Structural Matching and Discovery in Document Databases*

Jason Tsong-Li Wang
Computer and Information Science
New Jersey Institute of Technology

jason@village.njit.edu

Liam Relihan
Piercom Ltd., Inter. Business Center
National Tech. Park, Limerick, Ireland

liam.relithan@ul.ie

1 Background

Structural matching and discovery in documents such as
SGML and HTML is important for data warehousing [6],
version management [7, 11], hypertext authoring, digital li-
braries [4] and Internet databases. As an example, a user of
the World Wide Web may be interested in knowing changes
in an HTML document {2, 5, 10}. Such changes can be
detected by comparing the old and new version of the docu-
ment (referred to as structural matching of documents). As
another example, in hypertext authoring, a user may wish to
find the common portions in the history list of a document
or in a database of documents (referred to as structural dis-
covery of documents}). In SIGMOD 95 demo sessions, we
exhibited a software package, called TreeDiff [13], for com-
paring two latex documents and showing their differences.
Given two documents, the tool represents the documents as
ordered labeled trees and finds an optimal sequence of edit
operations to transform one document (tree) to the other.
An edit operation could be an insert, delete, or change of
a node in the trees. The tool is so named because docu-
ments are represented and compared using approximate tree
matching techniques [9, 12, 14].

2 System Architecture and Operators

Here we present an extension of TreeDiff for querying, com-
paring and discovering structured documents. Our new sys-
tem is equipped with a graphical interface and a powerful
query language that allows the user to compare documents
and to discover the (approximately) common portions of
documents. The front end of the system is composed of a
query processor and an SGML parser originally developed
by James Clark. Given a document type definition (DTD),
the SGML parser checks if an input document conforms to
the DTD. If the syntax is correct, the parser translates the
document to an ordered labeled tree. The query processor

*Work partially supported by NSF grants IRI-9224601, IRI-
9224602, IRI-8531548, IRI-9531554, and by the Natural Sciences
and Engineering Research Council of Canada under Grant No.
OGP0046373.

Permission to make digital/hard copy of part or all this work for
personal or classroom use is granted without fee provided that

copies are not made or distributed for profit or commercial advan-

tage, the copyright notice, the title of the publication and its date

appear, and notice is given that copying is by permission of ACM,

inc. To copy otherwise, to republish, to post on servers, or to

redistribute to lists, requires prior specific permission and/or a fee.

SIGMOD ‘97 AZ,USA
© 1997 ACM 0-89791-911-4/97/0005...$3.50

560

Dennis Shasha
Courant Institute
New York University
shasha@cs.nyu.edu

Kaizhong Zhang
Computer Science Department
Univ. of Western Ontario, Canada

kzhang@csd.uwo.ca

George J. S. Chang
Computer and Information Science
New Jersey Institute of Technology

gchang@homer.njit.edu

Girish Patel

Computer and Information Science
New Jersey Institute of Technology
girish@homer.njit.edu

checks the syntax of a given query. When the query involves
the comparison or structural discovery of documents, the
query processor invokes the back end of the system, which
performs approximate tree matching and discovery. Figure
1 illustrates the system architecture.

Display
Manager

documents
& DTD

Parser &

Query
Processor

Tree
trees Comparator

Fig. 1. System architecture.

The system provides several useful operators, which can
be used alone or included in a query, for comparing two
documents A and B:

¢ symdifference(A, B) - to find all the differences between
A and B (the structural elements in A not in B, the
structural elements in B not in A, and the structural
elements changed from A to B).

e difference(A, B) - to find the structural elements in A
not in B and the structural elements changed from A
to B.

e intersection(A, B) - to find the structural elements in
common between A and B (cf. Figures 2 - 4).

e union(A, B) - to find the structural elements in com-
mon, the structural elements in A not in B, the struc-
tural elements in B not in A, and the structural ele-
ments changed from A to B.

e mergable(O, A, B) - to determine whether A and B can
be merged where A, B are the documents obtained by
modifying document O; this function is true if B is
obtained by modifying different portions of O than A.

e merge(O, A, B) - to perform the merge of A and B;,
whenever some portion has changes from both A and data = data
B, then A’s changes will occur, but not B’s. Al [This memo is being This memo is bemd] Bl
o i o
AZ[Although only one Although only one] B3
<!doctype memo SYSTEM> data = data
A3 [Yours truly Yours truly] BS
— data = dua
This memo s being writien to ... A4 [Charles F. Goldfar Charles F. Goldfar] B6
the SGML markup minimization... Al

Fig. 4. The result of intersection(A, B). For each doc-
Although only onc tag is visible in ... ument element (e.g. a paragraph), only the first 18

“carbon copy” recipicat), the SGML ... characters are displayed.

