
S e m a n t i c H e t e r o g e n e i t y as a R e s u l t o f D o m a i n E v o l u t i o n

Vincent Ventrone, The MITRE Corporation, Bedford, MA
Sandra Heiler, GTE Laboratories, Waltham, MA

Abstract We describe examples of problems of
semantic heterogeneity in databases due to "domain
evolution", as it occurs in both single- and
multidatabase systems. These problems occur when
the semantics of values of a particular domain change
over time in ways that are not amenable to applying
simple mappings between "old" and "new" values.
The paper also proposes facilities and strategies for
solving such problems.

1 Introduction
In current database systems most of the data
semantics reside in the applications rather than in the
DBMS. Moreover, data semantics are often not
represented directly in the application code, but rather
in the assumptions which the application--or, more
correctly, the programmer--makes about the data.
This situation is tolerated in local database
environments largely because the local applications
work with a shared set of assumptions. However,
serious problems are likely to occur during a database
integration--or federation [ShLa90]--effort because sets
of local assumptions clash and local applications do
not have access to the semantics represented in the
"foreign" applications. This is the semantic
heterogeneity problem. When semantic information
that is hidden in applications is made explicit and
accessible through the database then the semantic
problem becomes a much more tractable syntactic
problem [DeMi89, BrHu90]. Syntactic heterogeneity
problems can be solved by modifying data to enforce
homogeneity, or they can be dealt with explicitly in
the applications.

This paper discusses "domain evolution", a source of
semantic heterogeneity which can occur in single- as
well as multidatabase systems. The term refers to
changes in the meanings of the real-world
counterparts of domain values that may cause a
domain to become an aggregate of semantically
incompatible sub-domains. For example, a domain
"location" that formerly contained room numbers may
come to include building numbers as well. As with
other types of schema change, old data may become
unprocessible by some new applications, or new data
unprocessible by old applications. Worse, the result
may be subtle incompatibilities so that "old" and
"new" values cannot be sensibly combined or
compared, and results that span them cannot be
correctly interpreted.

We argue that domain evolution can create problems
of semantic heterogeneity within a database similar to
those encountered in multidatabase systems and that
similar solutions are required. We describe the
problem in terms of examples. We then propose
needed facilities and identify some evolving
technologies which might be expected to provide
components of solutions.

2 The Problem
The following paragraphs present examples of
different forms of domain evolution:

1. Heterogeneous Instances: Over time, different
occurrences of the same value in a domain extension
may have different meanings. For example,
organizations sometimes merge or split departments,
representing a reshuffling of resources (employees,
offices, etc.) for which "department" serves as a
convenient shorthand. The effect is that certain
applications, e.g., historical reporting, statistical
analysis and very long "transactions" such as
amortization and depreciation may require changes to
deal with "old" and "new" occurrences. Consider
depreciation on an asset with a useful life of 10 years
purchased for department 'V78'. If three years later
V78 is split into two departments (say, new V78 and
V79) and its resources are partitioned, who gets
charged for the depreciation? To allow an application
to address this problem, the database must store
additional information about departments and assets.
For example, it could define a department as a group
of employees with resources and an organization. If
versions of this description were synchronized (e.g.,
time-stamped) with the data indexed by department,
and if comparison operators were available, it would
then become possible for an application to discover
that the department domain had changed.

2. Cardinality Changes: Cardinality relationships
between domains may also change over time. For
example, a 1-to-n relationship between departments
and projects may become m-to-n as a result of an
organizational change (i.e., projects now span
departments). After the change, updates must pass
different constraints and applications programs must
deal with sets of departments for a project. Certain
canned operations--such as joining departments and
projects--may no longer work.

3. Granularity Changes: Values may be added to a
domain extension that represent a different granularity

The views expressed in this paper are those of the authors and do not reflect the policies or positions of the MITRE
Corporation or GTE Laboratories.

16 S I G M O D R E C O R D , Vol . 20, No. 4, D e c e m b e r 1991

from the existing population. For example, an
attribute called "location" may originally have been
set up to store room numbers, reflecting an
organization convention. Later, perhaps due to the
acquisition of a new division, the meaning of
"location" is extended to include building numbers.
The two types of domain value may look similar--
building 'A99' versus room 'C110'--but they clearly
represent a different granularity. Queries against
"location" (e.g., "average number of phones per
location") may return results that mix apples and
oranges--without any indication that this is
happening.

