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Abstract. Database evolution can be considered a combination of
schema evolution, in which the structure evolves with the addition and
deletion of attributes and relations, together with domain evolution in
which an attribute’s specification, semantics and/or range of allowable
values changes. We present a model in which mesodata — an additional
domain definition layer containing domain structure and intelligence — is
used to alleviate and in some cases obviate the need for data conversion
or coercion. We present the nature and use of mesodata as it affects do-
main evolution, such as when a domain changes, when the semantics of
a domain alter and when the attribute’s specification is modified.

1 Introduction

The way we view and deal with information evolves. In paper-based manual sys-
tems this evolution did not present a great problem — we turned the page and
ruled it up differently, renamed columns, used different terminology and pro-
ceeded to store our information. We could always review what had been stored
historically by viewing the information exactly as it had been recorded. The
static nature of this method means that notations that were recorded retained
their semantics in context, that is the headings and layout of the form/paper
imparted the structures and conventions as well as the values themselves. We,
the human, translated and transformed the information when we retrieved it. It
was simple. It was also so time consuming that much of what we now consider
to be basic tasks, such as sorting, aggregating, summarising and reporting was
infeasible.

The development of RDBMS and automated systems put the layout and
form into the unchanging metadata and gave us record once systems. Database
technology has provided the power to store and manipulate information in a
variety of ways, however we still cannot reproduce the simplicity of dealing with
information evolution as we used to. A major introduced problem that has not
yet been completely solved is that of attribute domain evolution. For example, if
one were searching for a particular value, time consuming though it was, subtle
differences in data values were captured because the searcher understood the
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domain and therefore included or excluded records based on their own knowl-
edge of the domain. For instance, a database query searching through historical
medical records for an illness matching ‘rubella’ generally uses a string compar-
ison only, thus the string ‘german measles’” would not be retrieved even though
semantically it matched.

There have been many techniques developed to deal with database evolution
but none can currently deal with all aspects of evolution and few of them deal
specifically with the problem of attribute domain evolution. Middleware, using
various approaches, has been used to alleviate evolution problems by translating,
transforming or coercing data and metadata. In this work we use a new approach
that introduces complex data structures with embedded intelligence that lie
between metadata and data — mesodata [1]. Mesodata allows domains to be
engineered so that attributes can be defined to possess additional intelligence and
structure and thus reflect more accurately ontological considerations, including
changes in the domain itself.

Attribute domain evolution refers to the evolution of the valid range of values
that a database attribute (field) may store and the semantics they infer. For
example, an integer field of 4 bytes can store values in the range of -2,147,483,648
to 2,147,483,647 whereas a float field of 4 bytes has a range of negative values
from -3.402823E+-38 to -1.401298E-45 and positive values from 1.401298E-45 to
3.402823E+38. The domain has changed even though the storage requirement
has not altered. Domain evolution can be broadly categorised into three types;

Attribute Representation Change: expansion or contraction of field, for ex-
ample, CHAR(15) to CHAR(20) or vice versa, change of base type: integer to
float, numeric to character, character to enumerated list.

Domain Constraint Change: the possible range of values that may be re-
corded has changed without the metadata changing or the currently stored
data changing, for example, the minima and/or maxima change. The new
constraints may, or may not, be applied retrospectively.

Perception (Meaning) Change: the semantics of the data change, for exam-
ple, Reference 116Q15 no longer is interpreted as ‘Burbridge Road’ and is
now ‘Sir Donald Bradman Drive’, however, both interpretations are required
for historical purposes.

Currently when a schema changes two events typically occur - the application
is modified and recompiled to deal with the changes and the data is converted
to the new format, either by strict, lazy or no conversion [2]. Lazy conversion
performs data conversion only when data are accessed and they are still recorded
with superseded formats (or values), no conversion is done if the data are not
accessed. The advantage of this approach is that only the data that are used are
converted and the whole database does not need to be locked or taken off-line to
perform the conversion. The disadvantages are that a record of schema changes
must be recorded and accessible and that every time data is accessed it must
be checked to see if it conforms to the current schema. Until all data have been
accessed there exist some that are invalid, incomplete or uncertain.
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Strict conversion requires that as soon as there is a modification to the schema
all data are converted to conform with the current definition. The advantage of
this approach are that all data are consistent with the new schema. The disad-
vantage is that all applications interacting with the database must be stopped
and the database locked while the conversion takes place. Depending upon the
nature of the modifications this can take a long time. In addition, information
is lost and changes cannot be reversed.

