14 below determine the basic characteristics of a COCOON schema, such
that a schema is correct, if it satisfies these conditions.

To ensure that these conditions are respected at any time, they are translated
into integrity constraints of the meta-schema (unique, not null, not cyclic). In
the sequel, we explain the constraints in the COCOON meta-schema: *

Unique Naming Constraints (R1, R2, R3) guarantee, that there are no two
types, functions, or classes with the same name. Notice that these are the in-
ternal names, after solving any naming conflicts from multiple inheritance, or
overloading respectively.

(R1) for all types t,t' € T\t £t : tname(t) # tname(t’)
(R2) for all functions f, f' € F, f # ' : fname(f) # fname(f’)
(R3) for all classes ¢,¢’ € Cie# ¢ : cname(c) # cname(c’)

The unique naming constraints are expressed by declaring the meta-functions
tname, fname, cname to be unique in the meta-type definition.

Closure Constraints (R4, ..., R12) ensure schema closure in the sense that the
following objects must be part of the schema:

(R4) for all object-types t € T:  localf(1) C F, supert({) C T

(Rb) for all set-types t € T': etype(t) C T

(R6) for all function-types ¢t € T': dom(t) C T, ran(t) C T

(R7) for all functions f € I : sign(fyeT

(R8) inverse(f) € F' V inverse(f) = L
(R9) inverse(f) = f' <= inverse(f') = f
(R10) for all class-defs ¢ € C': miype(c) € T, superc(c) CC

(R11) pred(c) € F

(R12) for all view-defs v € C': query(v) € expression

To implement closure constraints, the meta-schema must follow two restrictions.
First, in the meta-schema, all functions, that are not allowed to be undefined,
have a not null constraint. Second, the active domain of the meta-types are by
definition identical to the extent of the corresponding meta-class (cf. Section

3.2).

Acyclicity Constraints (R13, R14) ensure that supertype and superclass re-
lationship do not end up in a cycle. Thus, no type can be supertype of itself,
and no class superclass of itself.

(R13) for all object-types t € T : t & supert™(t)

(R14) for all class-defs c € C': ¢ & superc™(e)
The acyclicity of the supertype/superclass relationship is implemented by adding
a not cyclic constraint to the meta-function supert/superc, and is therefore
checked automatically.

* The semantics of the meta-functions tname, localf, supert, ...1is explained in the meta-
schema in Appendix A. In addition, supert*, superc® are defined as the transitive
closure of supert, and superc respectively.



Implementing schema invariants for unique naming, closure, and acyclicity as
constraints in the meta-schema is a very natural approach: since the application
schema includes constraints for data level objects, constraints for schema level
objects must be defined in the meta-schema. We use the generic update oper-
ations of COOL to change the schema level. Since they are defined to respect
constraints, schema invariants are maintained automatically.

Thus, whenever a COOL update is performed to a schema level object in
order to implement schema modifications, which would result in an incorrect
database schema, this update will be rejected by the system.

4.3 Propagation to Data Level Objects (Type-Validness)

Figure 1 showed the instance_ofrelationship between types and objects. We men-
tioned that types define the interface (a set of functions) to their instances. The
following definition gives the notion of type-valid databases [27], which means
that every instance must match the definition of its type at any time:

Definition 4.1 (Type-Valid) A database DB = < 0,0 > is type-valid, iff
V typest € T : o instance_of t = 3l o(f)(0) € range(f), Vf € functs(t). O

In other words, a database must fulfill two requirements to be type-valid:
(i) whenever the type-checker allows a function f to be applied on an object o
(that is, iff f is in the interface of a type ¢ and o is an instance of ¢), then the
state o(f)(0) must be well defined; and (ii) the value of the state must match
the range type of f.

Since types are represented by schema objects, we have therefore strong con-
sistency requirements between objects of the schema level and of the data level,
such that updates to objects representing types must propagate to updates on
objects of the data level below.® However, we allow direct updating of schema
level objects, but want to avoid that afterwards a migration utility must be
called to adapt data level objects.

