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ABSTRACT 
We address the problem of integrating objects from a source 
taxonomy into a master taxonomy. This problem is not only 
currently pervasive on the web, but also important to the 
emerging semantic web. A straightforward approach to 
automating this process would be to train a classifier for each 
category in the master taxonomy, and then classify objects from 
the source taxonomy into these categories. In this paper we 
attempt to use a powerful classification method, Support Vector 
Machine (SVM), to attack this problem. Our key insight is that 
the availability of the source taxonomy data could be helpful to 
build better classifiers in this scenario, therefore it would be 
beneficial to do transductive learning rather than inductive 
learning, i.e., learning to optimize classification performance on 
a particular set of test examples. Noticing that the categorizations 
of the master and source taxonomies often have some semantic 
overlap, we propose a method, Cluster Shrinkage (CS), to further 
enhance the classification by exploiting such implicit knowledge. 
Our experiments with real-world web data show substantial 
improvements in the performance of taxonomy integration. 

Categories and Subject Descriptors 
H.2.8 [Database Management]: Database Applications – data 
mining; H.2.5 [Database Management]: Heterogeneous 
Databases; I.2.6 [Artificial Intelligence]: Learning; I.5.2 
[Pattern Recognition]: Design Methodology – classifier design 
and evaluation. 

General Terms 
Algorithms, Experimentation. 

Keywords 
Semantic Web, Ontology Mapping, Taxonomy Integration, 
Classification, Support Vector Machines, Transductive Learning. 

1. INTRODUCTION 
A taxonomy, or directory or catalog, is a division of a set of 
objects (documents, images, products, goods, services, etc.) into 
a set of categories. There are a tremendous number of 
taxonomies on the web, and we often need to integrate objects 
from a source taxonomy into a master taxonomy. 

This problem is currently pervasive on the web, given that many 
websites are aggregators of information from various other 
websites [2]. A few examples will illustrate the scenario. A web 
marketplace like Amazon 1  may want to combine goods from 
multiple vendors’ catalogs into its own. A web portal like 
NCSTRL 2  may want to combine documents from multiple 
libraries’ directories into its own. A company may want to merge 
its service taxonomy with its partners’. A researcher may want to 
merge his/her bookmark taxonomy with his/her peers’. 
Singapore-MIT Alliance3, an innovative engineering education 
and research collaboration among MIT, NUS and NTU, has a 
need to integrate the academic resource (courses, seminars, 
reports, softwares, etc.) taxonomies of these three universities.  

This problem is also important to the emerging semantic web [4], 
where data has structures and ontologies describe the semantics 
of the data, thus better enabling computers and people to work in 
cooperation. On the semantic web, data often come from many 
different ontologies, and information processing across 
ontologies is not possible without knowing the semantic 
mappings between them. Since taxonomies are central 
components of ontologies, ontology mapping necessarily involves 
finding the correspondences between two taxonomies, which is 
often based on integrating objects from one taxonomy into the 
other and vice versa [8, 15]. 

If all taxonomy creators and users agreed on a universal standard, 
taxonomy integration would not be so difficult. But the web has 
evolved without central editorship. Hence the correspondences 
between two taxonomies are inevitably noisy and fuzzy. For 

                                                             
1 http://www.amazon.com/ 
2 http://www.ncstrl.org/ 
3 http://web.mit.edu/sma/ 
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illustration, consider the taxonomies of two web portals Google4 
and Yahoo 5 : what is “Arts/ Music/ Styles/” in one may be 
“Entertainment/ Music/ Genres/” in the other, category 
“Computers_and_Internet/ Software/ Freeware” and category 
“Computers/ Open_Source/ Software” have similar contents but 
show non-trivial differences, and so on. It is unclear if a 
universal standard will appear outside specific domains, and 
even for those domains, there is a need to integrate objects from 
legacy taxonomy into the standard taxonomy. 

Manual taxonomy integration is tedious, error-prone, and clearly 
not possible at the web scale. A straightforward approach to 
automating this process would be to formulate it as a 
classification problem which has being well-studied in machine 
learning area [18]. In this paper, we attempt to use a powerful 
classification method, Support Vector Machine (SVM) [7], to 
attack this problem.  

Our key insight is that the availability of the source taxonomy 
data could be helpful to build better classifiers in this scenario, 
therefore it would be beneficial to do transductive learning rather 
than inductive learning, i.e., learning to optimize classification 
performance on a particular set of test examples. Noticing that 
the categorizations of the master and source taxonomies often 
have some semantic overlap, we propose a method, Cluster 
Shrinkage (CS), to further enhance the classification by 
exploiting such implicit knowledge. Our experiments with real-
world web data show substantial improvements in the 
performance of taxonomy integration. 

The rest of this paper is organized as follows. In §2, we give the 
formal problem statement. In §3, we describe a state-of-the-art 
solution. In §4, we present our approach in detail. In §5, we 
conduct experimental evaluations. In §6, we review the related 
work. In §7, we make concluding remarks. 

