
Web Taxonomy Integration using Support
Vector Machines

Dell Zhang1,2
1Department of Computer Science

School of Computing
S15-05-24, 3 Science Drive 2

National University of Singapore
Singapore 117543

2Singapore-MIT Alliance
E4-04-10, 4 Engineering Drive 3

Singapore 117576
+65-68744251

dell.z@ieee.org

Wee Sun Lee1,2
1Department of Computer Science

School of Computing
SOC1-05-26, 3 Science Drive 2
National University of Singapore

Singapore 117543
2Singapore-MIT Alliance

E4-04-10, 4 Engineering Drive 3
Singapore 117576

+65-68744526

leews@comp.nus.edu.sg

ABSTRACT
We address the problem of integrating objects from a source
taxonomy into a master taxonomy. This problem is not only
currently pervasive on the web, but also important to the
emerging semantic web. A straightforward approach to
automating this process would be to train a classifier for each
category in the master taxonomy, and then classify objects from
the source taxonomy into these categories. In this paper we
attempt to use a powerful classification method, Support Vector
Machine (SVM), to attack this problem. Our key insight is that
the availability of the source taxonomy data could be helpful to
build better classifiers in this scenario, therefore it would be
beneficial to do transductive learning rather than inductive
learning, i.e., learning to optimize classification performance on
a particular set of test examples. Noticing that the categorizations
of the master and source taxonomies often have some semantic
overlap, we propose a method, Cluster Shrinkage (CS), to further
enhance the classification by exploiting such implicit knowledge.
Our experiments with real-world web data show substantial
improvements in the performance of taxonomy integration.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications – data
mining; H.2.5 [Database Management]: Heterogeneous
Databases; I.2.6 [Artificial Intelligence]: Learning; I.5.2
[Pattern Recognition]: Design Methodology – classifier design
and evaluation.

General Terms
Algorithms, Experimentation.

Keywords
Semantic Web, Ontology Mapping, Taxonomy Integration,
Classification, Support Vector Machines, Transductive Learning.

1. INTRODUCTION
A taxonomy, or directory or catalog, is a division of a set of
objects (documents, images, products, goods, services, etc.) into
a set of categories. There are a tremendous number of
taxonomies on the web, and we often need to integrate objects
from a source taxonomy into a master taxonomy.

This problem is currently pervasive on the web, given that many
websites are aggregators of information from various other
websites [2]. A few examples will illustrate the scenario. A web
marketplace like Amazon 1 may want to combine goods from
multiple vendors’ catalogs into its own. A web portal like
NCSTRL 2 may want to combine documents from multiple
libraries’ directories into its own. A company may want to merge
its service taxonomy with its partners’. A researcher may want to
merge his/her bookmark taxonomy with his/her peers’.
Singapore-MIT Alliance3, an innovative engineering education
and research collaboration among MIT, NUS and NTU, has a
need to integrate the academic resource (courses, seminars,
reports, softwares, etc.) taxonomies of these three universities.

This problem is also important to the emerging semantic web [4],
where data has structures and ontologies describe the semantics
of the data, thus better enabling computers and people to work in
cooperation. On the semantic web, data often come from many
different ontologies, and information processing across
ontologies is not possible without knowing the semantic
mappings between them. Since taxonomies are central
components of ontologies, ontology mapping necessarily involves
finding the correspondences between two taxonomies, which is
often based on integrating objects from one taxonomy into the
other and vice versa [8, 15].

If all taxonomy creators and users agreed on a universal standard,
taxonomy integration would not be so difficult. But the web has
evolved without central editorship. Hence the correspondences
between two taxonomies are inevitably noisy and fuzzy. For

1 http://www.amazon.com/
2 http://www.ncstrl.org/
3 http://web.mit.edu/sma/

Copyright is held by the author/owner(s).
WWW 2004, May 17–22, 2004, New York, New York, USA.
ACM 1-58113-844-X/04/0005.

472

illustration, consider the taxonomies of two web portals Google4
and Yahoo 5 : what is “Arts/ Music/ Styles/” in one may be
“Entertainment/ Music/ Genres/” in the other, category
“Computers_and_Internet/ Software/ Freeware” and category
“Computers/ Open_Source/ Software” have similar contents but
show non-trivial differences, and so on. It is unclear if a
universal standard will appear outside specific domains, and
even for those domains, there is a need to integrate objects from
legacy taxonomy into the standard taxonomy.

Manual taxonomy integration is tedious, error-prone, and clearly
not possible at the web scale. A straightforward approach to
automating this process would be to formulate it as a
classification problem which has being well-studied in machine
learning area [18]. In this paper, we attempt to use a powerful
classification method, Support Vector Machine (SVM) [7], to
attack this problem.

Our key insight is that the availability of the source taxonomy
data could be helpful to build better classifiers in this scenario,
therefore it would be beneficial to do transductive learning rather
than inductive learning, i.e., learning to optimize classification
performance on a particular set of test examples. Noticing that
the categorizations of the master and source taxonomies often
have some semantic overlap, we propose a method, Cluster
Shrinkage (CS), to further enhance the classification by
exploiting such implicit knowledge. Our experiments with real-
world web data show substantial improvements in the
performance of taxonomy integration.

The rest of this paper is organized as follows. In §2, we give the
formal problem statement. In §3, we describe a state-of-the-art
solution. In §4, we present our approach in detail. In §5, we
conduct experimental evaluations. In §6, we review the related
work. In §7, we make concluding remarks.