4.4 Implementation Considerations

A type evolution strategy, where all objects are kept type-valid on the physical
level at any time, is usually called propagation by immediate (eager) conversion
(e.g., realized in the GemStone system [21]). In the context of schema evolution,
this 1s a very costly strategy: after any type change all instances may have to be
converted. Therefore, two main alternatives to eager instance conversion have
been proposed: (i) delayed (lazy) conversion is a strategy, where instances are
only converted on demand, i.e., at the moment when they are touched the first
time after the type change by a read or write operation. In combination with
sereening, one can even avold to convert instances after a read, because screening
is a kind of ”logical” instance conversion, where objects are interpreted in the

® Notice, that the same situation shows between the meta-schema level and the schema
level as well.



new definition (e.g., ORION [3]); and (ii) type versioning is a strategy where a
new version of a type is created whenever a type is modified. Instances created
after the change, belong to the new version [26, 1], and the same object may be
viewed through different versions of the schema.®

Our approach was to realize a more ”sophisticated” state function &, based on
a combination of the above strategies, that keeps databases type-valid without
any instance conversion. For this purpose, the database state of Section 3 was
enhanced, such that each value of a function is carrying in addition information
about its type (type(f)(0)). Whenever, the type checker allows the application
of function f to object o, 7 looks up in the database for the state o(f)(0).

a(f)(o) il type(f)(0) =< range(f), ‘
(F)(o) := cast(o(f)(o)) ¥f type(f)(o) < object and range(f) < o‘b]ect,
transf(o(f)(o)) , if type(f)(0) & object or range(f) £ object,

il , otherwise.

If there is no actually defined value for f(o) in the database — for example,
because f was added by a schema update after o has been created — @ returns
a null value (L). If there is a value and it matches the range type of f, which is
the ordinary case, o(f)(o) is retrieved.

Moreover, & transforms values that do not match the range type of f — for
example, because the signature of f was modified by a schema update in between
—, using the cast or transf operator. The cast operator maps objects from one
object type into an other object type, as it i1s known from other strictly typed
languages [14]. The transfoperator does a similar transformation for value types.
It is mainly a table of mapping rules between integers, strings, booleans, etc.

With this definition of 7, we can show:

Theorem All schema changes of the taxonomy, performed on a COCOON
database < (0,7 > using COOL algebra operators, leave the database type-
valid, w.r.t. to the modified state function @.

Implementing the database state like this, direct updates to schema objects
can be performed, and the database is kept type-valid without explicit propaga-
tion to instances. The proof is just a case analysis following the explanations in
Section 5.1.

5 Database Evolution as a Sample Application

So far, the framework is built such that we can allow a user to make direct
schema object updates. We make now use of the above prerequisites and turn
to a specific purpose of the framework: database evolution.

6 Tt is finally a matter of performance trade-offs, which of these alternatives is chosen
([11] gives a performance comparison of immediate vs. delayed conversion).



5.1 The Taxonomy with Direct Updates to Schema Objects

The first step towards realizing schema evolution operations is to find a corre-
sponding COOQOL algebra expression on schema objects for each of the update
primitives in the presented taxonomy. We do that in the following and mention
the constraints that are checked to satisfy schema correctness as well as how
propagation to existing instances (data level objects) is resolved.

Creating new Schema Objects. Schema objects are created with the generic
insert statement, by inserting a new object into one of the meta-classes Object-
Types, Functions, Class-Defs or View-Defs. Thereby, the initial values of the new
objects are to be specified. All given parameters must satisfy unique naming, not
null, and not cyclic constraints.

(1.1.1) t := insert [tname:= ny, localf:={ f1,..., fn }, supert:={ t1,..., 4 }]
(Object-Types);

Since the set of functions localf(t) that is associated with the newly created type
is already existing, this schema update is simply the assignment of a type name
the a set of functions, and does not propagate to data level objects.

(2.1.1) f:=insert [fname:= ny, sign:= dom_ran, unique:= uq,
notnull:= nn, noteyclic:= ne, inverse:= f;] (Functions);

After creation, the new function is not in a type interface, no object has a value
for the new function, and therefore no explicit propagation is needed.

(3.1.1) ¢ := insert [cname:= n,, auto:= as, miype:=tp,,
pred:= pe, superc:={ e1,... ¢, } ] (Class-Defs);
v := insert [cname:= n,, query:= qr] (View-Defs);

Classes can be created either by a class definition (insertion into the meta-class
Class-Defs) or as a view (insertion into the meta-class View-Defs). Since the
extents of views and all-classes are defined by necessary and sufficient conditions,
they are populated automatically if necessary.