2. PROBLEM STATEMENT 
Now we formally define the taxonomy integration problem that 
we are solving. Given two taxonomies: 
•  a master taxonomy M with a set of categories 1 2, ,..., MC C C  

each containing a set of objects, and 
•  a source taxonomy N with a set of categories 1 2, ,..., NS S S   

each containing a set of objects, 
we need to find the category in M for each object in N.  

To formulate taxonomy integration as a classification problem, 
we take 1 2, ,..., MC C C  as classes, the objects in M as training 

examples, the objects in N as test examples, so that taxonomy 

integration can be automatically accomplished by predicting the 
class of each test example. 

It is possible that an object in N belongs to multiple categories 

in M. Besides, some objects in N may not fit well in any 

existing category in M, so users may want to have the option to 

form a new category for them. It is therefore instructive to create 
an ensemble of binary (yes/no) classifiers, one for each category 
                                                             
4 http://www.google.com/ 
5 http://www.yahoo.com/ 

C  in M. When training the classifier for C , an object in M is 

labeled as  a positive example if it is contained by C  or as a 

negative example otherwise. All objects in N are unlabeled and 

wait to be classified. This is called the “one-vs-rest” ensemble 
method. 

Taxonomies are often organized as hierarchies. In this paper, we 
focus on flat taxonomies. Generalizing our approach to 
hierarchical taxonomies is straightforward and will be discussed 
later. 

3. A STATE-OF-THE-ART SOLUTION 
Agrawal and Srikant recently proposed an elegant approach to 
taxonomy integration by enhancing the Naïve Bayes algorithm 
[2]. 

The Naïve Bayes (NB) algorithm is a well-known text 
classification technique [18]. NB tries to fit a generative model 
for documents using training examples and apply this model to 
classify test examples. The generative model of NB assumes that 
a document is generated by first choosing its class according to a 
prior distribution of classes, and then producing its words 
independently according to a (typically multinomial) distribution 
of terms conditioned on the chosen class [16]. Given a test 
document d , NB predicts its class to be arg max Pr[ | ]C C d . The 

posterior probability Pr[ | ]C d can be computed via Bayes’s rule:  

Pr[ | ]C d  
Pr[ , ]

Pr[ ]

C d

d
=  

Pr[ ]Pr[ | ]

Pr[ ]

C d C

d
=  Pr[ ]Pr[ | ]C d C∝  

( ) ( , )
Pr[ ] Pr[ | ]

n d w

w d
C w C

∈
= ∏ ,  

where ( , )n d w  is the number of occurrences of w  in d . The 

probability Pr[ ]C  can be estimated by the proportion of training 

documents in C . The probability Pr[ | ]w C  can be estimated by 

( )
( , )

( , )
i

iw V

n C w

n C w

η
η

∈

+
+∑

, where ( , )n C w  is the number of 

occurrences of w  in training documents in C , V is the 
vocabulary of terms, and 0 1η< ≤  is the Lidstone’s smoothing 
parameter [1]. Taking logs, we see that NB is actually a linear 
classifier: 

 log Pr[ | ]C d  ( )( )( , )
log Pr[ ] Pr[ | ]

n d w

w d
C w C

∈
∝ ∏  

( ) log Pr[ ]( , ) log Pr[ | ]
w d

Cn d w w C
∈

= × +∑ . 

The enhanced Naïve Bayes (ENB) algorithm [2] uses the 
categorization of the source taxonomy to get better probability 
estimations. Given a test document d  that is know to be in 

category S  in N, ENB predicts its category in M to be 

arg max Pr[ | , ]C C d S . The posterior probability Pr[ | , ]C d S can 

be computed as Pr[ | , ]C d S  
Pr[ , , ]

Pr[ , ]

C d S

d S
=  

Pr[ ]Pr[ , | ]

Pr[ , ]

S C d S

d S
=  

Pr[ , | ]C d S∝ . ENB invokes a simplification that assumes d  

and S  are independent given C , therefore  
Pr[ , | ]C d S  Pr[ | ]Pr[ | , ]C S d S C=  Pr[ | ]Pr[ | ]C S d C=  

( ) ( , )
Pr[ | ] Pr[ | ]

n d w

w d
C S w C

∈
= ∏ .  
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The probability Pr[ | ]w C  can be estimated in the same way of 

NB. For the probability Pr[ | ]C S  , ENB estimates it by 

( )
i

i iC

C C S

C C S

ω

ω

× ←

× ←∑
, where C  is the number of documents 

in C , C S←  is the number of documents in S  classified into 

C  by the NB classifier, and 0ω ≥  is a parameter reflecting the 

degree of semantic overlap between the categorizations of M 

and N. Taking logs, we see that ENB is still a linear classifier:  

log Pr[ | , ]C d S  ( )( )( , )
log Pr[ | ] Pr[ | ]

n d w

w d
C S w C

∈
∝ ∏  

( ) log Pr[ | ]( , ) log Pr[ | ]
w d

C Sn d w w C
∈

= × +∑ .  