By adding a mesodata layer to the structure, some of the data would not need
to be converted and the application itself may not need to change. Mesodata can
store semantics as well as operators and operations in data structures other than
base types.

2 Related Work

The primary goal for schema evolution in databases is to preserve the integrity of
the data. Sjeberg [3] observed several reasons for schema change. These included
that:

— people do not know in advance, or are not able to express, all the desired
functionality of a large-scale application system. Only experience from using
the system will enable the needs and requirements to be properly formulated.

— the application world is continually changing. A viable application system
must be enhanced to accommodate these changes.

— often the scale of the task requires incremental design, construction and com-
missioning. This results in requirements to change the installed subsystems.

Sjoberg’s case study, a health management system, revealed that schema changes
were significant both during the six months of development and the twelve
months after the system was operational. In the study, the changes covered
the gamut of possibilities including each relation being changed, 139% increase
in the number of relations, 274% increase in the number of fields, and 35% more
additions than deletions. During the development phase (5 months) there were
65 changes (additions and deletions) to relations and 470 changes (additions
and deletions) to attributes. During the operational phase (11 months) the cor-
responding numbers were 299 and 2324 respectively. In Sjgberg’s study changes
to the type/domain of an attribute was not captured in the statistics, however,
in the last month of the study the changes to fields were 18 renamings, 4 changes
of unique/non-nulls, 23 changes of length and 4 changes of representation. That
is 31 changes at attribute level.

A consensus glossary [4] provides the definition that a database supports
schema evolution if it allows modification to the schema without loss of extant
data and that no support for previous schemas is required, whereas it supports
schema versioning if it allows the querying of all data, both retrospectively and
prospectively, through user-definable version interfaces. Roddick et al. [5] present
a taxonomy of schema versioning issues with respect to the Entity-Relationship
Model and the effects on the relational database model. The work discussed
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in this paper does not deal with all issues of schema evolution and versioning,
but concentrates on the specifics of domain/attribute evolution. The pertinent
evolutionary operations are:

— Expanding an attribute domain
— Restricting an attribute domain
— Changing the domain of an attribute

There has not been a great deal of research done in the field of evolving rela-
tional databases over the past few years, however work done in object-oriented
database evolution, data warehousing, data integration and schema integration
research has areas of relevance to the evolution of domains.

2.1 Information Capacity

Hull [6] and later Qian [7] provided formal approaches to evaluate the informa-
tion capacity of schemata. The four relative information capacity measures be-
tween database structures as defined by Hull are, in progressively less restrictive
order, calculus dominance, generic dominance, internal dominance and absolute
dominance. These measures are used to evaluate the information capacity of two
or more schemata by mathematically mapping between the schemata. An impor-
tant point to note is that even when two schemas can be proved to have the same
information capacity, it does not then follow that they are equivalent semanti-
cally. Qian’s formalisation of Abstract Data Types (ADT) for schema transfor-
mations presents a slightly different notion of ‘information preservation’, which
is strictly less restrictive than calculus dominance, strictly more restrictive than
absolute dominance and incomparable to generic and internal dominance. These
formal approaches are the foundation of later work into schema equivalence and
schema integration.

Miller [8] describes Equivalence as the requirement that all data stored in
one schema (S7) can be accessed and updated through another schema (Ss),

for queries the transformation function (f) must be total: ¢(i2) = q(f(i1));

— to access all data f must be injective: ¢; must correspond to a unique iz, a
1-1 cardinality;

for updates f must be onto: I(Ss);

— for equivalence (S; = S2) there exists a bijective function: f : I(S1) — I(S2);

and Dominance as S1 = S allows all data stored under schema S; to be queried
through Sa,

— to access all data f must be injective: 1-1 cardinality;

— every instance of S can be transformed to an instance of Sy without loss of
information;