Deleting schema objects. Applying the delete operator to a type, function,
or class object removes 1t from the database schema. Deletion of schema objects
may be refused, if it violates the closure constraint.

(1.1.2) delete (1);

Deletion of a type does not propagate to the instance level. This operation simply
removes the assignment of a named type object to a set of applicable functions
(cf. generating a type). The instances of that type remain in the database, and
all functions of the type interface are still applicable.

(2.1.2) delete (f);



After deletion of a function object, that state of this function becomes useless.
Nevertheless, there is no need for immediate removal of the values of f for data
objects, because the type checker would no longer permit the application of f
to an object.”

In case that the function f is part of a class predicate or query defining a
view, deleting f could result in a run-time error. We discuss this problem below.

(3.1.2) delete (¢);

Deletion of a class has no influence on the class members.

Changing the name of schema objects. Names of types, functions, or classes
can be changed, using the generic set operator to assign a new name string.

(1.2.1)  set [tname:= n4] (2); (3.2.1) set [cname:= n.] (¢);
(2.2.1) set [fname:= ny] (f);

These changes must follow the unique naming constraint. Changing object names
does not need to be propagated any further.

Changing the type interface. Using the generic add and remove operators,
a type object t; can be added or removed to/from the type interface in order to
change the set of supertypes. Similarly, a new function object f; can be added
or removed to/from the set of locally defined functions.

(1.2.2)  add [t;] (supert(t)); (1.2.3)  add [fi] (localf(2));
remove [{;] (supert(t)); remove [f;] (localf(t));

In case of adding supertypes or local functions, new functions become applicable
to all instances of ¢: e.g., if 0 is an existing instance of ¢, then o(f;)(0) becomes
type-valid. But, following our lazy propagation strategy (cf. Section 4.3), the
state of the data objects can remain unchanged, because o returned a null value
anyway.

After removing the function f; from the type interface, the application of f;
to an object o in context of this type would not pass the type checker. Thus, it
does not matter whether the actual value is kept in the database state.

Changing the function signature. The signature of a function object can
be changed directly, by assigning a new object ft (of type fen-type), using the
generic set operator.®

(2.2.2) set [sign:= fi] (f);

" Deleting the values of f from the database is an implementation issue. It could be
done later, e.g. in a clean-up phase, cf. Section 4.3.

8 For the considerations here, we assume, that for each desired combination of domain
and range, there already exists a function type object that represents it. For example,
obj_set_employee for signature with domain object and range set of employee.



Altering the range of a function may cause that existing instance values must
be transformed to other types. This is done by the cast-option in the state
function. If the domain 1s restricted, the type-checker avoids the use of these
function for an object that is not instance of the new domain; if the range gets
more general, substitutability guarantees that function values are still valid.
Anyhow, all changes of the signature are handled by the o-function according
to Section 4.3.

Changing the function constraints. For changing the function constraints,
one must distinguish between two cases: those making the constraint more re-
strictive (setting unique, not null, not cyclic to true) and those making it less
restrictive (setting constraints to false). Only the former ones give problems,
because there could be data objects already in the database that do not follow
the new more restrictive constraints.

(2.2.3) set [unique:= uq] (f); set [notnull:= nn] (f);
set [noteyclic:= nc] (f); set [inverse:= f;] (f);

Changing class properties. Properties of classes can be changed by assigning
new selector as, membertype t,,, or class predicate p..

(3.2.2) set [auto:= as] (¢); (3.2.5) add [¢] (superce(c));
(3.2.3)  set [miype:=ty] (¢); remove [¢;] (superc(c));
(3.2.4) set [pred:= p.] (¢); (3.2.6) set [query:= qr] (¢);

Since the extent of a class is not stored but computed (no matter whether defined
as a class or as a view), changing these class properties has no effect on instances,
but simply needs recomputation of the extent. Assigning a new query or an new
predicate needs of type-checking (see below).

