
Discovering Direct and Indirect Matches for Schema Elements∗

Li Xu and David W. Embley
Department of Computer Science

Brigham Young University
Provo, Utah 84602, U.S.A.
{lx,embley}@cs.byu.edu

Abstract

Automating schema matching is challenging. Previous
approaches (e.g. [9, 5]) to automating schema matching
focus on computing direct element matches between two
schemas. Schemas, however, rarely match directly. Thus, to
complete the task of schema matching, we must also com-
pute indirect element matches. In this paper, we present
a framework for generating direct as well as many indi-
rect element matches between a source schema and a target
schema. Recognizing expected data values associated with
schema elements and applying schema-structure heuristics
are the key ideas to computing indirect matches. Experi-
ments we have conducted over several real-world applica-
tion domains show encouraging results, yielding over 90%
precision and recall for both direct and indirect element
matches.
Keyword: Schema matching, data integration, schema inte-
gration, data exchange.

1. Introduction

In this paper, we focus on the long-standing and
challenging problem of automating schema matching [9].
Schema matching is a key operation for many applica-
tions including data integration, schema integration, mes-
sage mapping in E-commerce, and semantic query process-
ing [15]. Schema matching takes two schemas as input and
produces as output a semantic correspondence between the
schema elements in the two input schemas [15]. In this
paper, we assume that we wish to map schema elements
from a source schema into a target schema. In its sim-
plest form, the semantic correspondence is a set of direct
element matches each of which binds a source schema el-
ement to a target schema element if the two schema ele-
ments are semantically equivalent. To date, most research

∗This material is based upon work supported by the National Science
Foundation under grant IIS-0083127.

[2, 5, 7, 8, 9, 12, 13] has focused on computing direct ele-
ment matches. Such simplicity, however, is rarely suf£cient,
and researchers have thus proposed the use of queries over
source schemas to form virtual schema elements to bind
with target schema elements [3, 11]. In this more compli-
cated form, the semantic correspondence is a set of indi-
rect element matches each of which binds a virtual source
schema element to a target schema element through appro-
priate manipulation operations over a source schema.

We assume that all source and target schemas are de-
scribed using rooted conceptual-model graphs (a conceptual
generalization of XML). Element nodes either have associ-
ated data values or associated object identi£ers, which we
respectively call value schema elements and object schema
elements. We augment schemas with a variety of ontolog-
ical information. For this paper the augmentations we dis-
cuss are WordNet [10], sample data, and regular-expression
recognizers. For each application, we construct a domain
ontology [6], which declares the regular-expression recog-
nizers. We use the regular-expression recognizers to dis-
cover both direct and indirect matches between two arbi-
trary schemas. Based on the graph structure and these aug-
mentations, we exploit a broad set of techniques together to
settle direct and indirect element matches between a source
schema and a target schema. As will be seen, regular-
expression recognition and schema structure are the key
ways to detect indirect element matches.

In this paper, we offer the following contributions: (1)
a way to discover many indirect semantic correspondences
between a source schema S and a target schema T as well as
the direct correspondences and (2) experimental results of
our implementation to show that it performs as well (indeed
better) than other approaches for direct element matches
and also performs exceptional well for the indirect matches
with which we work. We present the details of our con-
tribution as follows. Section 2 explains what we mean by
direct and indirect matches between S and T . Section 3
describes a set of basic matching techniques to £nd poten-
tial element matches between elements in S and elements

Proceedings of the Eighth International Conference on Database Systems for Advanced Applications (DASFAA’03)
0-7695-1895/03 $17.00 © 2003 IEEE

House

Bedrooms
Bathrooms

MLS

Agent

Name

Evening_Phone

Email

Square_Feet
Location

Architecture_Style

Address

Water_Front

Well

Golf_Course

Day_Phone

(a) Schema 1

house

beds
baths

mls

agent
name

phone

fax

SQFT

location

style

address street

county

citystate

(b) Schema 2

in T , and to provide con£dence measures between 0 (low-
est con£dence) and 1 (highest con£dence) for each potential
match. Section 4 presents an algorithm to settle direct and
indirect matches between S and T . Section 5 gives experi-
mental results for a data set used in [5] to demonstrate the
success of our approach. In Section 6 we summarize, con-
sider future work, and draw conclusions.