4. Encoding Changes: Database values often have
encoded meanings. These may be relics of
predecessor manual systems or they may creep into
systems over time, possibly to store information that
is not otherwise provided for in the existing system.
For example, "location" may come to include values
that have special meanings, such as "status" (i.e.,
'X00' means "away for repairs" or 'X99' means
"lost"). These are not locations in the original sense.
As another example, consider a company working on
projects under government contract that is barred from
charging employee vacation time to those projects.
The database may include a "dummy" project, number
'0000', to provide a code for charging employee
vacation time. Database queries and reports retrieving
"all projects" will return the often misleading dummy
vacation project. Indeed, by some measures such as
"total labor hours", the vacation project may appear
to be the largest--and most important!--in the
company.

5. Time and Unit Differences: Database values that
users wish to compare may be incompatible due to
differences in time or units of measurement. Stored
calculations in the same domain may, over time, be
the products of different formulae. Units of measure
may change so that values are similar but not
identical, such as imperial gallons versus U.S.
gallons. Currency units also change as a result of
devaluations; figures stored before and after such
changes will no longer be comparable. "Snapshot"
values, such as inventories, trade balances and
monetary reserves, may not be comparable if the
times of measurement during the business cycle are
different. Finally, a firm that formerly calculated
revenues on a calendar-month basis may switch to a
per-week basis--no simple aggregation of weekly
figures will make them comparable to the old
monthly figures for trend analysis, etc.

6. Identifier Changes: In response to changing
needs, indexing strategies may change over time,
leading to parallel and even overlapping identifier
schemes. For example, an organization may

originally identify items of property in its
computerized systems using numbers traditionally
maintained by the Property Department. A new
coding scheme may appear later, perhaps using longer
numbers with a different format (e.g., bar codes).
Later still, a third identifier may appear--for example,
to meet an application need for a unique, immutable
identifier. The result of this evolution is a "property
system" with two or more overlapping index
schemes. Queries and applications retrieving new and
old property items must use multiple indices. This
may force the organization to maintain parallel
identifiers until all of the "old" property has retired
from the system.

7. Field Recycling: In many systems it is difficult or
infeasible to alter certain characteristics of the
database. Perhaps record sizes cannot be altered
because of application or system software
dependencies. Changing the names of fields may
involve reloading the database or recompiling
hundreds of software modules. The response in many
cases to this inflexibility is to recycle an existing
field so that the new use may have different semantics
from the old one. For example, a company may
switch from a hierarchical to a matrix organization.
As a result, employees are assigned job titles,
reflecting function, to replace the old job level codes.
Instead of adding a job title field, the decision is made
to recycle the job level field, using title abbreviations
to make them syntactically consistent with the old
scheme. Thus, in place of job level values like 'EX6'
and 'NE9'--examples of "exempt" and "nonexempt"
job levels--job title values such as 'PA9', for
"programmer analyst", appear. Applications that key
off the recycled field may produce incorrect results.
Database retrievals that return old job codes and new
job rifles will mingle unlike values.

Each of these examples illustrates two types of
problem: those that must be solved by the
application--how should depreciation be assigned for
equipment that is transferred among departments?
what kind of summary data on numbers of telephones
per location make sense?--and those that must be
solved by restructuring the database to include more
semantic information to support the applications--
when did the equipment belong to V78? is the
reference to a room or to a building? In a sense, each
change in semantics produces a distinct version of the
database and a corresponding version of the affected
applications that reflects an understanding of the
domain semantics at a particular point in time.

Domain evolution can introduce semantic
heterogeneity within a database that further
complicates the problem of developing multidatabase
systems. When equivalent domains from multiple

S IGMOD RECORD, Vol. 20, No. 4, December 1991 17

databases are combined the resulting heterogeneity in
their union is the same problem as in the single
database case. The result is that the multidatabase
system must now deal with semantic problems both
among and within component databases.

3 Components of Solutions

We believe that the following facilities are needed to
address semantic heterogeneity in either single- or
multidatabase systems:

Representation of Semantics: the ability to
capture the semantics of the domain
Domain values require metadata to describe their
semantics. The descriptions may need to include, for
example, time of measurement, accuracy, source, and
derivation formula. Different aspects of values'
semantics may best be served by different
representations [McCa82]: text, program code, rules
[SiMa91], constraint languages [UrDe88], tags or
footnotes, as well as other data in the database that
provide context for the data of interest (e.g., the
interpretation of attribute "A" may depend, in part, on
the values of attributes "B" and "C"). The choice of
representation must balance expressive power against
readability, since the user or application--or the
database system itself--needs to be able to interpret
the semantic description.