2. PROBLEM STATEMENT
Now we formally define the taxonomy integration problem that
we are solving. Given two taxonomies:
• a master taxonomy M with a set of categories 1 2, ,..., MC C C

each containing a set of objects, and
• a source taxonomy N with a set of categories 1 2, ,..., NS S S

each containing a set of objects,
we need to find the category in M for each object in N.

To formulate taxonomy integration as a classification problem,
we take 1 2, ,..., MC C C as classes, the objects in M as training

examples, the objects in N as test examples, so that taxonomy

integration can be automatically accomplished by predicting the
class of each test example.

It is possible that an object in N belongs to multiple categories

in M. Besides, some objects in N may not fit well in any

existing category in M, so users may want to have the option to

form a new category for them. It is therefore instructive to create
an ensemble of binary (yes/no) classifiers, one for each category

4 http://www.google.com/
5 http://www.yahoo.com/

C in M. When training the classifier for C , an object in M is

labeled as a positive example if it is contained by C or as a

negative example otherwise. All objects in N are unlabeled and

wait to be classified. This is called the “one-vs-rest” ensemble
method.

Taxonomies are often organized as hierarchies. In this paper, we
focus on flat taxonomies. Generalizing our approach to
hierarchical taxonomies is straightforward and will be discussed
later.

3. A STATE-OF-THE-ART SOLUTION
Agrawal and Srikant recently proposed an elegant approach to
taxonomy integration by enhancing the Naïve Bayes algorithm
[2].

The Naïve Bayes (NB) algorithm is a well-known text
classification technique [18]. NB tries to fit a generative model
for documents using training examples and apply this model to
classify test examples. The generative model of NB assumes that
a document is generated by first choosing its class according to a
prior distribution of classes, and then producing its words
independently according to a (typically multinomial) distribution
of terms conditioned on the chosen class [16]. Given a test
document d , NB predicts its class to be arg max Pr[|]C C d . The

posterior probability Pr[|]C d can be computed via Bayes’s rule:

Pr[|]C d
Pr[,]

Pr[]

C d

d
=

Pr[]Pr[|]

Pr[]

C d C

d
= Pr[]Pr[|]C d C∝

() (,)
Pr[] Pr[|]

n d w

w d
C w C

∈
= ∏ ,

where (,)n d w is the number of occurrences of w in d . The

probability Pr[]C can be estimated by the proportion of training

documents in C . The probability Pr[|]w C can be estimated by

()
(,)

(,)
i

iw V

n C w

n C w

η
η

∈

+
+∑

, where (,)n C w is the number of

occurrences of w in training documents in C , V is the
vocabulary of terms, and 0 1η< ≤ is the Lidstone’s smoothing
parameter [1]. Taking logs, we see that NB is actually a linear
classifier:

 log Pr[|]C d ()()(,)
log Pr[] Pr[|]

n d w

w d
C w C

∈
∝ ∏

() log Pr[](,) log Pr[|]
w d

Cn d w w C
∈

= × +∑ .

The enhanced Naïve Bayes (ENB) algorithm [2] uses the
categorization of the source taxonomy to get better probability
estimations. Given a test document d that is know to be in

category S in N, ENB predicts its category in M to be

arg max Pr[| ,]C C d S . The posterior probability Pr[| ,]C d S can

be computed as Pr[| ,]C d S
Pr[, ,]

Pr[,]

C d S

d S
=

Pr[]Pr[, |]

Pr[,]

S C d S

d S
=

Pr[, |]C d S∝ . ENB invokes a simplification that assumes d

and S are independent given C , therefore
Pr[, |]C d S Pr[|]Pr[| ,]C S d S C= Pr[|]Pr[|]C S d C=

() (,)
Pr[|] Pr[|]

n d w

w d
C S w C

∈
= ∏ .

473

The probability Pr[|]w C can be estimated in the same way of

NB. For the probability Pr[|]C S , ENB estimates it by

()
i

i iC

C C S

C C S

ω

ω

× ←

× ←∑
, where C is the number of documents

in C , C S← is the number of documents in S classified into

C by the NB classifier, and 0ω ≥ is a parameter reflecting the

degree of semantic overlap between the categorizations of M

and N. Taking logs, we see that ENB is still a linear classifier:

log Pr[| ,]C d S ()()(,)
log Pr[|] Pr[|]

n d w

w d
C S w C

∈
∝ ∏

() log Pr[|](,) log Pr[|]
w d

C Sn d w w C
∈

= × +∑ .

Comparing the classification functions of NB and ENB, it is
obvious that all ENB does is to shift the classification threshold
of its base NB classifier, no more and no less.

4. OUR APPROACH
Here we present our approach in detail. In §4.1, we review
Support Vector Machine (SVM). In §4.2, we review transductive
learning and explain why it is more suitable to our task. In §4.3,
we propose the Cluster Shrinkage (CS) method and analyze its
effect. In §4.4, we compare our approach with ENB.

4.1 Support Vector Machines
Support Vector Machine (SVM) [7, 13] is a powerful
classification method which has shown outstanding classification
performance in practice. It is based on a solid theoretical
foundation — structural risk minimization [24].

In its simplest linear form, an SVM is a hyperplane that
separates the positive and negative training examples with
maximum margin, as shown in Figure 1. Large margin between
positive and negative examples has been proven to lead to good
generalization [24].

