
SCHEMA EVOLUTION IN WIKIPEDIA
toward a Web Information System Benchmark∗

Carlo A. Curino Hyun J. Moon
DEI, Politecnico di Milano, Italy CSD, UCLA, Los Angeles, CA

carlo.curino@polimi.it hjmoon@cs.ucla.edu

Letizia Tanca Carlo Zaniolo
DEI, Politecnico di Milano, Italy CSD, UCLA, Los Angeles, CA

tanca@elet.polimi.it zaniolo@cs.ucla.edu

Keywords: Schema Evolution, Wikipedia, Case Study, Benchmark

Abstract: Evolving the database that is at the core of an Information System represents a difficult maintenance problem
that has only been studied in the framework of traditional information systems. However, the problem is likely
to be even more severe in web information systems, where open-source software is often developed through
the contributions and collaboration of many groups and individuals. Therefore, in this paper, we present an in-
depth analysis of the evolution history of the Wikipedia database and its schema; Wikipedia is the best-known
example of a large family of web information systems built using the open-source software MediaWiki. Our
study is based on: (i) a set of Schema Modification Operators that provide a simple conceptual representation
for complex schema changes, and (ii) simple software tools to automate the analysis. This framework allowed
us to dissect and analyze the 4.5 years of Wikipedia history, which was short in time, but intense in terms of
growth and evolution. Beyond confirming the initial hunch about the severity of the problem, our analysis
suggests the need for developing better methods and tools to support graceful schema evolution. Therefore,
we briefly discuss documentation and automation support systems for database evolution, and suggest that the
Wikipedia case study can provide the kernel of a benchmark for testing and improving such systems.

1 INTRODUCTION

Every Information System (IS) is the subject of
a constant evolution process to adapt the system to
many factors such as changing requirements, new
functionalities, compliance to new regulations, in-
tegration with other systems, and new security and
privacy measures. The data management core of
an IS is one of the most critical portions to evolve.
Often based on Relational DataBase (DB) technol-
ogy, the data management core of a system needs
to evolve whenever the revision process requires
modifications in the logical and physical organiza-
tion of the data. Given its fundamental role, the
evolution of the DB underlying an IS has a very
strong impact on the applications accessing the data;
thus, support for graceful evolution is of paramount
importance. The complexity of DB and software
maintenance, clearly, grows with the size and com-
plexity of the system. Furthermore, when moving
from intra-company systems – typically managed by

∗This work has been partially funded by the project
MIUR-FIRB ARTDECO and the NSF project IIS 0705345.

rather small and stable teams of developers/adminis-
trators – to collaboratively-developed-and-maintained
public systems, the need for a well-managed evo-
lution becomes indispensable. Leading-edge web
projects, characterized by massive collaborations and
fast growth, experience a relentless drive for changes,
which in turn generates a critical need for widespread
consensus and rich documentation.

Schema evolution has been extensively studied in
the scenario of traditional information systems. An
authoritative and comprehensive survey of the ap-
proaches to relational schema evolution and schema
versioning is presented in [Roddick, 1995]. More re-
cently, [Ram and Shankaranarayanan, 2003] has sur-
veyed schema evolution on the object-oriented, rela-
tional, and conceptual data models. Case studies on
schema evolution on various application domains ap-
pear in [Sjoberg, 1993, Marche, 1993]. Schema evo-
lution has also been studied in the context of model
management – research which aims at developing
a systematic approach to schema management and
mapping [Bernstein, 2003] and [Bernstein and Rahm,
2003]. Other interesting approaches tackled the prob-



lem of schema evolution in XML [Moro et al., 2007],
data warehouse [Golfarelli et al., 2004,Rizzi and Gol-
farelli, 2007] and object-oriented databases [Galante
et al., 2005, Franconi et al., 2001].

Of particular interest, are Web Information Sys-
tems (WIS), often based on open-source solutions.
This large and fast-growing class include, among
many other examples: Content Management Systems,
Wiki-based web portals, E-commerce systems, Blog,
and Public Scientific Databases from ‘Big Science’
Projects. The common denominator among these sys-
tems is the collaborative and distributed nature of
their development and content management. Among
the best known examples we have: MediaWiki [Wiki-
media Foundation, 2008], a website software un-
derlying a huge number of web portals, including
Wikipedia [Wikipedia, 2008], Joomla1, a complete
Content Management System (CMS) and Web Appli-
cation Framework, TikiWiki2, an open source group-
ware and CMS solution, Slashcode3, the web-blog
software behind the news website Slashdot4.

Moreover, inasmuch as large collaborative
projects are now very common in natural science
research, their reliance on databases and web systems
as the venue needed to promptly shared results and
data has created many large Scientific Databases,
including the Human Genome DB5, HGVS6, CBIL7,
and many others. Although different in many ways,
these all share a common evolution problem for
which the slow labor-intensive solutions of the past
have become inadequate. New conceptual and oper-
ational tools are needed to enable graceful evolution
by systematically supporting the migration of the DB
and the maintenance of its applications. Among the
desiderata in such a scenario, we seek systems that
preserve and manage the past contents of a database
and the history of its schema, while allowing legacy
applications to access new contents by means of old
schema versions [Moon et al., 2008, Curino et al.,
2008c].