Comparing the classification functions of NB and ENB, it is 
obvious that all ENB does is to shift the classification threshold 
of its base NB classifier, no more and no less. 

4. OUR APPROACH 
Here we present our approach in detail. In §4.1, we review 
Support Vector Machine (SVM). In §4.2, we review transductive 
learning and explain why it is more suitable to our task. In §4.3, 
we propose the Cluster Shrinkage (CS) method and analyze its 
effect. In §4.4, we compare our approach with ENB. 

4.1 Support Vector Machines 
Support Vector Machine (SVM) [7, 13] is a powerful 
classification method which has shown outstanding classification 
performance in practice. It is based on a solid theoretical 
foundation — structural risk minimization [24]. 

In its simplest linear form, an SVM is a hyperplane that 
separates the positive and negative training examples with 
maximum margin, as shown in Figure 1. Large margin between 
positive and negative examples has been proven to lead to good 
generalization [24]. 

 

The decision function of an SVM is ( )f b= • +x w x , where 

•w x   is the dot product between w (the normal vector to the 

hyperplane) and x  (the feature vector representing an example). 
The margin for an input vector ix  is ( )i iy f x  where { }1,1iy ∈ −  

is the correct class label for ix . In the linear case, the margin is 

geometrically the distance from the hyperplane to the nearest 
positive and negative examples. Seeking the maximum margin 
can be expressed as an quadratic optimization problem: 
minimizing •w w  subject to ( ) 1i iy b• + ≥w x , i∀ . When 

positive and negative examples are linearly inseparable, soft-
margin SVM tries to solve a modified optimization problem that 
allows but penalizes the examples falling on the wrong side of 
the hyperplane. 

4.2 Transductive Learning 
A regular SVM tries to induce a general classifying function 
which has high accuracy on the whole distribution of examples. 
However, this so-called inductive learning setting is often 
unnecessarily complex. For the classification problem in 
taxonomy integration situations, the set of test examples to be 
classified are already known to the learning algorithm. In fact, 
we do not care about the general classifying function, but rather 
attempt to achieve good classification performance on that 
particular set of test examples. This is exactly the goal of 
transductive learning [25].  

Transductive SVM (TSVM) introduced by Joachims [14] extends 
SVM to transductive learning setting. A TSVM is essentially a 
hyperplane that separates the positive and negative training 
examples with maximum margin on both training and test 
examples, as shown in Figure 2.  

 
Why can TSVM be better than SVM? There usually exists a 
clustering structure of training and test examples: the examples 
in same class tend to be close to each other in feature space. As 
explained in [14], it is this clustering structure of examples that 
TSVM exploits as prior knowledge to boost classification 
performance. This is especially beneficial when the number of 
training examples is small. 

 

Figure 1: An SVM is a hyperplane that separates the 
positive and negative training examples with maximum 
margin. The examples closest to the hyperplane are 
called support vectors (marked with circles). 

 

Figure 2: A TSVM is essentially a hyperplane that 
separates the positive and negative training examples 
with maximum margin on both training and test 
examples (cf. Figure 1). 
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Most machine learning algorithms (including NB, SVM and 
TSVM) assume that both the training and test examples come 
from the identical data distribution. This assumption does not 
necessarily hold in the case of taxonomy integration. Intuitively, 
TSVM seems to be more robust than SVM to the violation of this 
assumption, since TSVM takes the test examples into account for 
learning. This interesting issue needs to be stressed in the future. 

4.3 Cluster Shrinkage 
Applying TSVM, we can effectively use the objects in N (test 

examples) to boost classification performance. However, thus far 
we have completely ignored the categorization of N. 

Although M and N are usually not identical, their 

categorizations often have some semantic overlap. Therefore the 
categorization of N contains valuable implicit knowledge about 

the categorization of M. For example, if two objects belong to 

the same category S  in N, they are more likely to belong to the 

same category C  in M rather than to be assigned into different 

categories. We hereby propose a method, Cluster Shrinkage (CS), 
to further enhance the classification by exploiting such implicit 
knowledge. 

4.3.1 Algorithm 

 

 
Since the success of TSVM relies on the clustering structure of 
examples, we intend to use the categorization information in the 
taxonomies to strengthen this clustering structure and thus help 
TSVM to find better classification. This can be achieved by 
treating each category S  (or C ) as a cluster and shrinking it. 

Figure 3. presents our proposed Cluster Shrinkage (CS) 
algorithm, and Figure 4. depicts its process. 