The decision function of an SVM is ()f b= • +x w x , where

•w x is the dot product between w (the normal vector to the

hyperplane) and x (the feature vector representing an example).
The margin for an input vector ix is ()i iy f x where { }1,1iy ∈ −

is the correct class label for ix . In the linear case, the margin is

geometrically the distance from the hyperplane to the nearest
positive and negative examples. Seeking the maximum margin
can be expressed as an quadratic optimization problem:
minimizing •w w subject to () 1i iy b• + ≥w x , i∀ . When

positive and negative examples are linearly inseparable, soft-
margin SVM tries to solve a modified optimization problem that
allows but penalizes the examples falling on the wrong side of
the hyperplane.

4.2 Transductive Learning
A regular SVM tries to induce a general classifying function
which has high accuracy on the whole distribution of examples.
However, this so-called inductive learning setting is often
unnecessarily complex. For the classification problem in
taxonomy integration situations, the set of test examples to be
classified are already known to the learning algorithm. In fact,
we do not care about the general classifying function, but rather
attempt to achieve good classification performance on that
particular set of test examples. This is exactly the goal of
transductive learning [25].

Transductive SVM (TSVM) introduced by Joachims [14] extends
SVM to transductive learning setting. A TSVM is essentially a
hyperplane that separates the positive and negative training
examples with maximum margin on both training and test
examples, as shown in Figure 2.

Why can TSVM be better than SVM? There usually exists a
clustering structure of training and test examples: the examples
in same class tend to be close to each other in feature space. As
explained in [14], it is this clustering structure of examples that
TSVM exploits as prior knowledge to boost classification
performance. This is especially beneficial when the number of
training examples is small.

Figure 1: An SVM is a hyperplane that separates the
positive and negative training examples with maximum
margin. The examples closest to the hyperplane are
called support vectors (marked with circles).

Figure 2: A TSVM is essentially a hyperplane that
separates the positive and negative training examples
with maximum margin on both training and test
examples (cf. Figure 1).

474

Most machine learning algorithms (including NB, SVM and
TSVM) assume that both the training and test examples come
from the identical data distribution. This assumption does not
necessarily hold in the case of taxonomy integration. Intuitively,
TSVM seems to be more robust than SVM to the violation of this
assumption, since TSVM takes the test examples into account for
learning. This interesting issue needs to be stressed in the future.

4.3 Cluster Shrinkage
Applying TSVM, we can effectively use the objects in N (test

examples) to boost classification performance. However, thus far
we have completely ignored the categorization of N.

Although M and N are usually not identical, their

categorizations often have some semantic overlap. Therefore the
categorization of N contains valuable implicit knowledge about

the categorization of M. For example, if two objects belong to

the same category S in N, they are more likely to belong to the

same category C in M rather than to be assigned into different

categories. We hereby propose a method, Cluster Shrinkage (CS),
to further enhance the classification by exploiting such implicit
knowledge.

4.3.1 Algorithm

Since the success of TSVM relies on the clustering structure of
examples, we intend to use the categorization information in the
taxonomies to strengthen this clustering structure and thus help
TSVM to find better classification. This can be achieved by
treating each category S (or C) as a cluster and shrinking it.

Figure 3. presents our proposed Cluster Shrinkage (CS)
algorithm, and Figure 4. depicts its process.

The formula (1)λ λ′ = + −x c x is actually a linear interpolation
of the example x and its category’s center c . When an example

x belongs to multiple categories (1) (2) (), ,..., gS S S whose centers

are (1) (2) (), ,..., gc c c respectively, the above formula should be

amended to ()

1

1
(1)

g
h

hg
λ λ

=

′ = + −
 
 
 
∑x c x .

Our approach to taxonomy integration is in three steps: first
apply CS on all objects in M and N, then train TSVMs on these

objects, finally use the learned TSVMs to classify the objects in
N into the categories in M. We name this approach CS-TSVM.

4.3.2 Analysis
We first study the effect of CS in inductive learning setting.

Denoting the Euclidean distance between two examples (vectors)
with function (,)d ⋅ ⋅ , we can get the following theorem.

THEOREM 1. For any example S∈x , suppose the center of S

is c , CS makes x become ′x , then

(,) (1) (,) (,)d d dλ′ = − ≤x c x c x c .
Proof:
Since (1)λ λ′ = + −x c x , we get

()(,) (1)d λ λ′ ′= − = + − −x c x c c x c

(1)() (1) (1) (,)dλ λ λ= − − = − − = −x c x c x c .

Since 0 1λ≤ ≤ , we get
0 1 1λ≤ − ≤ , (1) (,) (,)d dλ− ≤x c x c .

From the above theorem, we see that CS is actually moving all
examples in a category towards their center. Hence, applying CS
on the objects in M (training examples) would make SVM

behave alike the Rocchio algorithm [3, 22], which is not going to
provide much help because Rocchio is not as powerful as SVM..

Given a linear classifier ()f b= • +x w x , we can get the

following theorem.

THEOREM 2. For any example S∈x , suppose the center of S

is c , CS makes x become ′x , then

() () (1) ()f f fλ λ′ = + −x c x .
Proof:
Since (1)λ λ′ = + −x c x , we get

()f b′ ′= • +x w x ((1)) bλ λ= • + − +w c x

(1) (1)bλ λ λ λ= • • ++ − + −w c w x

() ()(1) bbλ λ= • • ++ + −w c w x

() (1) ()f fλ λ= + −c x .