5.2 Embedding Schema Updates into Methods

Although all schema update primitives have been mapped into an algebra ex-
pression, isolated use of these updates may not be adequate or desirable for
many reasons:

— Since a small update on a schema object may have serious effects on data-
bases, it may be useful to ensure additional pre and post conditions for such
an update.

— If a direct update violates model inherent integrity constraints (uniqueness,
not null, or not cyclic), the operation is just rejected. It may be more ade-
quate, if meaningful error messages were returned.

— The user’s authorization to make the schema update must be checked. In
general, this is done using a normal authorization model for objects [22],
and applying it to the schema objects. Anyway, some special restrictions to
schema updates may be checked globally, e.g. forbidding that meta-types are
deleted.



— The meta-schema does not contain any information about physical design
issues. Physical descriptors for the classes and functions may be given ex-
plicitly together with a schema update. As an example, consider that some
views or derived (computed) functions may be materialized, indexes should
be created, objects may be clustered, or statistics on the transaction load
should be kept.

— Run-time information for dynamic type-checking or function bindings is not
part of the meta-schema as well. If for example the predicate of a class is
changed, 1t must be type-checked for that no run-time error can occur; and
since functions (e.g., queries of a view definition) can be derived from others,
we have to represent dependencies between functions. This problem is known
as "behavioral consistency” [30].

— Finally, user defined semantics may be added. For example, one may want
to enforce, that deleting a class includes deletion of all instances.

ExaMPLE 2: Consider deletion of type objects (U1 2). The following method
requires that before type t is deleted, ¢ is not a meta-type and that ¢ 1s not used
somewhere else.

procedure delete_type (1 : object-type) is
— delete an existing type object (update 1.1.2 of the taxonomy)
require
t & MetaTypes and
select [t € supert] (Objeci-Types) =  and
select [t = etype] (Set-Types) = ) and
select [t = dom or ¢ = ran] (Fen-Types) = ) and
select [t = mitype] (Class-Defs) = 0
begin
delete (1);
end — delete_type <&

We therefore propose that updates to schema objects should only happen encap-
sulated into save schema update methods. In an object-oriented system, these
methods can be implemented as overriding of the standard methods of the meta-

types.

6 Conclusion and Future Work

We presented a general framework for investigation of database evolution based
on an object-oriented data model and an object algebra for queries and updates.

The contribution of this framework is threefold. First, we introduced a system
where schema and meta-schema objects are treated as ordinary objects, and the
meta-schema is fully available to the user. Beyond, we defined the semantics
of the generic update operators such that they can be applied on any object,
independent of whether it belongs to a schema or the data level. Finally, we
showed that this approach i1s powerful enough to realize schema evolution, such



that a taxonomy of desirable schema change primitives can be implemented as
direct updates to schema objects. They will respect integrity constraints on the
schema and they will also leave the database in a type-valid state.

The object model COCOON and its algebra COOL are currently being im-
plemented as a prototype system, respecting the separation of database object
into the three different levels [29]. We have defined all primitives for schema
updates, and have been setting up a collection of higher level evolution oper-
ations, based on these primitives. They will facilitate complete schema design,
tailoring, and restructuring. Finally, as a long time goal, we are working towards
a tool that supports users in extending and reusing databases. The framework
i1s open in the sense that schema evolution is only one sample application. As a
second one, we started to study the feasibility of database integration [25]. We
showed, how the distinction of the three object levels can be used for making
multidatabases interoperable.

Furthermore, we are extending our meta-schema for physical database design
and ”behavioral consistency”. Information must be included about the imple-
mentation (computed/stored) of functions, materialization of class/view extents,
and clustering of objects. To detect run-time type errors, function bindings and
dependencies between function and query expressions are to be stored.

Acknowledgments. The authors are indebted to Hans-Jorg Schek, Christian
Laasch, and Klaus Gafiner for their helpful discussion on the paper. A prelimi-
nary version of the framework was presented in [28].
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A  The Meta Schema

In the sequel, we define the COCOON meta-schema. Usually the purpose of a
meta-schema is twofold: (i) to describe the object model using its own notation,
and (ii) to represent data dictionary information. Nevertheless, since the scope
of this paper is schema evolution, our meta-schema is only given and explained
as far as it 1s necessary to define the semantics of schema updates.