The formula (1 )λ λ′ = + −x c x  is actually a linear interpolation 
of the example x  and its category’s center c . When an example 

x  belongs to multiple categories (1) (2) ( ), ,..., gS S S  whose centers 

are (1) (2) ( ), ,..., gc c c  respectively, the above formula should be 

amended to ( )

1

1
(1 )

g
h

hg
λ λ

=

′ = + −
 
 
 
∑x c x . 

Our approach to taxonomy integration is in three steps: first 
apply CS on all objects in M and N, then train TSVMs on these 

objects, finally use the learned TSVMs to classify the objects in 
N into the categories in M. We name this approach CS-TSVM. 

4.3.2 Analysis 
We first study the effect of CS in inductive learning setting.  

Denoting the Euclidean distance between two examples (vectors) 
with function ( , )d ⋅ ⋅ , we can get the following theorem. 

THEOREM 1. For any example S∈x , suppose the center of S  

is c , CS makes x  become ′x , then 

( , ) (1 ) ( , ) ( , )d d dλ′ = − ≤x c x c x c . 
Proof:  
Since (1 )λ λ′ = + −x c x , we get 

( )( , ) (1 )d λ λ′ ′= − = + − −x c x c c x c  

(1 )( ) (1 ) (1 ) ( , )dλ λ λ= − − = − − = −x c x c x c . 

Since 0 1λ≤ ≤ , we get 
0 1 1λ≤ − ≤ , (1 ) ( , ) ( , )d dλ− ≤x c x c . 

From the above theorem, we see that CS is actually moving all 
examples in a category towards their center. Hence, applying CS 
on the objects in M (training examples) would make SVM 

behave alike the Rocchio algorithm [3, 22], which is not going to 
provide much help because Rocchio is not as powerful as SVM.. 

Given a linear classifier ( )f b= • +x w x , we can get the 

following theorem. 

THEOREM 2. For any example S∈x , suppose the center of S  

is c , CS makes x  become ′x , then 

( ) ( ) (1 ) ( )f f fλ λ′ = + −x c x . 
Proof:  
Since (1 )λ λ′ = + −x c x , we get 

( )f b′ ′= • +x w x ( (1 ) ) bλ λ= • + − +w c x  

(1 ) ( 1 )bλ λ λ λ= • • ++ − + −w c w x  

( ) ( )(1 ) bbλ λ= • • ++ + −w c w x   

( ) (1 ) ( )f fλ λ= + −c x . 

From the above theorem, we see that applying CS on the objects 
in N (test examples) can push these objects to get classifying 

function outputs more similar to those of their category centers. 
However, in inductive learning setting, the objects in N (test 

examples) are not involved in construction of the classifiers, i.e., 

Figure 3: The Cluster Shrinkage algorithm. 

for each category S  { 

    compute its center: 
1

SS ∈

= ∑
x

c x ; 

    for each example S∈x  { 
        replace it with ' (1 )λ λ= + −x c x , 

            where 0 1λ≤ ≤ ; 
    } 
} 
 

 

Figure 4: The Cluster Shrinkage process. 
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applying CS on the objects in N would have no opportunity to 

change the classifiers. Therefore the benefits of CS to inductive 
learning algorithms for taxonomy integration would be limited. 
This thought has been confirmed by our experiments of CS-SVM 
(the combination of CS and SVM). 

We then study the effect of CS in transductive learning setting.  

THEOREM 3. For any pair of examples 1 S∈x  and 2 S∈x , 

suppose the center of S  is c , CS makes 1x  and 2x  become 1
′x  

and 2
′x  respectively, then 

1 2 1 2 1 2( , ) (1 ) ( , ) ( , )d d dλ′ ′ = − ≤x x x x x x . 

Proof:  
Since 1 1(1 )λ λ′ = + −x c x and 2 2(1 )λ λ′ = + −x c x , we get 

( ) ( )1 2 1 2 1 2( , ) (1 ) (1 )d λ λ λ λ′ ′ ′ ′= − = + − − + −x x x x c x c x  

1 2 1 2 1 2(1 )( ) (1 ) (1 ) ( , )dλ λ λ= − − = − − = −x x x x x x  

Since 0 1λ≤ ≤ , we get 

0 1 1λ≤ − ≤ , 1 2 1 2(1 ) ( , ) ( , )d dλ− ≤x x x x . 

From the above theorem, we see that CS lets all examples in a 
category become closer to each other. Because TSVM seeks the 
maximum margin hyperplane (the thickest slab) in both training 
and test examples, making the examples in category S  closer to 
each other directs TSVM to avoid splitting S .  Consequently 

applying CS on the objects in N (test examples) guides TSVM 

to reserve the original categorization of N to some degree while 

doing classification, as shown in Figure 5. On the other hand, 
applying CS on the objects in M (training examples) meanwhile 

can reduce TSVM’s dependence on training examples and put 
more emphasis on taking advantage of the information in N.  

 
To sum up, the CS-TSVM approach can not only make effective 
use of the objects in N like TSVM, but also make effective use 

of the categorization of N. 