From the above theorem, we see that applying CS on the objects
in N (test examples) can push these objects to get classifying

function outputs more similar to those of their category centers.
However, in inductive learning setting, the objects in N (test

examples) are not involved in construction of the classifiers, i.e.,

Figure 3: The Cluster Shrinkage algorithm.

for each category S {

 compute its center:
1

SS ∈

= ∑
x

c x ;

 for each example S∈x {
 replace it with ' (1)λ λ= + −x c x ,

 where 0 1λ≤ ≤ ;
 }
}

Figure 4: The Cluster Shrinkage process.

475

applying CS on the objects in N would have no opportunity to

change the classifiers. Therefore the benefits of CS to inductive
learning algorithms for taxonomy integration would be limited.
This thought has been confirmed by our experiments of CS-SVM
(the combination of CS and SVM).

We then study the effect of CS in transductive learning setting.

THEOREM 3. For any pair of examples 1 S∈x and 2 S∈x ,

suppose the center of S is c , CS makes 1x and 2x become 1
′x

and 2
′x respectively, then

1 2 1 2 1 2(,) (1) (,) (,)d d dλ′ ′ = − ≤x x x x x x .

Proof:
Since 1 1(1)λ λ′ = + −x c x and 2 2(1)λ λ′ = + −x c x , we get

() ()1 2 1 2 1 2(,) (1) (1)d λ λ λ λ′ ′ ′ ′= − = + − − + −x x x x c x c x

1 2 1 2 1 2(1)() (1) (1) (,)dλ λ λ= − − = − − = −x x x x x x

Since 0 1λ≤ ≤ , we get

0 1 1λ≤ − ≤ , 1 2 1 2(1) (,) (,)d dλ− ≤x x x x .

From the above theorem, we see that CS lets all examples in a
category become closer to each other. Because TSVM seeks the
maximum margin hyperplane (the thickest slab) in both training
and test examples, making the examples in category S closer to
each other directs TSVM to avoid splitting S . Consequently

applying CS on the objects in N (test examples) guides TSVM

to reserve the original categorization of N to some degree while

doing classification, as shown in Figure 5. On the other hand,
applying CS on the objects in M (training examples) meanwhile

can reduce TSVM’s dependence on training examples and put
more emphasis on taking advantage of the information in N.

To sum up, the CS-TSVM approach can not only make effective
use of the objects in N like TSVM, but also make effective use

of the categorization of N.

The CS parameter 0 1λ≤ ≤ controls the strength of the
clustering structure of examples. Increasing λ results in more

influence of the categorization information on classification.
When 1λ = , CS-TSVM classifies all objects belonging to one

category in N as a whole into a specific category in M. When

0λ = , CS-TSVM is just the same as TSVM. As long as the
value of λ is set appropriately, CS-TSVM should never be
worse than TSVM because it includes TSVM as a special case.
The optimal value of λ can be found using a tune set (a set of
objects whose categories in both taxonomies are known). The
tune set can be made available via random sampling or active
learning, as described in [2].

Another way to incorporate the categorization of N into TSVM

is to treat the source category labels 1 2, ,..., NS S S as binary

features, and expand each feature vector x to ′′x by appending
extra columns for these label features. Similarly a parameter
0 1λ≤ ≤ can be used to decide the relative importance of
category and ordinary features: category features are scaled by
factor λ and ordinary features are scaled by 1 λ− . This method
looks simpler, but it does not leverage as much categorization
information as CS. For illustration, consider two different
categories 1S and 2S whose centers are 1c and 2c respectively,

given two examples 1 1S∈x and 2 2S∈x , let parameter 1λ = ,

the above simpler method would get 1 2 0′′ ′′• =x x , while CS

would provide a more reasonable dot product function 1 2
′ ′•x x

1 2
′ ′= •c c .

4.3.3 Extensions

4.3.3.1 Nonlinear Classification
One salient property of SVM / TSVM is that the only operation it
requires is the computation of dot products between pairs of
examples. One may therefore replace the dot product with a
Mercer kernel [7], implicitly mapping feature vectors in Ω into

a higher dimensional space Ω� , and applying the original
algorithm in this new space. Using a non-linear kernel (e.g.,
polynomial, rbf or sigmoid) enables SVM / TSVM to get non-
linear classification in Ω , thus greatly promoting the power of
SVM / TSVM.

Suppose for SVM / TSVM we use a non-linear kernel

1 2() ()k φ φ= •x x , where φ is a non-linear map from Ω to Ω� .

The idea of Cluster Shrinkage in Ω� is to replace each feature
vector ()φ x in category S with () (1) ()φ λ λ φ′ = + −x c x� , where

1
()

SS
φ

∈

= ∑
x

c x� is the center of S in Ω� . We are usually unable

to explicitly express a feature vector ()φ x in Ω� , because the

dimension of Ω� is extremely large or even infinite. However,

CS in Ω� can still be achieved implicitly by replacing the kernel
k with the following one.

1 2 1 2(,) () ()k φ φ′ ′ ′= •x x x x

() ()1 1 2 2(1) () (1) ()λ λ φ λ λ φ= + − • + −c x c x� �

() ()1 1 2 2() (1) () () (1) ()λφ λ φ λφ λ φ≈ + − • + −c x c x
2 2

1 2 1 2() () (1) () ()λ φ φ λ φ φ= • + − •c c x x

Figure 5: A CS-TSVM attempts to reserve the original
categorization of the source taxonomy to some degree
while doing classification (cf. Figure 2).