2. Source-to-Target Mappings

We represent all source and target schemas using rooted
conceptual-model graphs. Nodes of the graph denote object
and value schema elements, and edges of the graph denote
relationships among object and value schema elements. The
root node is a designated object of primary interest. Fig-
ure 2, for example, shows two schema graphs, each par-
tially describing a real-estate application. In a schema graph
we denote value schema elements as dotted boxes, object

schema elements as solid boxes, functional relationships as
lines with an arrow from domain to range, and nonfunc-
tional relationships as lines without arrowheads.

The output of schema matching is a set of element map-
pings that match actual or virtual source schema elements
with £xed target schema elements. Our source-to-target
mappings allow for a variety of source derived data, includ-
ing missing generalizations and specializations, merged and
split values, and transformation of attributes with Boolean
indicators into values.

We say that a match (s, t) is direct when a source
schema element s and a target schema element t denote the
same set of values or objects. To detect direct matches,
researchers typically look for synonym matches between
names of schema elements. Sometimes, however, the iden-
ti£cation of synonyms is not enough [7]. Our approach con-
siders both schema information and data instances to help
settle direct element matches, and thus largely avoids this
problem of being misled by polysemy.

Although a source may not have a schema element that
directly matches a target element, target facts may never-
theless be derivable from source facts. We call these corre-
spondences indirectmatches. When trying to detect indirect
matches, we consider the following problems, which we il-
lustrate using the schemas in Figure 2.

1. Generalization and Specialization. Two elements,
Day Phone and Evening Phone in Figure 1(a) are
both specializations of phone values in Figure 1(b).
Thus, if Figure 1(b) is the target, we need the union of
Day Phone and Evening Phone, and if Figure 1(a)
is the target, we should £nd a way to separate the day
phones from the evening phones.

2. Merged and Split Values. Four elements, street,
county, city, and state are separate in Figure 1(b) and
merged as Location of a house or Address of an agent
in Figure 1(a). Thus, we need to split the values if Fig-
ure 1(b) is the target and merge the values if Figure 1(a)
is the target.

3. Schema Element Name as Value. In Figure 1(a), the
featuresWater Front andGolf Course are schema
element names rather than values. The Boolean values
“Yes” and “No” associated with them are not the val-
ues but indicate whether the valuesWater Front and
Golf Course should be included as description val-
ues for location in Figure 1(b).

Currently, we use £ve operations over source schemas to
resolve these problems.

1. Selection. The data values of a target schema element
are a subset of the values of a source schema element.

Proceedings of the Eighth International Conference on Database Systems for Advanced Applications (DASFAA’03)
0-7695-1895/03 $17.00 © 2003 IEEE

2. Union. The data values of a target schema element are
a superset of the values of a source schema element
(usually several source schema elements). Union is the
inverse of Selection.

3. Composition. The values of a target schema element
match a concatenation of values from two or more
source schema elements.

4. Decomposition. The values of target schema elements
match a decomposition of values of a source schema
element. Decomposition is the inverse of Composition.

5. Boolean. Attribute names with Boolean values (e.g.
“Yes/No”) of a source (target) schema are values in a
target (source) schema.

The recognition and speci£cation of these operations de-
pend on the matching techniques we describe in Sections 3
and 4. Generating operations for Merged and Split Values
and for Subsets and Supersets is straightforward if we can
recognize the types of matches required. For Schema Ele-
ment Name as Value, the resolution depends on being able
to recognize the element name as a potential target value,
or element values as potential target element names. Then,
in harmony with the source values (e.g. “Yes”/“No”) and
target element names or source element names and target
values (e.g. “Yes”/“No”), we can determine the mapping.

3. Matching Techniques

In this section we explain our four basic techniques for
matching: (1) terminological relationships (e.g. synonyms
and hypernyms), (2) data-value characteristics (e.g. string
lengths and alphanumeric ratios), (3) domain-speci£c,
regular-expression matches (i.e. the appearance of expected
strings), and (4) structure (e.g. structural similarities).

3.1. Terminological Relationships

The meaning of element names provides a clue about
which elements match. To match element names, we use
WordNet [10] which organizes English words into synonym
and hypernym sets. Other researchers have also suggested
using WordNet to match attributes (e.g. [2]), but have given
few, if any, details. We use a C4.5 [14] learning algorithm to
train a set of decision rules to compute a con£dence value,
denoted conf1(s, t), where s is a source schema element
and t is a target schema element. See [7] for details.