— S5 may hold more information.
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Miller et al. [9,8,10] point out that whilst equivalent information capacity is
a required condition, it is not sufficient to guarantee a natural correspondence
between schemas and in practice database administrators rely on their own in-
tuition when defining transformations between schemas. Schemas, in practice,
contain constraints that define which instances of a schema are meaningful in
a certain context. Their research in this area shows that deciding information
capacity equivalence and dominance of schemas is an undecidable problem. As
a result, they developed tests to evaluate equivalence and dominance more re-
strictively. These tests utilise a set of schema transformations that declare that
Schema 57 is dominated by schema S, if and only if there is a sequence of trans-
formations that converts S; to Ss. These transformations use Schema Intension
Graphs (SIG) data models to aid in understanding the relative information ca-
pacity of schemas containing constraints. The authors have developed algorithms
for deciding equivalence of schemas with constraints. The SIG model must be
data-centric rather than type-centric in order to reason about constraints on
collections of entities rather than the internal structure of a single entity. (This
approach ignores the problem of data type changes and the conflicts type changes
present.) They define the Schema Translation problem as follows:

Given two schemas one needs to know with respect to information capac-
ity if each instance of the first schema can be represented as an instance
in the second schema and whether the translation can be reversed?

Table 1 identifies possible conflicts that can occur between semantically
equivalent schemas with regard to attributes and values. Capacity and equiva-
lence, therefore, is not sufficient, data integration must considered to take into
account query and view requirements.

2.2 Schema Integration

Xu and Poulovassilis [11], when addressing the integration of deductive data-
bases, considered both the extensional and intensional parts of the component
databases for integration. The Common Data Model (CDM) uses a binary re-
lational Entity-Relationship model with subtyping to integrate the extensional
parts. The authors proposed a semi-automatic method which requires only the
declaration of the relationships between schema constructs to perform the inte-
gration. For the purposes of their model, they defined a database as the quintu-
ple:
< Schema, Extensional Database, Intensional Database,
Constraint Database, Procedural Database >

Each of these sets is integrated in turn and in that order. The schemas and
the extensional databases are represented by directed graphs and from those
graphs correspondences between nodes are declared. These mappings are then
used to perform the integration into a CDM. The intensional database is inte-
grated by integrating the rules from the component databases according to their
denotational semantics employing a method of comparing the semantics of the
rules.
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Table 1. Schematic Conflicts between Attributes and Values

Value Attribute

Value |Domain conflicts between schema|The values in S| are used as at-
S1 and schema S2, such as expres-|tributes in Ss

sion conflicts, data unit conflicts,
precision conflicts

Attribute Different definitions for semanti-
cally equivalent attributes

— 1-1 one attribute used to model
the same information in each
schema, such as naming con-
flict, integrity constraint con-
flict, data representation con-
flict.

— 1-N and N-N different num-
bers of attributes used to model
the same information in each
schema.

— The N-N conflict is a generali-
sation of the 1-N conflict

2.3 Schema Transformation

Transformation consists of the tasks schema conforming, schema merging and
schema restructuring. McBrien et al. [12] present a formal framework again us-
ing the CDM for ER schema transformation in which they have defined a set
of primitive transformations based on schema equivalence. This is achieved by
formalising a database instance as a set of sets containing entity type names,
subtypes, attribute names and associations. These are also integrated in order,
however, in this work there is a distinction made between transformations which
require knowledge of the instances in the database and those that do not.

Continuing this work [13] and combining schema integration and schema evo-
lution activities, the authors propose using a Hypergraph Data Model (HDM)
to build a global schema from heterogeneous source schemata and from this
transformations may be used to translate queries between the global and source
schemas. Schema transformations defined on the HDM are reversible. Every add
transformation step is reversed by a del transformation with the same param-
eters, renaming (ren) transformations from S;— So are the reverse of So— Sj.
Contract transformations map to void, queries and sub-queries over such con-
structs then translate to void. Eztend transformations requires domain knowl-
edge, either from a human expert or a domain ontology and cannot be auto-
mated. Higher level modelling only works with names, tables, relations but not
at attribute data type level.
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Fig. 1. Mesodata is an additional layer in RDBMS

DBMS

Davidson et al. [14] recognising that information capacity preserving trans-
formations do not necessarily preserve the semantics of databases developed
the declarative language WOL (Well-founded Object Language) for expressing
database transformations and constraints. They argue that approaches which
allow a fixed set of well defined transformations to be applied in series (for most
methodologies the outcome is dependent on the order in which the schemas are
integrated - they are not associative) are inherently limited in the class of trans-
formations that can be expressed and that while using a high-level language for
transformations is necessary for general transformations, it is difficult to reason
about, and prove, properties of transformations. This work tackles the difficulty
of correctly transforming complex data structures (sets, records and variants)
and recursive structures. Constraints on the source and target databases are
crucial to notions of information preservation, but typically are not, or cannot,
be expressed in the models of the underlying databases.