476

()1 2 2 1(1) () () () ()λ λ φ φ φ φ+ − • + •c x c x
2 2

1 2 1 2(,) (1) (,)k kλ λ= + −c c x x

 ()1 2 2 1(1) (,) (,)k kλ λ+ − +c x c x .

Note that in the above formula, we have approximated the center

of category S in Ω� ,
1

()
SS
φ

∈

= ∑
x

c x� , with
1

()
SS

φ φ
∈

=
 
 
 
∑
x

c x .

Although it is possible to derive a strict formula of 1 2(,)k ′ x x

without this approximation, it would be computationally more
expensive. In this way, we are able to implement CS for non-
linear SVM / TSVM efficiently.

4.3.3.2 Hierarchical Classification
As mentioned before, taxonomies are often organized as
hierarchies. Although it is possible to flatten the hierarchy to a
single level [2], past studies have shown that exploiting the
hierarchical structure can lead to better classification results [5,
9]. We think the technique of hierarchical SVM proposed in [9]
can be easily extended to hierarchical TSVM and then
incorporate the hierarchical version of CS. For instance, consider
a two-level taxonomy H where jkS is a sub-category of jS ,

suppose the center of jkS is jkc and the center of jS is jc , for

each ik iS S∈ ⊂x , one reasonable way to achieve hierarchical CS

is as follows: first compute (1)ik i ikµ µ′ = + −c c c using a

parameter 0 1µ≤ ≤ , and then replace x with

(1)ikλ λ′ ′= + −x c x using a parameter 0 1λ≤ ≤ .

4.4 Comparison with ENB
Although ENB [2] has been shown to work well for taxonomy
integration, we think an approach based on SVM but not NB is
still attractive.

In contrast to NB, SVM is a discriminative classification method,
i.e., SVM does not posit a generative model but attempt to find
the best classifying function directly. It is generally believed that
SVM is more promising than NB for text classification [10, 26],
and SVM has been successfully applied to many other kinds of
data such as images [7].

Both ENB and CS-TSVM exploit the categorization of N to

enhance classification. While all ENB does is to shift the
classification threshold of its base NB classifier (see §3), CS-
TSVM has the ability to adjust the direction of the classification
hyperplane of its base TSVM classifier. Moreover, CS-TSVM
has the potential to be extended to achieve non-linear and
hierarchical classifications.

Although CS-TSVM looks more effective, ENB still has the
advantage in efficiency.

5. EXPERIMENTS
We conduct experiments with real-world web data, to
demonstrate the advantage of our proposed CS-TSVM approach
to taxonomy integration.

5.1 Datasets
We have collected 5 datasets from Google and Yahoo. One
dataset includes the slice of Google’s taxonomy and the slice of
Yahoo’s taxonomy about websites on one specific topic, as
shown in Table 1.

In each slice of taxonomy, we take only the top level directories
as categories, e.g., the “Movie” slice of Google’s taxonomy has
categories like “Action”, “Comedy”, “Horror”, etc.

For each dataset, we show in Table 2 the number of categories
occurred in Google and Yahoo respectively.

In each category, we take all items listed on the corresponding
directory page and its sub-directory pages as its objects. An
object (listed item) corresponds to a website on the world wide
web, which is usually described by its URL, its title, and
optionally a short annotation about its content, as illustrated in
Figure 6.

For each dataset, we show in Table 3 the number of objects
occurred in Google (G), Yahoo (Y), either of them (G∪Y), and
both of them (G∩Y) respectively. The set of objects in G∩Y
covers only a small portion (usually less than 10%) of the set of
objects in Google or Yahoo alone, which suggests the great
benefit of automatically integrating them. This observation is
consistent with [2].

The number of categories per object in these datasets is 1.54 on
average. This observation confirms our previous statement in §2
that an object may belong to multiple categories, and justifies our

Figure 6: An object (listed item) corresponds a website
on the world wide web, which is usually described by its
URL, its title, and optionally a short annotation about
its content.

Table 1: The datasets.

 Google Yahoo
Book / Top/ Shopping/

Publications/ Books/
/ Business_and_Economy/
Shopping_and_Services/
Books/ Bookstores/

Disease / Top/ Health/
Conditions_and_Diseases/

/ Health/
Diseases_and_Conditions/

Movie / Top/ Arts/ Movies/
Genres/

/ Entertainment/
Movies_and_Film/
Genres/

Music / Top/ Arts/ Music/ Styles/ / Entertainment/ Music/
Genres/

News / Top/ News/ By_Subject/ / News_and_Media/

Table 2: The number of categories.

 Google Yahoo
Book 49 41
Disease 30 51
Movie 34 25
Music 47 24
News 27 34

477

strategy to build a binary classifier for each category in the
master taxonomy.

The category distributions in all theses datasets are highly
skewed. For example, in Google’s Book taxonomy, the most
common category contains 21% objects, but 88% categories
contain less than 3% objects and 49% categories contain less
than 1% objects, as shown in Figure 7. In fact, skewed category
distributions have been commonly observed in real-world
applications [26].

5.2 Tasks
For each dataset, we pose 2 symmetric taxonomy integration
tasks: G←Y (integrating objects from Yahoo into Google) and
Y←G (integrating objects from Google into Yahoo).