Assuming Schema 1 in Figure 1(a) is a target schema,
and Schema 2 in Figure 1(b) is a source schema, when we
apply the test for terminological relationships of schema el-
ement names, the con£dence value conf1(s, t) is high for
the matches such as (house, House), (beds, Bedrooms),

(baths, Bathrooms), (phone, Day Phone), and (phone,
Evening Phone), as it should be. Also, the con£dence of
(location, Location) is high, even though the meaning is
entirely different; but, as we shall see, other techniques can
sort out this anomaly.

3.2. Data-Value Characteristics

Whether two sets of data have similar value character-
istics provides another a clue about which elements match.
Previous work in [8] shows that this technique can success-
fully help match elements by considering such character-
istics as string-lengths and alphabetic/non-alphabetic ratios
of alphanumeric data and means and variances of numeri-
cal data. We use features similar to those in [8], but generate
a C4.5 decision tree rather than a neural-net decision rule.
Based on the decision tree, we generate a con£dence value,
denoted conf2(s, t), for each element pair (s, t) of value
schema elements. See [7] for details.

Testing the decision rule using data values associated
with Schema 2 in Figure 1(b) as a source schema and
Schema 1 in Figure 1(a) as a target schema, the con£dence
value conf2(s, t) is high for the matches such as (beds,
Bedrooms), (baths, Bathrooms), (phone,Day Phone),
and (fax, Day Phone) as expected. However, mls in
the source and Location in the target tend to look alike
according to the value characteristics measured, a surprise
which needs other techniques to £nd the difference. Inter-
estingly, the lot features in location of the source schema
and the house locations in Location of the target schema do
not have similar value characteristics; this is because their
alphabetic/non-alphabetic ratios are vastly different, as they
should be.

3.3. Expected Data Values

Whether expected values appear in a set of data provides
yet another clue about which elements match. For a speci£c
application, we can specify a domain ontology [6], which
includes a set of concepts and relationships among the con-
cepts, and associates with each concept a set of regular ex-
pressions that matches values and keywords expected to ap-
pear for the concept. Then, using techniques described in
[6], we can extract values from sets of data associated with
source and target value elements and categorize their data-
value patterns based on the regular expressions declared for
application concepts. The derived data-value patterns and
the declared relationship sets among concepts in the domain
ontology can help discover both direct and indirect matches
for schema elements.

We declare the concepts and relationship sets in our do-
main ontologies independently of any target and source
schemas. Figure 1 shows three components in our real-

Proceedings of the Eighth International Conference on Database Systems for Advanced Applications (DASFAA’03)
0-7695-1895/03 $17.00 © 2003 IEEE

estate domain ontology, which we used to automate match-
ing of the two schemas in Figure 2 and also for match-
ing real-world schemas in the real-estate domain in gen-
eral. The three components include an address com-
ponent specifying Address as potentially consisting of
State, City, County, and Street;1 a phone component
specifying Phone as a possible superset of Day Phone,
Evening Phone, Home Phone, Office Phone, and
Cell Phone;2 and a lot-feature component specifying
Lot Feature as a possible superset of V iew values and in-
dividual valuesWater Front and Golf Course.3 Behind
a dotted box (or individual value), a regular-expression rec-
ognizer [6] describes the expected data values for a poten-
tial application concept. The ontology explicitly declares
that (1) the expected values in Address match with a con-
catenation of the expected values for Street,County,City
and State; (2) the set of values associated with Phone is a
superset of the values in Day Phone, Evening Phone,
Home Phone, Office Phone, and Cell Phone; and (3)
the set of values associated with Lot Feature is a superset
of the values associated with the set of V iew values and the
singleton-setsWater Front and Golf Course.

Provided with the domain ontology just described and
a set of data values in value elements in Schema 1 in Fig-
ure 1(a) and Schema 2 in Figure 1(b), we can discover in-
direct matches as follows. (We £rst explain the idea with
examples and then more formally explain how this works in
general.)

1. Composition and Decomposition. Based on the
Address declared in the ontology in Figure 1, the
recognition-of-expected-values technique [6] can help
detect that (1) the values of both Address and
Location in Schema 1 match with the ontology con-
cept Address, and (2) the values of street, county,
city, and state in Schema 2 match with the ontol-
ogy concepts Street, County, City, and State respec-
tively. Thus, if Schema 1 is the source and Schema 2
is the target, we can use Decomposition over Address
and Location in the source to indirectly match with
street, county, city, and state in the target. If we
switch and let Schema 2 be the source and Schema
1 be the target, based on the same information, we
can identify the same set of indirect matching element
pairs except that the manipulation operation becomes
Composition.