3 Model

In this research, we use the term ‘intelligent domains’ for our enhanced meso-
data generated domains as they provide increased semantic content over the
domains. Mesodata is an additional domain definition layer containing structure
and operators.

A traditional relational database can be viewed as consisting of relations that
are a subset of the Cartesian product of their attributes’ domains [15].

R C (dom(A;) x dom(A;) x ...dom(Ay)) (1)
where R is the relation
A is an attribute

dom is the domain of the attribute A.

The mesodata layer extracts the domain to a separate level such that the
Mesodata Domain (Mdom) is the domain of the mesodatatype of the basetype,
for example a weighted graph of strings or a list of graphs of strings. Mdom is
defined as:
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Mdom :: dom(attribute) | dom(mesodata)
dom(mesodata) : : dom(mesodatatype (dom(mesodata))
dom(mesodatatype (dom(attribute))
dom(mesodatatype) :: dom(wgraph) |dom(wdgraph) |
dom(1list) |dom(clist)|...
any mesodata structure
dom(attribute):: dom(basetype)
basetype:: all valid database base types.

The redefinition of the relation R thus becomes
R C (Mdom; x Mdom; x ... x Mdomy,) (2)

that is, the cartesian product of the mesodata defined domains.

Table 2. Examples of domain structures suitable for adoption as mesodata types

Domain Structure Operations (Extended SQL Op.) Source Relation(s)

Unweighted Graph (GRAPH) |Adjacency (NEXTTO) Binary relation (FROM, TO)

Weighted Graph (WGRAPH) |Adjacency, Proximity (CLOSETO) Ternary relation (FROM, TO, WEIGHT)

Directed Graph (DGRAPH) |Adjacency Binary relation (FROM, TO)

Directed Weighted Graph|Adjacency, Proximity Ternary relation (FROM, TO, WEIGHT)

(DWGRAPH)

Tree (IREE) Tn  subtree (DESCENDENT), Par-|Binary Relation(PARENT, CHILD)
ent(PARENT), Ancestor(ANCESTOR),
Child(CHILD), Sibling(SIBLING)

Weighted Tree (WTREE) In subtree, Parent, Ancestor, Sibling,|Ternary Relation(PARENT, CHILD,
Proximity WEIGHT)

Tist (LIST) Next  (NEXT), Previous (PREV),|Binary Relation(SEQUENCE, ITEM)
First(FIRST), Last(LAST), Be-
tween(BETWEEN)

Circular List (CLIST) Next, Previous, Between Binary Relation(SEQUENCE, ITEM)

Set (SET) In Set(INSET) Unary Relation(ITEM)

Tri-State Logical Maybe Equal (MAYBE) None

Table 2 of mesodata types presents a few examples of domain structures
with their intrinsic operations. It is important to differentiate between mesodata
structures and Abstract Data Types (ADT). For instance, the specification of a
graph as a mesodata type and the specification of a graph as an abstract data
type (ADT). In the former, the attribute would take as its value an instance of
a base type that exists within a graph while in the latter the type is a graph
for which code must be included in the application. The mesodata type is not
directly accessible through the attribute. The semantics of information (S) held
in a database can be considered as a function of the data value. That is,

S = F(v) (3)

where F' is a mapping external to the database which maps the data value (such
as 116Q15) to an understood concept (such as Burbridge Road). The introduction
of a mesodata layer allows regularly used mappings to be accommodated in the
database, ie.

S = F(M(v)) (4)
where M is the mesodata layer mapping. Conceptually, it is then possible to
have mappings of mappings

S = F(My(Ms(... My(v)...)) (5)
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where M; are mesodata layer mappings. Therefore, S = F(M;(M2(116Q15)))
where F(M5(116Q15)) = ‘Burbridge Road’ and F'(M; (‘Burbridge Road’) = ‘Sir
Donald Bradman Drive’. For more information about using mesodata types in
DBMS refer to [1].