As described in §2, we formulate each task as a classification
problem. The objects in G∩Y can be used as test examples,
because their categories in both taxonomies are known to us [2].
We hide the test examples’ master categories but expose their
source categories to the learning algorithm in training phase, and
then compare their hidden master categories with the predictions
of the learning algorithm in test phase. Suppose the number of
the test examples is n. For G←Y tasks, we randomly sample n
objects from the set G-Y as training examples. For Y←G tasks,
we randomly sample n objects from the set Y-G as training
examples. This is to simulate the common situation that the sizes
of M and N are roughly in same magnitude. For each task, we

do such random sampling 5 times, and report the classification
performance averaged over these 5 random samplings.

5.3 Features
For each object, we assume that the title and annotation of its
corresponding website summarizes its content. So each object
can be considered as a text document composed of its title and
annotation.

The most commonly used feature extraction technique for text
data is to treat a document as a bag-of-words [13, 14]. For each
document d in a collection of documents D , its bag-of-words is
first pre-processed by removal of stop-words and stemming. Then
it is represented as a feature vector 1 2(, , ...,)mx x x=x , where ix

indicates the importance weight of term iw (the i-th distinct

word occurred in D). Following the TF×IDF weighting scheme,
we set the value of ix to the product of the term frequency

(,)iTF w d and the inverse document frequency ()iIDF w , i.e.,

(,) ()i iTF w d IDF w× . The term frequency (,)iTF w d means the

number of occurrences of iw in d . The inverse document

frequency is defined as () log
()

i

i

D
IDF w

DF w
=

 
 
 

, where D is

the total number of documents in D , and ()iDF w is the number

of documents in which iw occur. Finally all feature vectors are

normalized to have unit length.

5.4 Measures
As stated in §2, it is natural to accomplish a taxonomy
integration task via an ensemble of binary classifiers, each for
one category in M. To measure classification performance, we

use the standard F-score (F1 measure) [3]. The F-score is defined
as the harmonic average of precision (p) and recall (r),

2 ()F pr p r= + , where precision is the proportion of correctly

predicted positive examples among all predicted positive
examples, and recall is the proportion of correctly predicted
positive examples among all true positive examples. The F-
scores can be computed for the binary decisions on each
individual category first and then be averaged over categories. Or
they can be computed globally over all the M n× binary
decisions where M is the number of categories in consideration
(the number of categories in M) and n is the number of total

test examples (the number of objects in N). The former way is

called macro-averaging and the latter way is called micro-
averaging [26]. It is understood that the micro-averaged F-score
(miF) tends to be dominated the classification performance on
common categories, and that the macro-averaged F-score (maF)
is more influenced by the classification performance on rare
categories [26]. Since the category distributions are highly
skewed (see §5.1), providing both kinds of scores is more
informative than providing either alone.

5.5 Settings
We use our own implementation of NB and ENB. The Lidstone’s
smoothing parameter η is set to an appropriate value 0.1 [1].
The performance of ENB would be greatly affected by its
parameter ω . We run ENB with a series of exponentially
increasing values of ω : (0, 1, 3, 10, 30, 100, 300, 1000) [2] for

0

0.05

0.1

0.15

0.2

0.25

0 10 20 30 40 50

category rank (from common to rare)

ob
je

ct
s

pr
op

or
tio

n

Figure 7: The category distribution of Google’s Book
taxonomy.

Table 3: The number of objects.

 Google Yahoo G∪Y G∩Y
Book 10,842 11,268 21,111 999
Disease 34,047 9,785 41,439 2,393
Movie 36,787 14,366 49,744 1,409
Music 76,420 24,518 95,971 4,967
News 31,504 19,419 49,303 1,620

478

each taxonomy integration task, and report the best experimental
results.

We use SVMlight6 for the implementation of SVM / TSVM [13,
14]. We take linear kernel, and accept all default values of
parameters except “j” and “p”. The parameter “j” is set to the
ratio of negative training examples over positive training
examples, thus balance the cost of training errors on positive and
negative examples. The parameter “p” used in TSVM means the
fraction of test examples to be classified into the positive class.
To estimate the value of “p”, we first run SVM and get p̂ (the
fraction of test examples predicted to be positive by SVM), then
we set the value of “p” to a smoothed version of p̂ :

p̂ (1) 0.5σ σ× + − × , where σ is set to 99% in our experiments.

The CS algorithm is simple to implement and executes quickly.
It only requires one sequential scan to compute the cluster
centers and another sequential scan to reposition the examples.
In all our CS-SVM and CS-TSVM experiments, the CS
parameter λ is set to 0.5. Fine-tuning λ using tune sets would
decisively generate better results than sticking with a pre-fixed
value. In other words, the performance superiority of applying CS
technique is under-estimated in our experiments.

5.6 Results

6 http://svmlight.joachims.org/

The experimental results of NB and ENB are shown in Table 4.
We see that ENB really can achieve much better performance
than NB for taxonomy integration.

The experimental results of SVM and TSVM are shown in Table
5. We see that TSVM works better than SVM for taxonomy

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

B
oo

k

D
is

ea
se

M
ov

ie

M
us

ic

N
ew

s

B
oo

k

D
is

ea
se

M
ov

ie

M
us

ic

N
ew

s

G←Y Y←G

ENB CS-TSVM

Figure 9: Comparing the micro-averaged F-scores of
ENB and CS-TSVM.