The CS parameter 0 1λ≤ ≤  controls the strength of the 
clustering structure of examples. Increasing λ  results in more 

influence of the categorization information on classification. 
When 1λ = , CS-TSVM classifies all objects belonging to one 

category in N as a whole into a specific category in M. When 

0λ = , CS-TSVM is just the same as TSVM. As long as the 
value of λ  is set appropriately, CS-TSVM should never be 
worse than TSVM because it includes TSVM as a special case.  
The optimal value of λ  can be found using a tune set (a set of 
objects whose categories in both taxonomies are known). The 
tune set can be made available via random sampling or active 
learning, as described in [2].  

Another way to incorporate the categorization of N into TSVM 

is to treat the source category labels 1 2, ,..., NS S S  as binary 

features, and expand each feature vector x  to ′′x  by appending 
extra columns for these label features. Similarly a parameter 
0 1λ≤ ≤  can be used to decide the relative importance of 
category and ordinary features: category features are scaled by 
factor λ  and ordinary features are scaled by 1 λ− . This method 
looks simpler, but it does not leverage as much categorization 
information as CS. For illustration, consider two different 
categories 1S  and 2S  whose centers are 1c  and 2c  respectively, 

given two examples 1 1S∈x  and 2 2S∈x , let parameter 1λ = , 

the above simpler method would get 1 2 0′′ ′′• =x x  , while CS 

would provide a more reasonable dot product function 1 2
′ ′•x x  

1 2
′ ′= •c c .  

4.3.3 Extensions 

4.3.3.1 Nonlinear Classification 
One salient property of SVM / TSVM is that the only operation it 
requires is the computation of dot products between pairs of 
examples. One may therefore replace the dot product with a 
Mercer kernel [7], implicitly mapping feature vectors in Ω  into 

a higher dimensional space Ω� , and applying the original 
algorithm in this new space. Using a non-linear kernel (e.g., 
polynomial, rbf or sigmoid) enables SVM / TSVM to get non-
linear classification in Ω , thus greatly promoting the power of 
SVM / TSVM. 

Suppose for SVM / TSVM we use a non-linear kernel 

1 2( ) ( )k φ φ= •x x , where φ  is a non-linear map from Ω  to Ω� . 

The idea of Cluster Shrinkage in Ω�  is to replace each feature 
vector ( )φ x  in category S  with ( ) (1 ) ( )φ λ λ φ′ = + −x c x� , where 

1
( )

SS
φ

∈

= ∑
x

c x�  is the center of S  in Ω� . We are usually unable 

to explicitly express a feature vector ( )φ x  in Ω� , because the 

dimension of Ω�  is extremely large or even infinite. However, 

CS in Ω�  can still be achieved implicitly by replacing the kernel 
k  with the following one. 

1 2 1 2( , ) ( ) ( )k φ φ′ ′ ′= •x x x x  

( ) ( )1 1 2 2(1 ) ( ) (1 ) ( )λ λ φ λ λ φ= + − • + −c x c x� �  

( ) ( )1 1 2 2( ) (1 ) ( ) ( ) (1 ) ( )λφ λ φ λφ λ φ≈ + − • + −c x c x  
2 2

1 2 1 2( ) ( ) (1 ) ( ) ( )λ φ φ λ φ φ= • + − •c c x x  

 

Figure 5: A CS-TSVM attempts to reserve the original 
categorization of the source taxonomy to some degree 
while doing classification (cf. Figure 2). 
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( )1 2 2 1(1 ) ( ) ( ) ( ) ( )λ λ φ φ φ φ+ − • + •c x c x  
2 2

1 2 1 2( , ) (1 ) ( , )k kλ λ= + −c c x x  

  ( )1 2 2 1(1 ) ( , ) ( , )k kλ λ+ − +c x c x . 

Note that in the above formula, we have approximated the center 

of category S  in Ω� , 
1

( )
SS
φ

∈

= ∑
x

c x�  , with 
1

( )
SS

φ φ
∈

=
 
 
 
∑
x

c x . 

Although it is possible to derive a strict formula of 1 2( , )k ′ x x  

without this approximation, it would be computationally more 
expensive. In this way, we are able to implement CS for non-
linear SVM / TSVM efficiently. 

4.3.3.2 Hierarchical Classification 
As mentioned before, taxonomies are often organized as 
hierarchies. Although it is possible to flatten the hierarchy to a 
single level [2], past studies have shown that exploiting the 
hierarchical structure can lead to better classification results [5, 
9]. We think the technique of hierarchical SVM proposed in [9] 
can be easily extended to hierarchical TSVM and then 
incorporate the hierarchical version of CS. For instance, consider 
a two-level taxonomy H where jkS  is a sub-category of jS , 

suppose the center of jkS  is jkc  and the center of jS  is jc , for 

each ik iS S∈ ⊂x , one reasonable way to achieve hierarchical CS 

is as follows: first compute (1 )ik i ikµ µ′ = + −c c c using a 

parameter 0 1µ≤ ≤ , and then replace x  with 

(1 )ikλ λ′ ′= + −x c x  using a parameter 0 1λ≤ ≤ . 