2. Union and Selection. Based on the speci£cation
of the regular expression matched for Phone, the

1Filled-in (black) triangles denote aggregation (“part-of” relation-
ships).

2Open (white) triangles denote generalization/specialization (“ISA” su-
persets and subsets).

3Large black dots denote individual objects or values.

Address

Street

County City

State

Phone

Day Phone

Evening Phone

Home Phone

Office Phone

Cell Phone

Lot Feature

ViewWater Front

Golf Course

Figure 1. Application Domain Ontology (Par-
tial)

schema elements Day Phone and Evening Phone
in Schema 1 match with the conceptsDay Phone and
Evening Phone respectively, and phone in Schema
2 also matches with the concept Phone. Phone in
the ontology explicitly declares that the set of expected
values of Phone is a superset of the expected val-
ues of Day Phone and Evening Phone. Thus, we
are able to identify the indirect matching schema ele-
ments between phone in Schema 2 and Day Phone
and Evening Phone in Schema 1. If Schema 1 is
the source and Schema 2 is the target, we can apply
a Union operation over Schema 1 to derive a virtual
schema element Phone′, which can directly match
with phone in Schema 2. If Schema 2 is the source
and Schema 1 is the target, we may be able to rec-
ognize keywords such as day-time, day, work phone,
evening, and home associated with each listed phone
in the source. If so, we can use a Selection operation to
sort out which phones belong in which specialization
(if not, a human expert may not be able to sort these

Proceedings of the Eighth International Conference on Database Systems for Advanced Applications (DASFAA’03)
0-7695-1895/03 $17.00 © 2003 IEEE

out either).

3. Schema Element Name as Value. Because regular-
expression recognizers can recognize schema
element names as well as values, the recog-
nizer for Lot Feature recognizes names such as
Water Front and Golf Course in Schema 1 as
values. Moreover, the recognizer for Lot Feature can
also recognize data values associated with location in
Schema 2 such as “Mountain View”, “City Overlook”,
and “Water-Front Property”. Thus, when Schema 2 is
the source and Schema 1 is the target, whenever we
match a target-schema-element name with a source
location value, we can declare “Yes” as the value for
the matching target concept. If, on the other hand,
Schema 1 is the source and Schema 2 is the target, we
can declare that the schema element name should be a
value for location for each “Yes” associated with the
matching source element.

We now more formally describe these three types of in-
direct matches. Let ci be an application concept, such as
Street, and consider a concatenation of concepts such as
Address components. Suppose the regular expression for
concept ci matches the £rst part of a value v for a value
schema element and the regular expression for concept cj
matches the last part of v, then we say that the concatena-
tion ci ◦ cj matches v. In general, we may have a set of
concatenated concepts Cs match a source element s and a
set of concatenated concepts Ct match a target element t.
For each concept in Cs or in Ct, we have an associated hit
ratio. Hit ratios give the percentage of s or t values that
match (or are included in at least some match) with the val-
ues of the concepts in Cs or Ct respectively. We also have
a hit ratio rs associated with Cs that gives the percentage
of s values that match the concatenation of concepts in Cs,
and a hit ratio rt associated with Ct that gives the percent-
age of t values that match the concatenation of concepts in
Ct. To obtain hit ratios for Boolean £elds recognized as
schema-element names, we distribute the schema-element
names over all the Boolean £elds.

We decide if s matches with t directly or indirectly by
comparing Cs and Ct. If Cs equals Ct, we declare a direct
match (s, t). Otherwise, if Cs ⊃ Ct (Cs ⊂ Ct), we derive
an indirect match (s, t) through a Decomposition (Compo-
sition) operation. If both Cs and Ct contain one individual
concept cs and ct respectively, and if the values of concept
cs (ct) are declared as a subset of the values of concept ct
(cs), we derive an indirectmatch (s, t) through a Union (Se-
lection) operation. When we have schema-element names
as values, distribution of the name over the Boolean value
£elds converts these schema elements into standard schema
elements with conventional value-populated £elds. Thus,
no additional comparisons are needed to detect direct and

indirect matches when schema-element names are values. 4

We must, however, remember the Boolean conversion for
both source and target schemas to correctly derive indirect
matches.