3 Related Work

A2 Whereas much database research has been conducted to
manage structured documents such as SGML and HTML
(e.g., [1, 3, 8]), very few systems have been built to sup-
Yours truly, A3 port their comparison or the discovery of patterns in their
structures. As far as we know, only the LaDiff program
developed in [2] supports structural matching. Both our
Charies F. Goldfarb system and LaDiff represent hierarchically structured doc-

Ad uments as trees and identify changes in them. In contrast
to other systems dealing with flat information, the two sys-
tems are concerned with not only the “nodes” in the data,
but also their relationships. For example, if a node (and its
Fig. 2. An SGML memo document A. children} is moved from one location to another, both sys-
tems represent it as a “move” operation in the data. The
two systems differ, however, in some respects. First, they

use different notions of editing. We use a generalization of
<!doctype memo SYSTEM> edit distance as used in the Unix utility diff. LaDiff approx-
imates this edit distance in order to run faster. Second, we
include both querying and structural pattern discovery.
This memo is being written 10 ...
the SGML markoup minimizsion - 1 4 The Demonstration
In the demonstration of SIGMOD 97, we will show new
New Paragraph B2 queries for performing:
s document matching: aligning two documents and de-
Although only one tag is visible in ... tecting changes or differences of the documents;
"carbon copy™ recipient), the SGML ... ¢ document discovery: aligning two documents and iden-
tifying the largest (approximately) common portions
B3 of the documents;
¢ multiple documents discovery: finding the (approxi-
l New Paragraph B4] mately) common portions of a database of documents;
l Yours truly, B5 | ¢ similarity search: finding the document in a database
that is most similar to a given document;
[Charles F. Goldfarb Bé6 l e substructure search: finding the document in a database
that contains a given document;
e superstructure search: finding the document in a database
Fig. 3. An SGML memo document B. that is the same as a substructure of a given document.

The output of a query can be displayed alone or com-
bined with that of other utilities such as diff. For example,
Figure 5 illustrates document matching, showing the result
of symdifference(C, D) of two memos C and D. “=" indicates
that the two document elements (e.g. two section titles or
two paragraphs) are the same, while “/” indicates that the

561

document elements are changed, “>” indicates that the cor-
responding document element is inserted, and “<” indicates
the document element is deleted. The detailed comparisons
of the changed paragraphs using diff are displayed at the
end.

MEMO I MEMO
<MEMO FINAL SEC=" <MEMO FINAL SEC="
data <
Here is more infor »
) > daa
This paragraph has
data | data
Although only one Although only one
data | data
recipient), the SG recipient
»kexs EDITED TEXT *****
::2:: memo_C.sgm line 13-20 memo_D.sgm: line 14-21 :::::
3,5¢3,5
< carbon copy recipient), the SGML parser recognizes 15
< element types. This allows each element to be formatted
< for example, the start and end of a quotation can have
> carbon copy recipient), the SGML parser recognizes 14
> different element types. This allows each element to be
> differently; for example, the start and end of & quotation

Fig. 5. The resuit of symdifference(C, D).

Document changes or common portions are highlighted
in a colorful fashion through the graphical interface of our
system. The system is implemented using C, Perl and Tcl-
Tk on SUN SPARC workstations. Figure 6 shows a screen
shot of the system. We have prepared three versions: one
for SunQS, one for Solaris and one for other operating sys-
tems. The software is available for research purposes and
can be obtained from the authors (please visit the Web site
http://www.cis.njit.edu/~jason/demo.html for details).

References

[1] K. Bohm and K. Aberer. HyperStorM - administer-
ing structured documents using object-oriented database
technology. In Proceedings of the 1996 ACM SIGMOD
International Conference on Management of Dala, page
547, Montreal, Quebec, Canada, June 1996.

S. 8. Chawathe, A. Rajaraman, H. Garcia-Molina, and
J. Widom. Change detection in hierarchically structured
information. In Proceedings of the 1996 ACM SIGMOD
International Conference on Management of Data, pages
493-504, Montreal, Quebec, Canada, June 1996.