4 Domain Evolution

Domain evolution can be broadly categorised into three types - Attribute Repre-
sentation Change, Domain Constraints Change and Domain Perception (mean-
ing) Change - that to date require a manual solution to their successful incorpo-
ration into a DBMS. Using a mesodata layer in the database can reduce these
problems. We illustrate these through examples. The mesodata types selected
for the examples are not proscriptive, just as the DBA judges which attribute
data type to use, so too must the decision of which mesodata type to employ lie
with the DBA.

4.1 Attribute Representation Change

Example: A character code is replaced by a number code. The specification
CHAR(20) is altered to an INTEGER.

Current Typical Solution: Add new attribute of type INTEGER to relation,
convert old data values to new values and store in new attribute, delete
old attribute, rename attribute to old name, update application to handle
different type.

Mesodata Solution: Use the mesodata type, LIST, that maps the existing
CHAR(20) values to the new INTEGER values. The attribute in the relation
remains unchanged as does the application, as the operators to access the
changed attribute type are built into the mesodata type.

For example:

old AppCode = ‘widgetA’

new AppCode = 2131

using the mesodata domain layer, we have, (see Eq 4),
AppCode = Mdom(‘widgetA’) = 2131

Both code values 2131 and widgetA are accessible and valid. Information ca-
pacity holds as both equivalence and dominance requirements are met. It is
recognised that not all attribute type changes can be handled using mesodata,
for example from BLOB to INT, however there are many instances where the
evolutionary process can be alleviated.

4.2 Domain Constraints Change

Example: ‘Country of birth’ is an attribute contained in a number of data-
bases, the allowable values of which have changed significantly during the
twentieth century. When a country name changes it may be a one-to-one
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change, such as Rhodesia to Zimbabwe, or one-to-many change, for exam-
ple Yugoslavia to {Bosnia Herzegovina, Croatia, Macedonia, Serbia, FYR
Montenegro, Slovenia.}

Current Typical Solution: Convert all old values and replace them with new
values. This could be an ongoing task and it results in loss of information.

Mesodata Solution: Utilise the mesodata types WGRAPH or TREE to map
old values to the new values. The domain of 'countries’ includes All country
names, current and superseded, which are then accessible to the DBMS with
the extended SQL operators and original values are not lost.

4.3 Domain Perception (Meaning) Change

Example: A perception change may entail an absolute change where there is
new interpretation or it may be the addition of synonyms. The days of the
week stored numerically from 1 to 7 inclusive may interpret the value ‘1’ as
‘Monday’, equally valid are the interpretations ‘lunes’, ‘lundi’, ‘maandag’,
‘Montag’, ‘segunda-feira’ and so forth.

Current Typical Solution: The application may be parameter driven to se-
lect a single preferred interpretation (such as language setting) or the users
must learn the dominant term.

Mesodata Solution: A mesodata layer allows regularly used mappings to be
accommodated in a database (see Eq. 5). Therefore we have
1 = ‘Monday’ = ‘lundi’ etc.

Mesodata helps to reduce potential systems changes to one of two simpler
solutions

1. A change to the schema definition that requires no change to either the
application or data.

2. A change to the mesodata reference relation with or without a change to the
schema but again, without the need to change either the application or the
data.

Schema integration and transformation is not required as the mesodata type
has the operators and ‘intelligence’ to replace these tasks. Information capacity
is not only maintained, as both requirements of equivalence and dominance are
met, but also in many cases expanded as the cartesian product of the mesodata
domains is greater than the original domain of the relation.

Our implementation of this model uses MySQL [16] software with wrappers to
transform our extended SQL, as described in [1]. Space precludes a more detailed
report of the implementation which will be the subject of a future paper.

5 Conclusion and Further Research

Though an attribute change in itself may not be a complex process it is not a
trivial task. Database evolution and maintenance consists of many such simple



Facilitating Database Attribute Domain Evolution Using Mesodata 439

steps as shown in [3] most of which also necessitate changes to application code
and system down time. The mesodata layer, an additional domain definition layer
containing domain structure and intelligence, provides the means to manage
some aspects of attribute domain evolution. We have shown that its use when a
domain changes, when the semantics of a domain alter or when the attribute’s
specification is modified can reduce or remove the necessity of schema conversion,
schema integration, data conversion and application change as well as maintain
or expand the schema’s information capacity.

Work in this area is progressing, particularly in the use of ontology frame-
works to describe and incorporate evolving domains into the mesodata layer.
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