We compute the con£dence value for a mapping (s, t),
which we denoted as conf3(s, t), as follows. If we can
declare a direct match or derive an indirect match through
manipulating Union, Selection, Composition, Decomposi-
tion, and Boolean for (s, t), and the hit ratios rs and rt are
above an accepted threshold, we output the highest con£-
dence value 1.0 for conf3(s, t). Otherwise, we construct
two vectors vs and vt whose coef£cients are hit ratios as-
sociated with concepts in Cs and Ct. To take the partial
similarity between vs and vt into account, we calculate a
VSM [1] cosine measure cos(vs, vt) between vs and vt, and
let conf3(s, t) be (cos(vs, vt) × (rs + rt)/2).

3.4. Structure

We consider structure matching as one more technique
that provides a clue about which elements match. Given the
con£dence measures output from the other matching tech-
niques as a guide, structure matching determines element
matches by considering contexts around schema elements.

As an example of how structure uses contexts of schema
elements to help resolve schema matching, and especially
how it helps identify indirect element matches, consider
address in Schema 2 (Figure 1(b)), which contains address
objects that are functionally dependent on the object schema
elements house and agent. In Schema 1 (Figure 1(a)),
there are two kinds of addresses: Location, which con-
tains house location addresses, and Address, which con-
tains agent contact addresses. Assume that Schema 2
is the source and Schema 1 is the target. By consider-
ing the value elements, we observe that street, county,
city and state in Schema 2 match with both Location
and Address in Schema 1 indirectly through the Compo-
sition operation with a con£dence factor, conf3. Based
on this observation and on structural observations, we can
declare two sets of indirect element matches. One set
includes (state, Location), (county, Location), (city,
Location), and (street, Location). The other set includes
(state, Address), (county, Address), (city, Address),
and (street, Address). For each matching element pair,
we add a Selection operation, based on the structure, in
conjunction with the Composition operation to separate
the concatenation of street, county, city, and state in
Schema 2 to match correctly with Location and Address
in Schema 1.

4Clearly, the system would take different actions when transferring the
data between schemas, but this is beyond the scope of this paper, which
focuses only on discovering direct and indirect matches among schema
elements.

Proceedings of the Eighth International Conference on Database Systems for Advanced Applications (DASFAA’03)
0-7695-1895/03 $17.00 © 2003 IEEE

4. Matching Algorithm

We have implemented an algorithm using our matching
techniques that produces both direct and indirect matches
between a source schema S and a target schema T . We
informally explain this algorithm as follows.
Step 1: Compute conf measures between S and T . For
each pair of schema elements (s, t), which are either both
value elements or both object elements, the algorithm com-
putes a con£dence value, conf(s, t), to combine the out-
put con£dence values of the three nonstructural matching
techniques. We compute conf(s, t) using the following for-
mula.

conf(s, t) ={
conf1(s, t) , if s and t are object elements
1.0 , if conf3(s, t) = 1.0 and s and t are value elements
ws(conf1(s, t)) + wv(conf2(s, t) + conf3(s, t))/2 , otherwise

In this formula, ws and wv are experimentally determined
weights.5 When the con£dence value conf3(s, t) = 1.0, we
let conf3 dominate and assign conf(s, t) as 1.0 and keep
the detected manipulation operations (Selection, Union,
Composition, Decomposition, Boolean) for indirect el-
ement matches. The motivation for letting conf3(s, t) dom-
inate is that when expected values appear in both source and
target schema elements and they both match well with the
values we expect, this is a strong indication that the ele-
ments should match (either directly or indirectly). Since
the domain ontology is not guaranteed to be complete (and
may even have some inaccuracies) for a particular applica-
tion domain, the con£dence values obtained from the other
techniques can complement and compensate for the inade-
quacies of the domain knowledge. This motivates the third
part of the computation for conf(s, t).
Step 2: Settle object element matches. When comparing
two object element s and t, we take three factors into ac-
count: (1) the combined con£dence measure conf(s, t),
(2) an importance similarity measure simimportance(s, t),
and (3) a vicinity similarity measure simvicinity(s, t).
We can declare a matching pair (s, t) if conf(s, t),
simimportance(s, t), and simvicinity(s, t) are high. The lat-
ter two measures together represent the similarity between
the contexts of s and t. We let atomsd(e) denote the set of
value elements directly connected to an object schema ele-
ment e and let atoms(e) =

⋃
e′∈E′ atomsd(e′) denote the

value elements of e, where E′ is an object schema element
set including e and other object schema elements that are
functional dependent on e. We denote atomsvalue(S) and
atomsvalue(T) as the sets of all value elements collected