Table 6: Experimental Results of CS-SVM & CS-TSVM

CS-SVM CS-TSVM
maF miF maF miF

Book 0.1450 0.5084 0.3564 0.6160
Disease 0.6494 0.7807 0.7288 0.8038
Movie 0.2070 0.5361 0.3686 0.6182
Music 0.3917 0.6268 0.5108 0.6768

G←Y

News 0.1837 0.5072 0.5504 0.6459
Book 0.2421 0.4219 0.4936 0.5706
Disease 0.3933 0.6846 0.6704 0.7919
Movie 0.2522 0.5425 0.4434 0.6481
Music 0.5205 0.7793 0.6181 0.8053

Y←G

News 0.4090 0.5391 0.5572 0.6456

Table 5: Experimental Results of SVM and TSVM.

SVM TSVM
maF miF maF miF

Book 0.2032 0.4916 0.2945 0.5089
Disease 0.6546 0.7466 0.6844 0.7686
Movie 0.2563 0.5104 0.3350 0.5290
Music 0.4774 0.5856 0.4604 0.5921

G←Y

News 0.3413 0.5349 0.4408 0.5778
Book 0.3284 0.4267 0.4284 0.4666
Disease 0.5842 0.7470 0.6362 0.7701
Movie 0.3731 0.5503 0.3995 0.5648
Music 0.5175 0.6649 0.5236 0.6670

Y←G

News 0.4948 0.5848 0.5110 0.6035

Table 4: Experimental Results of NB and ENB.

NB ENB
maF miF maF miF

Book 0.1286 0.2384 0.1896 0.5856
Disease 0.4386 0.5602 0.5230 0.6895
Movie 0.1709 0.3003 0.2094 0.5331
Music 0.2386 0.3881 0.2766 0.5408

G←Y

News 0.2233 0.4450 0.2578 0.5987
Book 0.1508 0.2107 0.2227 0.5471
Disease 0.2746 0.4812 0.3415 0.6370
Movie 0.2319 0.4046 0.2884 0.5534
Music 0.3124 0.5359 0.3572 0.6824

Y←G

News 0.2966 0.4219 0.3639 0.6007

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

B
oo

k

D
is

ea
se

M
ov

ie

M
us

ic

N
ew

s

B
oo

k

D
is

ea
se

M
ov

ie

M
us

ic

N
ew

s

G←Y Y←G

ENB CS-TSVM

Figure 8: Comparing the macro-averaged F-scores of
ENB and CS-TSVM.

479

integration tasks. We think this is because TSVM makes
effective use of the objects in N to enhance classification.

The experimental results of CS-SVM and CS-TSVM are shown
in Table 6. Comparing the experimental results of CS-SVM and
SVM, it turns out that in inductive learning setting the CS
technique can not provide much help to taxonomy integration. In
contrast, CS-TSVM greatly improves TSVM in the performance
of taxonomy integration. This implies that the real power of CS-
TSVM comes from the marriage of CS and TSVM but not either
alone.

The experimental results of ENB and CS-TSVM are compared in
Figure 8 and 9. It is clear that CS-TSVM outperforms ENB
consistently and significantly.

6. RELATED WORK
Most of the recent research efforts related to taxonomy
integration are in the context of ontology mapping on semantic
web. An ontology specifies a conceptualization of a domain in
terms of concepts, attributes, and relations [11]. The concepts in
an ontology are usually organized into a taxonomy: each concept
is represented by a category and associated with a set of objects
(called the extension of that concept). The basic goal of ontology
mapping is to identify (typically one-to-one) semantic
correspondences between the taxonomies of two given ontologies:
for each concept (category) in one taxonomy, find the most
similar concept (category) in the other taxonomy. Many works in
this field use a variety of heuristics to find mappings [6, 17, 19,
21]. Recently machine learning techniques have been introduced
to further automate the ontology mapping process [8, 12, 15, 20,
23]. Some of them derive similarities between concepts
(categories) based on their extensions (objects) [8, 12, 15],
therefore they need to first integrate objects from one taxonomy
into the other and vice versa (i.e., taxonomy integration). So our
work can be utilized as a basic component of an ontology
mapping system.

As stated in §2, taxonomy integration can be formulated as a
classification problem. The Rocchio algorithm [3, 22] has been
applied to this problem in [15]; and the Naïve Bayes (NB)
algorithm [18] has been applied to this problem in [8], without
exploiting information in the source taxonomy. To our
knowledge, the most advanced approach to taxonomy integration
is the enhanced Naïve Bayes (ENB) algorithm proposed by
Agrawal and Srikant [2], which we have reviewed and compared
with our approach.

7. CONCLUSION
Our main contribution is to show that the implicit knowledge in
the source taxonomy can be effectively exploited to boost
taxonomy integration by marrying Cluster Shrinkage (CS) and
Transductive Support Vector Machines (TSVM).

The future work may include: looking for methods to accelerate
the proposed CS-TSVM approach, incorporating commonsense
knowledge and domain constraints into the taxonomy integration
process, extending to full-functional ontology mapping systems,
and so forth.

8. ACKNOWLEDGMENTS
We would like to thank the anonymous reviewers for their
helpful comments and suggestions.

9. REFERENCES
[1] Agrawal, R., Bayardo, R. and Srikant, R. Athena: Mining-

based Interactive Management of Text Databases. in
Proceedings of the 7th International Conference on
Extending Database Technology (EDBT), Konstanz,
Germany, 2000, 365-379.