4.4 Comparison with ENB 
Although ENB [2] has been shown to work well for taxonomy 
integration, we think an approach based on SVM but not NB is 
still attractive.  

In contrast to NB, SVM is a discriminative classification method, 
i.e., SVM does not posit a generative model but attempt to find 
the best classifying function directly. It is generally believed that 
SVM is more promising than NB for text classification [10, 26], 
and SVM has been successfully applied to many other kinds of 
data such as images [7]. 

Both ENB and CS-TSVM exploit the categorization of N to 

enhance classification. While all ENB does is to shift the 
classification threshold of its base NB classifier (see §3), CS-
TSVM has the ability to adjust the direction of the classification 
hyperplane of its base TSVM classifier. Moreover, CS-TSVM 
has the potential to be extended to achieve non-linear and 
hierarchical classifications. 

Although CS-TSVM looks more effective, ENB still has the 
advantage in efficiency.  

5. EXPERIMENTS 
We conduct experiments with real-world web data, to 
demonstrate the advantage of our proposed CS-TSVM approach 
to taxonomy integration.  

5.1 Datasets 
We have collected 5 datasets from Google and Yahoo. One 
dataset includes the slice of Google’s taxonomy and the slice of 
Yahoo’s taxonomy about websites on one specific topic, as 
shown in Table 1. 

 
In each slice of taxonomy, we take only the top level directories 
as categories, e.g., the “Movie” slice of Google’s taxonomy has 
categories like “Action”, “Comedy”, “Horror”, etc. 

For each dataset, we show in Table 2 the number of categories 
occurred in Google and Yahoo respectively. 

 
In each category, we take all items listed on the corresponding 
directory page and its sub-directory pages as its objects. An 
object (listed item) corresponds to a website on the world wide 
web, which is usually described by its URL, its title, and 
optionally a short annotation about its content, as illustrated in 
Figure 6.  

 
For each dataset, we show in Table 3 the number of objects 
occurred in Google (G), Yahoo (Y), either of them (G∪Y), and 
both of them (G∩Y) respectively. The set of objects in G∩Y 
covers only a small portion (usually less than 10%) of the set of 
objects in Google or Yahoo alone, which suggests the great 
benefit of automatically integrating them. This observation is 
consistent with [2].  

The number of categories per object in these datasets is 1.54 on 
average. This observation confirms our previous statement in §2 
that an object may belong to multiple categories, and justifies our 

 

Figure 6: An object (listed item) corresponds a website 
on the world wide web, which is usually described by its 
URL, its title, and optionally a short annotation about 
its content. 

Table 1: The datasets. 

 Google Yahoo 
Book / Top/ Shopping/ 

Publications/ Books/ 
/ Business_and_Economy/ 
Shopping_and_Services/ 
Books/ Bookstores/ 

Disease / Top/ Health/ 
Conditions_and_Diseases/ 

/ Health/ 
Diseases_and_Conditions/ 

Movie / Top/ Arts/ Movies/ 
Genres/ 

/ Entertainment/ 
Movies_and_Film/ 
Genres/ 

Music / Top/ Arts/ Music/ Styles/ / Entertainment/ Music/ 
Genres/ 

News / Top/ News/ By_Subject/ / News_and_Media/ 

 

Table 2: The number of categories. 

 Google Yahoo 
Book 49 41 
Disease 30 51 
Movie 34 25 
Music 47 24 
News 27 34 
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strategy to build a binary classifier for each category in the 
master taxonomy.  

 
The category distributions in all theses datasets are highly 
skewed. For example, in Google’s Book taxonomy, the most 
common category contains 21% objects, but 88% categories 
contain less than 3% objects and 49% categories contain less 
than 1% objects, as shown in Figure 7. In fact, skewed category 
distributions have been commonly observed in real-world 
applications [26].  

 

5.2 Tasks 
For each dataset, we pose 2 symmetric taxonomy integration 
tasks: G←Y (integrating objects from Yahoo into Google) and 
Y←G (integrating objects from Google into Yahoo). 

As described in §2, we formulate each task as a classification 
problem. The objects in G∩Y can be used as test examples, 
because their categories in both taxonomies are known to us [2]. 
We hide the test examples’ master categories but expose their 
source categories to the learning algorithm in training phase, and 
then compare their hidden master categories with the predictions 
of the learning algorithm in test phase. Suppose the number of 
the test examples is n. For G←Y tasks, we randomly sample n 
objects from the set G-Y as training examples. For Y←G tasks, 
we randomly sample n objects from the set Y-G as training 
examples. This is to simulate the common situation that the sizes 
of M and N are roughly in same magnitude. For each task, we 

do such random sampling 5 times, and report the classification 
performance averaged over these 5 random samplings.  