V. Christophides, S. Abiteboul, S. Cluet, and M. Scholl.
From structured documents to novel query facilities. In
Proceedings of the 1994 ACM SIGMOD International

(2]

3]

562

Conference on Management of Data, pages 313-324,
Minneapolis, Minnesota, May 1994.

[4] F. Douglis and T. Ball. Tracking and viewing changes
on the Web. In Proceedings of 1996 USENIX Technical

Conference, Jan. 1996.

F. Douglis, T. Ball, Y.-F. Chen, and E. Koutsofios. We-
bGUIDE: Querying and navigating changes in

Web repositories.
http://www.ics.forth.gr/~telemed/www5/www181
Joverview.htm.

J. Hammer, H. Garcia-Molina, J. Widom, W. Labio,
and Y. Zhuge. The Stanford Data Warehousing Project.
IEEE Data Engineering Bulletin, Special Issue on Mate-
rialized Views and Data Warehousing, 18(2):41-48, June
1995.

5

[Swt

(6}

H. C. Howard, A. M. Keller, A. Gupta, K. Krishna-
murthy, K. H. Law, P. M. Teicholz, S. Tiwari, and J. Ull-
man. Versions, configurations, and constraints in CEDB.
CIFE Working Paper 31, Center for Integrated Facilities
Engineering, Stanford University, April 1994.

[7]

[8] T. Nguyen and V. Srinivasan. Accessing relational
databases from the World Wide Web. In Proceedings
of the 1996 ACM SIGMOD International Conference on
Management of Data, pages 529-540, Montreal, Quebec,

Canada, June 1996.

D. Shasha and K. Zhang. Fast algorithms for the unit
cost editing distance between trees. Journal of Algo-
rithms, 11(4):581-621, 1990.

[10] The C3 Project at Stanford. Changes, consistency, and
configurations in heterogeneous distributed information
systems. http://www-db.stanford.edu/c3/c3.html#999.

[11] W. Tichy. RCS: A system for version control. Software
- Practice and Ezperience, 15(7):637-654, July 1985.

[12] J. T. L. Wang, K. Zhang, K. Jeong, and D. Shasha. A
system for approximate tree matching. /EEE Transac-
tions on Knowledge and Data Engineering, 6(4):559-571,
August 1994,

[13] J. T. L. Wang, K. Zhang, and D. Shasha. Pattern
matching and pattern discovery in scientific, program,
and document databases. In Proceedings of the 1995
ACM SIGMOD International Conference on Manage-
ment of Data, page 487, San Jose, California, May 1995.

{14] K. Zhang and D. Shasha. Simple fast algorithms for
the editing distance between trees and related prob-
lems. SIAM Journal on Computing, 18(6):1245-1262,
Dec. 1989.

[9]

Decument Ons: docd.sgm
Line No Labet

LORDOC
<LORDOC PINAL TIT

In peactiss, theaa
[3-4)
data
In parkicular, tha
CTION
<SECTION TIILE="D
ta
analogise will be
w
<>
L
<LI»
data
Netalanguages, Dat
Ll

ta

Programming Langua
LI

»

data
Programs, Database
data

4

3 21
data

Just a9 a progzam
} 4

<?»

data
Such analogies are
w

ta
To provide an insi
LI

LR 4N

ta

Advances in hardwa
P

<P>
data

In particular, the
P

P>

data
Similarly. the abi

aoved to line 10

. moved to line 11

SECTION
d:ﬂc‘l'!(l TITLE="D

ta
Analogies will be
<>

LI

data

Metalanguages, Dat
LI

ta

Programming Langua
LI

ta

Programs, Database
data

P>
data

Just as a program
P

<

data

Such analogies are
.

LI

ta

To provide an insi

TN

~] Document Comparision Tools

Select

&

Cospare

2

e/a

o -
R T T

Fig. 6. The result of comparing two SGML articles. The two windows on the right show the articles. The left window
displays the output of the comparison. In addition to showing the inserts, deletes and changes of paragraphs, the system
can also show their movement (lines 10 and 22). When the user clicks on the particular document element of interest,
that portion of the document is scrolled to the top in the right windows. If the user is interested in section changes only,
rather than paragraph changes, the system displays a size parameter for each section, where “size = n” means that the
total number of inserts, deletes and changes of paragraphs in that section is n. Moreover, the section with a larger change
gize is displayed in a deeper color.

563