5The two parameters ws, which weights schema element names, and
wv , which weights schema element values, are application dependent. Us-
ing a heuristic guide, however, we can determine the two parameters based
on schemas and available data even without experimental evidence. If the
schema element names are informative and the data is not self descriptive,
we assign ws as 0.8 and wv as 0.2. On the other hand, if the schema
element names are not informative and the data is semantically rich, we
assign ws as 0.2 and wv as 0.8. For all other cases, we assign both ws and
wv as 0.5.

from S and T respectively. Given an experimentally deter-
mined threshold, thconf ,6 we calculate simimportance(s, t)
and simvicinity(s, t) based on the following formulas.

simvicinity(s, t) =

max(
|{x|x ∈ atoms(s) ∧ ∃y ∈ atoms(t)(conf(x, y) > thconf)}|

|atoms(s)| ,

|{x|x ∈ atoms(t) ∧ ∃y ∈ atoms(s)(conf(y, x) > thconf)}|
|atoms(t)|)

simimportance(s, t) = 1.0 − | atoms(s)

atomsvalue(S)
− atoms(t)

atomsvalue(T)
|

Intuitively, simvicinity measures the similarity of the vicin-
ity surrounding s and the vicinity surrounding t, and
simimportance measures the similarity of the “importance”
of s and the “importance” of t where we measure the “im-
portance” of an object node N by counting the number of
value nodes related to N and all other object nodes in the
functional closure of N . When the number of schema ele-
ments is largely different, it is dif£cult to decide the vicin-
ity similarity based on one measure, simvicinity [9]. The
conceptual analysis techniques discussed in [4] motivated
simimportance, which helps measure the context similarity
from an additional perspective.
Step 3: Settle value element matches. For each matching
pair (s, t) of object elements settled in Step 2, we £rst set-
tle value element matches of children of s and t (or chil-
dren of functionally dependent object elements of children
of s and t) that match with high con£dence (conf = 1.0).
For all remaining unsettled value schema elements of s
and t, we £nd a best possible match so long as the con-
£dence of the match is above the threshold, thconf . For
each of the matches, given the structure information and
the expected-value matches, we determine the appropriate
operation (or sequence of operations) required to transform
source schema elements into virtual elements that directly
match with target schema elements.
Step 4: Output both direct and indirect element matches
with manipulation operations.

5. Experimental Results

We evaluate the performance of our approach based on
three measures: precision, recall and the F-measure, a stan-
dard measure for recall and precision together [1]. Given
(1) the number of direct and indirect matchesN determined
by a human expert, (2) the number of correct direct and in-
direct matches C selected by our process described in this
paper and (3) the number of incorrect matches I selected by
our process, we compute the recall ratio as R = C/N , the

6For any application, the computed con£dence values tend to converge
to a speci£c high measure for element matches between two schemas.
Thus, we use a universal threshold value. Experimentally, we have de-
termined that 0.7 works well across all applications.

Proceedings of the Eighth International Conference on Database Systems for Advanced Applications (DASFAA’03)
0-7695-1895/03 $17.00 © 2003 IEEE

precision ratio as P = C/(C + I), and the F-measure as
F = 2/(1/R+1/P). We report all these values as percent-
ages.

We tested the approach proposed here using the run-
ning example in our paper and also on several real-world
schemas in three different application domains. In our ex-
periments, we evaluated the contribution of different tech-
niques and different combinations of techniques. We al-
ways used both structure and terminological relationships
because given any two schemas, these techniques always
apply even when no data is available. Thus, we tested our
approach with four runs on each source-target pair. In the
£rst run, we considered only terminological relationships
and structure. In the second run, we added data-value char-
acteristics. In the third run, we replaced data-value charac-
teristics with expected data values, and in the fourth run we
used all techniques together.