[2] Agrawal, R. and Srikant, R. On Integrating Catalogs. in
Proceedings of the 10th International World Wide Web
Conference (WWW), Hong Kong, 2001, 603-612.

[3] Baeza-Yates, R. and Ribeiro-Neto, B. Modern Information
Retrieval. Addison-Wesley, New York, NY, 1999.

[4] Berners-Lee, T., Hendler, J. and Lassila, O. The Semantic
Web, Scientific American, 2001.

[5] Chakrabarti, S., Dom, B., Agrawal, R. and Raghavan, P.
Using Taxonomy, Discriminants, and Signatures for
Navigating in Text Databases. in Proceedings of the 23rd
International Conference on Very Large Data Bases
(VLDB), Athens, Greece, 1997, 446-455.

[6] Chalupsky, H. OntoMorph: A Translation System for
Symbolic Knowledge. in Proceedings of the 7th
International Conference on Principles of Knowledge
Representation and Reasoning (KR), Breckenridge, CO,
2000, 471-482.

[7] Cristianini, N. and Shawe-Taylor, J. An Introduction to
Support Vector Machines. Cambridge University Press,
Cambridge, UK, 2000.

[8] Doan, A., Madhavan, J., Domingos, P. and Halevy, A.
Learning to Map between Ontologies on the Semantic Web.
in Proceedings of the 11th International World Wide Web
Conference (WWW), Hawaii, USA, 2002.

[9] Dumais, S. and Chen, H. Hierarchical Classification of Web
Content. in Proceedings of the 23rd Annual International
ACM SIGIR Conference on Research and Development in
Information Retrieval (SIGIR), Athens, Greece, 2000, 256-
263.

[10] Dumais, S., Platt, J., Heckerman, D. and Sahami, M.
Inductive Learning Algorithms and Representations for Text
Categorization. in Proceedings of the 7th ACM
International Conference on Information and Knowledge
Management (CIKM), Bethesda, MD, 1998, 148-155.

[11] Fensel, D. Ontologies: A Silver Bullet for Knowledge
Management and Electronic Commerce. Springer-Verlag,
2001.

[12] Ichise, R., Takeda, H. and Honiden, S. Rule Induction for
Concept Hierarchy Alignment. in Proceedings of the
Workshop on Ontologies and Information Sharing at the
17th International Joint Conference on Artificial
Intelligence (IJCAI), Seattle, WA, 2001, 26-29.

[13] Joachims, T. Text Categorization with Support Vector
Machines: Learning with Many Relevant Features. in

480

Proceedings of the 10th European Conference on Machine
Learning (ECML), Chemnitz, Germany, 1998, 137-142.

[14] Joachims, T. Transductive Inference for Text Classification
using Support Vector Machines. in Proceedings of the 16th
International Conference on Machine Learning (ICML),
Bled, Slovenia, 1999, 200-209.

[15] Lacher, M.S. and Groh, G. Facilitating the Exchange of
Explicit Knowledge through Ontology Mappings. in
Proceedings of the Fourteenth International Florida
Artificial Intelligence Research Society Conference
(FLAIRS), Key West, FL, 2001, 305-309.

[16] McCallum, A. and Nigam, K. A Comparison of Event
Models for Naive Bayes Text Classification. in AAAI-98
Workshop on Learning for Text Categorization, Madison,
WI, 1998, 41-48.

[17] McGuinness, D.L., Fikes, R., Rice, J. and Wilder, S. The
Chimaera Ontology Environment. in Proceedings of the
17th National Conference on Artificial Intelligence (AAAI),
Austin, TX, 2000, 1123--1124.

[18] Mitchell, T. Machine Learning. McGraw Hill, Singapore,
1997.

[19] Mitra, P., Wiederhold, G. and Jannink, J. Semi-automatic
Integration of Knowledge Sources. in Proceedings of The
2nd International Conference on Information Fusion,
Sunnyvale, CA, 1999.

[20] Noy, N.F. and Musen, M.A. Anchor-PROMPT: Using Non-
Local Context for Semantic Matching. in Proceedings of the
Workshop on Ontologies and Information Sharing at the
17th International Joint Conference on Artificial
Intelligence (IJCAI), Seattle, WA, 2001, 63-70.

[21] Noy, N.F. and Musen, M.A. PROMPT: Algorithm and Tool
for Automated Ontology Merging and Alignment. in
Proceedings of the National Conference on Artificial
Intelligence (AAAI), Austin, TX, 2000, 450-455.

[22] Rocchio, J.J. Relevance Feedback in Information Retrieval.
in Salton, G. ed. The SMART Retrieval System: Experiments
in Automatic Document Processing, Prentice-Hall, 1971,
313-323.

[23] Stumme, G. and Maedche, A. FCA-MERGE: Bottom-Up
Merging of Ontologies. in Proceedings of the 17th
International Joint Conference on Artificial Intelligence
(IJCAI), Seattle, WA, 2001, 225-230.

[24] Vapnik, V.N. The Nature of Statistical Learning Theory.
Springer-Verlag, New York, NY, 2000.

[25] Vapnik, V.N. Statistical Learning Theory. Wiley, New
York, NY, 1998.

[26] Yang, Y. and Liu, X. A Re-examination of Text
Categorization Methods. in Proceedings of the 22nd ACM
International Conference on Research and Development in
Information Retrieval (SIGIR), Berkeley, CA, 1999, 42-49.

481