Semantic data models provide means of capturing
some domain metadata, including entity associations,
cardinality, existence dependencies, constraints and
user-names. However, while these models are
commonly used in database design, the information is
not explicitly represented in the resulting database and
so is not accessible to applications, queries or users.
Likewise, data dictionaries often capture relevant
domain descriptions. But given the current lack of
integration between data dictionaries and databases the
metadata is not usable by the database system or
applications, nor is it accessible to the user in
combination with the data.

Data/Metadata Synchronization: the ability to
associate appropriate semantic information with
spec~c database values
Synchronization is required between the domain
members and the metadata. As the meaning of a
domain changes over time, the associated metadata
must also evolve and remain coupled to the data. For
metadata stored in the database, "triggers" can provide
a way to link attributes in order to return context to
the user along with the requested data. Current work
on database schema evolution and versioning provides
some synchronization mechanisms, particularly for
object-oriented databases [BKKK87, SkZd87].
However, schema versions address only type changes

that apply to all members of the domain extension;
beginning at some point in time. More flexible
mechanisms, such as those provided by footnoting
schemes, are needed to deal with metadata that apply
to arbitrary subsets of domain values.

Metadata Comparison: the ability to detect and
express differences in domain semantics
Applications and queries must be able to determine
that a set of values includes heterogeneous members
of a domain and to specify the nature of the
incompatibility. Some representations for metadata
will provide comparison operators. For example,
[SiMa91] presents a rule-based representation that
detects differences based on comparing rules, and
some constraint languages allow constraint
specifications to be compared. Textual
representations, such as footnotes and program code,
are more expressive than constraint languages or
rules. However, they are often unsatisfactory for
determining and representing semantic differences
because they usually base comparisons on string
matching. Even "tags" usually base equivalence on
string matches and provide no way to represent
differences.

Metadata Generat ion: the ability to create
semantic information for derived data
Derived data also require domain information to
describe the semantics of particular values or the
results of particular computations. The required
metadata representations are similar to those for stored
data, but the metadata values must be generated during
computation of the data values. For example,
accuracy tags can be derived for results of
computations over values which, themselves, are
associated with accuracy specifications. Other values
might be annotated with the time of computation.
Units can be derived and associated with computed
results. Metadata for derived information may be
derived from metadata associated with the base values
of the derivation. For example, the results of
computations over values that have been annotated as
"estimated" might, themselves, be annotated as
"estimated".

Relevance Evaluation: the ability to determine
when particular semantic differences affect the results
of a query or application
Not all differences in semantics among members of a
set of values are relevant to all queries or
applications, depending on the nature of the query or
the processing performed by the application. In
general, it must be possible to determine the
particular types of metadata differences to which a
particular query or application is sensitive. For
example, the fact that data retrieved for department
V78 include values related to that department before

18 S IGMOD RECORD, Vol. 20, No. 4, December 1991

and after the division of the department will be
relevant to computations of depreciation, but not to
determining the number of departments.

For some queries or applications it may be possible
to perform mappings to produce homogeneity within
their intermediate results, similar to the way in which
the "dynamic attributes" of [LiAb86] are produced.
For example, a mapping for the split department,
V78, could produce a homogeneous set of values for
depreciation expense spanning the periods before and
after the split by dividing the expense values for the
post-split period in half.

4 Solution Strategies
In general, the solution to problems of semantic
heterogeneity is to make semantic information
explicit so that it can be read and interpreted by the
code. This would replace problems of semantic
heterogeneity by more tractable problems of syntactic
heterogeneity. The code could then associate
appropriate semantic information with data values
rather than assume that all values have uniform
semantics. For example, databases that store similar
information in different units can be augmented with
a "units" field; assignments of equipment to
departments can be time-stamped; encoded values can
be recognized syntactically and dealt with
appropriately by the code (e.g., locations that start
with 'X' should be omitted from "real" locations).

The goals of many multidatabase systems are to make
heterogeneity among components transparent to users
and applications and to avoid requiring changes to the
code of the underlying systems. In contrast, the goal
of facilities to deal with semantic heterogeneity
within a domain is to make it possible for
applications and users to determine when accessed
values do not match their assumptions, and so avoid
presenting misleading information or prevent program
failure. The heterogeneity is transparent only to users
and applications unaffected by it. Further, it is
probably not possible to avoid requiring code
changes--only to minimize them, since the nature of
the heterogeneities cannot be anticipated. If it were
possible to predict the new values that would result
from evolution, the domain would probably have
been defined to include them from the beginning.