5.1. Running Example

We applied the matching algorithm explained in Sec-
tion 4 to the schemas in Figure 2 populated (by hand) with
actual data we found in some real-estate sites on the Web.
In the £rst test, we let Schema 2 in Figure 1(b) be the
source and Schema 1 in Figure 1(a) be the target. In the
£rst run, the algorithm discovered all 8 direct matches cor-
rectly, but it also misclassi£ed the source schema element
location (meaning “view” or “on the water front” or “by a
golf course”) by matching it with the target schema element
Location (meaning address). In the £rst run, the algorithm
also successfully discovered 2 of the 12 indirect matches—
(phone, Day Phone) and (phone, Evening Phone)—
and correctly output the Selection operation. In the second
run, by adding the analysis of data-value characteristics, the
false positive (location, Location) disappeared, but the al-
gorithm generated no more indirect matches than in the £rst
run. In both the third and fourth runs, the algorithm suc-
cessfully discovered all direct and indirect matches. Espe-
cially noteworthy, we observed that our approach correctly
discovered context-dependent indirect matches (e.g. (city,
Address), (state, Address), ...) and appropriately pro-
duced operations composed of a combination of Compo-
sition and Selection. The result of the second test on our
running example, in which we switched the schemas and
let Schema 1 be the source schema and Schema 2 be the
target schema, gave the same results as in the £rst test.

5.2. Real-World Examples

We considered three real-world applications: Course
Schedule, Faculty, and Real Estate to evaluate our approach.
We used a data set downloaded from the LSD homepage
[5] for these applications, and we faithfully translated the

Application Number of Number Number
Matches (N) Correct (C) Incorrect (I)

Course Schedule 128 119 1
Faculty 140 140 0
Real Estate 245 229 22
All Applications 513 488 23

Table 1. Results for Real-World Examples

schemas from DTDs used by LSD to rooted conceptual-
model graphs. For testing these real-world applications, we
decided to let any one of the schema graphs for an appli-
cation be the target and let any other schema graph for the
same application be the source. Because our tests are nearly
symmetrical, we decided not to test any target-source pair
also as a source-target pair (as we did in our running ex-
ample). We also decided not to test any single schema as
both a target and a source. Since for each application there
were £ve schemas, we tested each application 10 times. All
together we tested 30 target-source pairs. For each target-
source pair, we made four runs, the same four we made for
our running example. All together we processed 120 runs.

Table 1 shows as summary of the results for the real-
world data using all four techniques together. In two of the
three applications, Course Schedule and Faculty, there were
no indirect matches. For all four runs on Faculty every mea-
sure (recall, precision, F-measure) was 100%. For Course
Schedule, the £rst and second run achieved above 90% and
below 95% on all measures; and the third and fourth run
gave the results for Course Schedule as Table 1 shows.

The Real Estate application exhibited several indirect
matches. The problem of Merged/Split Values appeared
twice, the problem of Subsets/Supersets appeared 24 times,
and the problem of Schema Element Name as Value ap-
peared 5 times. The experiments showed that the appli-
cation of expected data values in the third and fourth run
greatly affected the performance. In the £rst run, the mea-
sures were only about 75%. In the second run, the use
of data-value characteristics improved the performance, but
only a little because the measures were still below 80%. By
applying expected data values in the last two runs, however,
the performance improved dramatically. In the third run,
the F-measures reached 91% and reached 92% by using all
four techniques as Table 1 shows.

Our process successfully found all the indirect matches
related to the problems of Merged/Split Values and Schema
Element Name as Value. For the problem of Sub-
sets/Supersets, our process correctly found 22 of the 24
indirect matches and declared two extra indirect matches.
Over all the indirect element mappings, the three measures
(recall, precision, and F-measure) were (coincidentally) all
94%.

Proceedings of the Eighth International Conference on Database Systems for Advanced Applications (DASFAA’03)
0-7695-1895/03 $17.00 © 2003 IEEE

5.3. Discussion

The experimental results show that the combination of
terminological relationships and structure alone can pro-
duce fairly reasonable results, but by adding our technique
of using expected data values, the results are dramatically
better. Unexpectedly, the technique of using data-value
characteristics did not help very much for these application
domains. Our analysis of data-value characteristics is sim-
ilar to the analysis in SEMINT [8], which produced good
results for their test data. The data instances in the real-
world applications we used, however, do not appear to be as
regular as might be expected. For these applications, a large
amount of training data would be needed to train a universal
decision tree required for this approach.

Some element matches failed in our approach partly be-
cause they are potentially ambiguous, and our assertions
about what should and should not match are partly subjec-
tive.we tested our approach using the same test data set as
in LSD [5], the answer keys were generated separately and
may not be the same. Furthermore, neither the experimental
methodologies nor the performance measures used are the
same. With this understanding, we remark that [5] reported
approximate accuracies of 70% for Course Schedule, 90%
for Faculty, 70% and 80% for the two experiments they ran
on the Real Estate application. Thus, although our raw per-
formance numbers are an improvement over [5], we do not
try to draw any £nal conclusion.