5.3 Features 
For each object, we assume that the title and annotation of its 
corresponding website summarizes its content. So each object 
can be considered as a text document composed of its title and 
annotation. 

The most commonly used feature extraction technique for text 
data is to treat a document as a bag-of-words [13, 14]. For each 
document d  in a collection of documents D , its bag-of-words is 
first pre-processed by removal of stop-words and stemming. Then 
it is represented as a feature vector 1 2( , , ..., )mx x x=x , where ix  

indicates the importance weight of term iw  (the i-th distinct 

word occurred in D ). Following the TF×IDF weighting scheme, 
we set the value of ix  to the product of the term frequency 

( , )iTF w d  and the inverse document frequency ( )iIDF w , i.e., 

( , ) ( )i iTF w d IDF w× . The term frequency ( , )iTF w d  means the 

number of occurrences of iw  in d . The inverse document 

frequency is defined as ( ) log
( )

i

i

D
IDF w

DF w
=

 
 
 

, where D  is 

the total number of documents in D , and ( )iDF w  is the number 

of documents in which iw  occur. Finally all feature vectors are 

normalized to have unit length.  

5.4 Measures 
As stated in §2, it is natural to accomplish a taxonomy 
integration task via an ensemble of binary classifiers, each for 
one category in M. To measure classification performance, we 

use the standard F-score (F1 measure) [3]. The F-score is defined 
as the harmonic average of precision (p) and recall (r), 

2 ( )F pr p r= + , where precision is the proportion of correctly 

predicted positive examples among all predicted positive 
examples, and recall is the proportion of correctly predicted 
positive examples among all true positive examples. The F-
scores can be computed for the binary decisions on each 
individual category first and then be averaged over categories. Or 
they can be computed globally over all the M n×  binary 
decisions where M  is the number of categories in consideration 
(the number of categories in M) and n  is the number of total 

test examples (the number of objects in N). The former way is 

called macro-averaging and the latter way is called micro-
averaging [26]. It is understood that the micro-averaged F-score 
(miF) tends to be dominated the classification performance on 
common categories, and that the macro-averaged F-score (maF) 
is more influenced by the classification performance on rare 
categories [26]. Since the category distributions are highly 
skewed (see §5.1), providing both kinds of scores is more 
informative than providing either alone.  

5.5 Settings 
We use our own implementation of NB and ENB. The Lidstone’s 
smoothing parameter η  is set to an appropriate value 0.1 [1]. 
The performance of ENB would be greatly affected by its 
parameter ω . We run ENB with a series of exponentially 
increasing values of ω : (0, 1, 3, 10, 30, 100, 300, 1000) [2] for 
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Figure 7: The category distribution of Google’s Book 
taxonomy. 

 

Table 3: The number of objects. 

 Google Yahoo G∪Y G∩Y 
Book 10,842 11,268 21,111    999 
Disease 34,047   9,785 41,439 2,393 
Movie 36,787 14,366 49,744 1,409 
Music 76,420 24,518 95,971 4,967 
News 31,504 19,419 49,303 1,620 
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each taxonomy integration task,  and report the best experimental 
results.   

We use SVMlight6 for the implementation of SVM / TSVM [13, 
14]. We take linear kernel, and accept all default values of 
parameters except “j” and “p”. The parameter “j” is set to the 
ratio of negative training examples over positive training 
examples, thus balance the cost of training errors on positive and 
negative examples. The parameter “p” used in TSVM means the 
fraction of test examples to be classified into the positive class. 
To estimate the value of “p”, we first run SVM and get p̂  (the 
fraction of test examples predicted to be positive by SVM), then 
we set the value of “p” to a smoothed version of p̂ : 

p̂ (1 ) 0.5σ σ× + − × , where σ  is set to 99% in our experiments. 

The CS algorithm is simple to implement and executes quickly. 
It only requires one sequential scan to compute the cluster 
centers and another sequential scan to reposition the examples. 
In all our CS-SVM and CS-TSVM experiments, the CS 
parameter λ  is set to 0.5. Fine-tuning λ  using tune sets would 
decisively generate better results than sticking with a pre-fixed 
value. In other words, the performance superiority of applying CS 
technique is under-estimated in our experiments. 

5.6 Results 

 

 

                                                             
6 http://svmlight.joachims.org/ 

 

 

 
The experimental results of NB and ENB are shown in Table 4. 
We see that ENB really can achieve much better performance 
than NB for taxonomy integration. 

The experimental results of SVM and TSVM are shown in Table 
5. We see that TSVM works better than SVM for taxonomy 
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Figure 9: Comparing the micro-averaged F-scores of 
ENB and CS-TSVM. 