As proposed in Definition 3.2, the meta-schema is composed of meta-types
and meta-classes. The first meta-type represents data and object types. That is,
each COCOON type is represented by an object, being instance of the following
meta-type:

type type isa object =
tname : unique siring , // type name
Juncts : set of function ; // functions, applicable to
the type’s instances

Most types are defined by users in order to specify the interface of an abstract
object type (i.e. to define the signatures of the applicable functions). As usual
in object-oriented systems, such types can be ordered in type-hierarchies. The
meta-type object-type is a specialized subtype:

type object-type isa type =
localf: set of funclion not null, // local functions, inde-
pendent of inheritance
supert : set of object-type // explicitly defined
not null not cyclic , supertypes of the type

Whereas localf(t) are the functions defined to be applicable to ¢’s instances in-
dependent of inheritance, for an abstract object type, the set of all applicable
functions functs(t)is derived by the union of the local functions localf(t) and the
functions inherited from the supertypes:

functs(t) := localf(t) U functs(t;)

t;Esupert(t)

Notice, that type checking is based on all functions functs(?), not only on the local
ones. We distinguish for each type ¢ between explicit and implicit supertypes.
The former ones are those explicitly assigned with the meta-function supert(t),
whereas the implicit ones are derived from the set of applicable functions as
follows:

t <t < functs(t) D functs(t')

That is, a type ¢’ is supertype of ¢, if the applicable functions of ¢ are a superset
the functions of ¢'.

In addition to abstract object types, two more subtypes represent constructed
data types: the set and function types. Since these types are normally created
and managed internally by the system, most of them are unnamed.



type set-type isa {ype =
etype : type not null ; // the type of the elements in the set
type fen-type isa lype =

dom : type not null, // the domain type of the function
ran : lype not null; // the range type of the function

The second meta-type represents COCOON functions. They are named, have
a signature, and their values can be restricted by a set of constraints.

type function isa object =

fname :  umnique string not null, // function name

sign : fen-type not null , // function signature
untque 1 boolean not null , // uniqueness constraint
notnull 1 boolean not null , // not undef constraint
noteyclic : boolean not null , // cycle free constraint

inverse :  funclion inverse inverse ; // inverse function

Information about the implementation of the function (e.g. whether the function

result is stored or computed), is intentionally excluded from the meta-schema,
since this is irrelevant for schema evolution.

The third meta-type represents COCOON classes.

type class isa object =
cname : unique siring not null, // class name
extent : set of object ; // actual class members

Since we treat views as classes with implicitly defined type and extension, two

subtypes of meta-type class are distinguished: those defined as a class, and those
defined as a view.

type class-defisa class =

auto:  boolean not null , // (see below)

miype : type , // explicit member type

pred :  function , // the class predicate

superc : set of class // explicit super classes
not null not cyclic ,

pmemb : set of object ; // potential class members

type view-defisa class =

query not null : expression , // query defining the view

The value of auto(c) is true, iff the class ¢ is defined with the selector all. In
these cases the system can decide whether an object belongs to the extent of
a class. If classes are defined by the selector some there are just necessary
conditions defined. The information about class membership is specified by the
user in terms of adding and removing objects to/from a class explicitly. This
information is stored by the set pmemb that represents the potential members



of a class. These are objects that are added to a class, but need not to fulfill
the class predicate (for more detail see [14]). extent(c) derives the actual set of
member objects (extent) of a class, i.e. a subset of pmeméb which elements fulfill
the class predicate. The actual derived member type of the class objects is either
equal to miype(c), if a member type is explicitly defined, or otherwise, it must
be derived from the member type of ¢’s superclasses and class predicate.

Together with each meta-type, there is a meta-class holding the actual in-
stances of the meta-type.

class Types : type some Objects ;

class Set-Types : set-type some Types ;

class Fen-Types : fen-type some Types ;
class Object-Types : object-type some Types ;

class Functions : function some QObjects ;

class Classes : class some Objects ;
class Class-Defs : class-def some Classes ;
class View-Defs : view-def some Classes ;

In addition, the following view collects all classes with implicitly defined
extent. That is, the view-defined classes and the class-defined ones with an all -
selector:

view Views as View-Defs union select [auto(c)] (¢: Class-Defs);
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