The amount and complexity of required code change
is, of course, affected by the chosen architecture of the
system. If metadata storage and management have
been embedded in the applications, then the latter
must be modified as new values and different types of
metadata are introduced. Alternatively, solutions that
include a metadatabase that applications access will
reduce the number and complexity of changes to the
applications for a more modular result. The

applications become metadata-independent, though
they must still include knowledge of the metadatabase
protocol. And in the multidatabase case it will still
be necessary to integrate the (possibly heterogeneous)
metadata to make "foreign" metadata accessible to
local users and applications. (Schema integration
strategies, such as the methods based on attribute
relationships proposed by [ShGa89] and [LSE89],
provide mechanisms to help achieve this.) Finally, ff
the metadata are encapsulated in objects, the changes
will be transparent to users of those objects.
However, the object classes may still require
modification to deal with new values in evolving
domains.

Capturing and interpreting metadata to detect domain
changes and resulting internal heterogeneifies also has
performance implications. A precise strategy to
reduce the performance penalty of testing for domain
changes and heterogeneous values will depend upon
the anticipated usage patterns of the database in
question--as with other types of optimization. The
situation may benefit from the use of alerters that
indicate when domain changes have occurred and the
code needs to be modified, or when retrieved values do
not satisfy application assumptions so that users can
take appropriate steps to deal with them.

5 Conclusions
Domain evolution introduces into single database
systems problems of semantic heterogeneity that are
similar to those that complicate multidatabase
systems. We have argued that the most effective way
to deal with these problems is to transform them,
where possible, into syntactic problems by making
the semantics explicit in the data and applications.
The latter can be addressed by incorporating more
descriptive data--metadata--in the database: constraints,
cardinality relationships, units, derivation algorithms
and formulae, confidence measures, and heuristics.
These will not solve the semantic heterogeneity
problem. But they provide applications developers
and users with the means to address the problem.
And the metadata approach stores semantics in the
database, instead of allowing them to continue to
reside in constantly-changing applications code and
the assumptions of their developers.

Acknowledgements
We thank Sara Haradhvala, Michael Siegel, and
especially Frank Manola for their helpful reviews and
insightful comments. We also thank Barbara Klain for
editorial assistance.

S I G M O D R E C O R D , Vol. 20, No. 4, D e c e m b e r 1991 19

References
[BKKK87] Banerjee J., Kim W., Kim H-J, Korth

H.F. "Semantics and Implementation of Schema
Evolution in Object-Oriented Databases", Proc.
SIGMOD Conf., San Francisco, CA, 1987.

[BrHu90] Bright M.W., Hurson A.R. "Summary
Schemas in Multidatabase Systems", Computer
Engineering Technical Report TR-90-076, Penn
State Univ., Univ. Park, PA, 1990.

[DeMi89] DeMichiel L.G. "Resolving Database
Incompatibility", IEEE Transactions on
Knowledge & Data Engineering, 1:4 (Dec.
1989).

[LiAb86] Litwin W., Abdellatif A. "Multidatabase
Interoperability", IEEE Computer (Dec. 1986).

[LSE89] Larson J.A., Navathe S.B., Elmasri R. "A
Theory of Attribute Equivalence in Databases
with Application to Schema Integration", 1EEE
Transactions on Software Engineering, 15:4
(Apr. 1989).

[McCa82] McCarthy J.L. "Metadata Management for
Large Statistical Databases", Proc. 8th VLDB
Conf., Mexico City, Mexico, 1982.

[ShGa89] Sheth A.P., Gala S.K. "Attribute
Relationships: An Impediment in Automating
Schema Integration", Workshop on
Heterogeneous Database Systems, Chicago, IL,
Dec. 11-13, 1989.

[ShLa90] Sheth A.P., Larson J.A. "Federated
Database Systems for Managing Distributed,
Heterogeneous, and Autonomous Databases",
ACM Computing Surveys, 22:3 (Sept. 1990).

[SiMa91] Siegel M., Madnick S. "A Metadata
Approach to Resolving Semantic Conflicts",
Proc. 17th VLDB Conference, Barcelona, Spain,
1991.

[SkZd87] Skarra A.H., Zdonik S.B. "Type Evolution
in an Object-Oriented Database", Research in
Object-Oriented Databases, B. Shriver, P. Wegner,
(eds.), Addison-Wesley, 1987.

[UrDe88] Urban S.D., Delcambre L.M.L. "Constraint
Analysis: A Tool for Explaining the Semantics
of Complex Objects", in Lecture Notes in
Computer Science #334, G. Goos, J.
Hartmanis, (eds.), Berlin, Germany, Springer-
Verlag, 1988.

20 SIGMOD RECORD, Vol. 20, No. 4, December 1991