 

Table 6: Experimental Results of CS-SVM & CS-TSVM 

CS-SVM CS-TSVM   
maF miF maF miF 

Book 0.1450 0.5084 0.3564 0.6160 
Disease 0.6494 0.7807 0.7288 0.8038 
Movie 0.2070 0.5361 0.3686 0.6182 
Music 0.3917 0.6268 0.5108 0.6768 

G←Y 

News 0.1837 0.5072 0.5504 0.6459 
Book 0.2421 0.4219 0.4936 0.5706 
Disease 0.3933 0.6846 0.6704 0.7919 
Movie 0.2522 0.5425 0.4434 0.6481 
Music 0.5205 0.7793 0.6181 0.8053 

Y←G 

News 0.4090 0.5391 0.5572 0.6456 

Table 5: Experimental Results of SVM and TSVM. 

SVM TSVM   
maF miF maF miF 

Book 0.2032 0.4916 0.2945 0.5089 
Disease 0.6546 0.7466 0.6844 0.7686 
Movie 0.2563 0.5104 0.3350 0.5290 
Music 0.4774 0.5856 0.4604 0.5921 

G←Y 

News 0.3413 0.5349 0.4408 0.5778 
Book 0.3284 0.4267 0.4284 0.4666 
Disease 0.5842 0.7470 0.6362 0.7701 
Movie 0.3731 0.5503 0.3995 0.5648 
Music 0.5175 0.6649 0.5236 0.6670 

Y←G 

News 0.4948 0.5848 0.5110 0.6035 

Table 4: Experimental Results of NB and ENB. 

NB ENB   
maF miF maF miF 

Book 0.1286 0.2384 0.1896 0.5856 
Disease 0.4386 0.5602 0.5230 0.6895 
Movie 0.1709 0.3003 0.2094 0.5331 
Music 0.2386 0.3881 0.2766 0.5408 

G←Y 

News 0.2233 0.4450 0.2578 0.5987 
Book 0.1508 0.2107 0.2227 0.5471 
Disease 0.2746 0.4812 0.3415 0.6370 
Movie 0.2319 0.4046 0.2884 0.5534 
Music 0.3124 0.5359 0.3572 0.6824 

Y←G 

News 0.2966 0.4219 0.3639 0.6007 
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Figure 8: Comparing the macro-averaged F-scores of 
ENB and CS-TSVM. 
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integration tasks. We think this is because TSVM makes 
effective use of the objects in N to enhance classification. 

The experimental results of CS-SVM and CS-TSVM are shown 
in Table 6. Comparing the experimental results of CS-SVM and 
SVM, it turns out that in inductive learning setting the CS 
technique can not provide much help to taxonomy integration. In 
contrast, CS-TSVM greatly improves TSVM in the performance 
of taxonomy integration. This implies that the real power of CS-
TSVM comes from the marriage of CS and TSVM but not either 
alone. 

The experimental results of ENB and CS-TSVM are compared in 
Figure 8 and 9. It is clear that CS-TSVM outperforms ENB 
consistently and significantly. 

6. RELATED WORK 
Most of the recent research efforts related to taxonomy 
integration are in the context of ontology mapping on semantic 
web. An ontology specifies a conceptualization of a domain in 
terms of concepts, attributes, and relations [11]. The concepts in 
an ontology are usually organized into a taxonomy: each concept 
is represented by a category and associated with a set of objects 
(called the extension of that concept). The basic goal of ontology 
mapping is to identify (typically one-to-one) semantic 
correspondences between the taxonomies of two given ontologies: 
for each concept (category) in one taxonomy, find the most 
similar concept (category) in the other taxonomy. Many works in 
this field use a variety of heuristics to find mappings [6, 17, 19, 
21]. Recently machine learning techniques have been introduced 
to further automate the ontology mapping process [8, 12, 15, 20, 
23]. Some of them derive similarities between concepts 
(categories) based on their extensions (objects) [8, 12, 15], 
therefore they need to first integrate objects from one taxonomy 
into the other and vice versa (i.e., taxonomy integration). So our 
work can be utilized as a basic component of an ontology 
mapping system.  

As stated in §2, taxonomy integration can be formulated as a 
classification problem. The Rocchio algorithm [3, 22] has been 
applied to this problem in [15]; and the Naïve Bayes (NB) 
algorithm [18] has been applied to this problem in [8], without 
exploiting information in the source taxonomy. To our 
knowledge, the most advanced approach to taxonomy integration 
is the enhanced Naïve Bayes (ENB) algorithm proposed by 
Agrawal and Srikant [2], which we have reviewed and compared 
with our approach. 

7. CONCLUSION 
Our main contribution is to show that the implicit knowledge in 
the source taxonomy can be effectively exploited to boost 
taxonomy integration by marrying Cluster Shrinkage (CS) and 
Transductive Support Vector Machines (TSVM).  

The future work may include: looking for methods to accelerate 
the proposed CS-TSVM approach, incorporating commonsense 
knowledge and domain constraints into the taxonomy integration 
process, extending to full-functional ontology mapping systems, 
and so forth. 
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