6. Conclusion

We presented a framework for automatically discover-
ing both direct matches and many indirect matches be-
tween sets of source and target schema elements. In our
framework, multiple techniques each contribute in a com-
bined way to produce a £nal set of matches. Techniques
considered include terminological relationships, data-value
characteristics, expected values, and structural characteris-
tics. We detected indirect element matches for Selection,
Union, Composition, and Decomposition operations as
well as Boolean conversions for Schema-Element Names
as Values. We base these operations and conversions mainly
on expected values and structural characteristics. Addi-
tional indirect matches, such as arithmetic computations
and value transformations, are for future work. We also plan
to semi-automatically construct domain ontologies used for
expected values, automate application-dependent parameter
tuning, and test our approach in a broader set of real-world
applications. As always, there is more work to do, but the
results of our approach for both direct and indirect match-
ing are encouraging, yielding over 90% in both recall and
precision.

References

[1] R. Baeza-Yates and B. Ribeiro-Neto. Modern Information
Retrieval. Addison Wesley, Menlo Park, California, 1999.

[2] S. Bergamaschi, S. Castano, and M. Vincini. Semantic inte-
gration of semistructured and structured data sources. SIG-
MOD Record, 28(1):54–59, March 1999.

[3] J. Biskup and D. Embley. Extracting information from het-
erogeneous information sources using ontologically speci-
£ed target views. Information Systems, 28(1), 2003. To
appear, currently at http://www.deg.byu.edu/papers/int.pdf.

[4] S. Castano, V. D. Antonellis, M. Fugini, and B. Pernici. Con-
ceptual schema analysis: Techniques and applications. ACM
Transactions on Database Systems, 23(3):286–333, Septem-
ber 1998.

[5] A. Doan, P. Domingos, and A. Halevy. Reconciling schemas
of disparate data sources: A machine-learning approach. In
Proceedings of the 2001 ACM SIGMOD International Con-
ference on Management of Data, pages 509–520, Santa Bar-
bara, California, May 2001.

[6] D. Embley, D. Campbell, Y. Jiang, S. Liddle, D. Lonsdale,
Y.-K. Ng, and R. Smith. Conceptual-model-based data ex-
traction from multiple-record Web pages. Data & Knowl-
edge Engineering, 31(3):227–251, November 1999.

[7] D. Embley, D. Jackman, and L. Xu. Multifaceted exploita-
tion of metadata for attribute match discovery in information
integration. In Proceedings of the International Workshop
on Information Integration on the Web (WIIW’01), pages
110–117, Rio de Janeiro, Brazil, April 2001.

[8] W. Li and C. Clifton. SEMINT: A tool for identifying
attribute correspondences in heterogeneous databases us-
ing neural networks. Data & Knowledge Engineering,
33(1):49–84, 2000.

[9] J. Madhavan, P. Bernstein, and E. Rahm. Generic schema
matching with Cupid. In Proceedings of the 27th Interna-
tional Conference on Very Large Data Bases (VLDB’01),
pages 49–58, Rome, Italy, September 2001.

[10] G. Miller. WordNet: A lexical database for English. Com-
munications of the ACM, 38(11):39–41, November 1995.

[11] R. Miller, L. Haas, and M. Hernandez. Schema mapping
as query discovery. In Proceedings of the 26th International
Conference on Very Large Databases (VLDB’00), pages 77–
88, Cairo, Egypt, September 2000.

[12] T. Milo and S. Zohar. Using schema matching to simplify
heterogeneous data translation. In Proceedings of the 24th
International Conference on Very Large Data Bases (VLDB-
98), pages 122–133, New York City, New York, August
1998.

[13] L. Palopoli, G. Teracina, and D. Ursino. The system DIKE:
Towards the semi-automatic synthesis of cooperative infor-
mation systems and data warehouses. In Proceedings of
ADBIS-DASFAA 2000, pages 108–117, 2000.

[14] J. Quinlan. C4.5: Programs for Machine Learning. Morgan
Kaufmann, San Mateo, California, 1993.

[15] E. Rahm and P. Bernstein. A survey of approaches to auto-
matic schemamatching. The VLDB Journal, 10(4):334–350,
2001.

Proceedings of the Eighth International Conference on Database Systems for Advanced Applications (DASFAA’03)
0-7695-1895/03 $17.00 © 2003 IEEE