In the rest of this paper, we shall analyze the
case of MediaWiki [Wikimedia Foundation, 2008], a
data-intensive, open-source, collaborative, web-portal
software, originally developed to run Wikipedia, a
multilingual, web-based, free-content encyclopedia
[Wikipedia, 2008]: this platform is currently used by
over 30,000 wikis, for a grand total of over 100 mil-

1Available at http://www.joomla.org.
2Available at http://www.tikiwiki.org.
3Available at http://www.slashcode.com.
4Available at http://slashdot.org.
5Available at http://www.gdb.org/.
6Available at http://www.hgvs.org/index.html
7Available at http://www.cbil.upenn.edu/.

lion pages8. While the Wikipedia content evolution
has been analyzed previously [Almeida et al., 2007],
this report is the first that focuses on the problem of
DB schema evolution. MediaWiki has seen, during its
4 years and 7 months of life, 171 different DB schema
versions released to the public by means of a CVS/-
Subversion versioning system9. As one can easily
imagine, every schema change has a profound impact
on the application queries and the code managing the
results, which must thus be revised. In the case of Me-
diaWiki, we observed in our analysis that only a small
fraction (about 22%) of the queries designed to run
on old schema versions are still valid throughout the
schema evolution (see discussion in Section 3.4). Our
analysis was made possible by the collaborative, pub-
lic, and open-source nature of the development, doc-
umentation and release of MediaWiki and Wikipedia.
The main contributions of this paper are the follow-
ing:

• We present the first schema evolution analysis of
a real-life Web Information System DB, by study-
ing the MediaWiki DB backend. This provides
a deep insight on Wikipedia, one of the ten most
popular websites to date10 and reveals the need for
DB schema evolution and versioning techniques.

• We provide and plant the seeds of the first public,
real-life-based, benchmark for schema evolution,
which will offer to researchers and practitioners a
rich data-set to evaluate their approaches and so-
lutions. As a part of the benchmark, we also re-
lease a simple but effective tool-suite for schema
evolution analysis.

The paper is organized as follows, we briefly in-
troduce the MediaWiki system architecture in Sec-
tion 2, and present several statistics on the MediaWiki
schema evolution in Section 3, based on a concep-
tual tool for describing DB schema evolution. In Sec-
tion 4, we discuss the tool-suite developed to carry on
this analysis and our experimental setting, and in Sec-
tion 5 we show how this analysis is contributing to
the definition of a unified benchmark for schema evo-
lution. Section 6 is devoted to a comparison with the
results obtained by previous studies on schema evo-
lution in traditional Information Systems, while Sec-
tion 7 is dedicated to our conclusions.

8See http://s23.org/wikistats/.
9See http://svn.wikimedia.org/viewvc/

mediawiki/trunk/phase3/maintenance/tables.
sql?view=log.

10Source: http://www.alexa.com.



USER's 
BROWSER

PAGE CACHING 
(Squid)

PHP
ENGINE

(mod_php)

MediaWiki
PHP SCRIPTS

WEB SERVER
(Apache)

MySQL

DB
(webpage contents, 

user accounts,
logging, ...)

(1) page request

(6) page returned

(5) Rendered
XHTML page

DBMS
(MySQL)

HTTP
server

(3) SQL queries

(4) Query results

(2) script 
invocation

Figure 1: MediaWiki Software Architecture

2 MEDIAWIKI

In this section we briefly discuss the MediaWiki
software architecture and DB schema (as in the cur-
rent version of November 200711), to provide the
reader with a broad understanding of the internals of
the system we are going to analyze.

2.1 Architecture

The MediaWiki software is a browser-based web-
application, whose architecture is described in details
in [Wikimedia Foundation, 2007a, Wikimedia Foun-
dation, 2007b]. As shown in Figure 1, the users in-
teract with the PHP frontend through a standard web
browser, submitting a page request (e.g., a search for
pages describing “Paris”). The frontend software con-
sists of a simple presentation and management layer
(MediaWiki PHP Scripts) interpreted by the Apache
PHP engine. The user requests are carried out by
generating appropriate SQL queries (or updates), that
are then issued against the data stored in the backend
DB (e.g., the database is queried looking for article’s
text containing the term “Paris”). The backend DB
can be stored in any DBMS: MySQL, being open-
source and scalable, is the default DBMS for the Me-
diaWiki software. The results returned by the DBMS
are rendered in XHTML and delivered to the user’s
browser to be displayed (e.g., a set of of links to pages
mentioning “Paris” is rendered as an XHTML list).
Due to the heavy load of the Wikipedia installation
of this software, much of effort has been devoted to
performance optimization, introducing several levels
of caching (Rendered Web Page, DB caches, Media
caches), which is particularly effective thanks to the
very low rate (0.04%) of updates w.r.t. queries [Ur-

11The current version is the 171st schema version corre-
sponding to the SVN commit revision 25635.

daneta et al., 2007]. Obviously, every modification of
the DB schema has a strong impact on the queries the
frontend can pose. Typically each schema evolution
step can require several queries to be modified, and
so several PHP scripts (cooperating to interrogate the
DB and render a page) to be manually fixed, in order
to balance the schema changes.

2.2 Database Schema

The DB, in the current version, presents 34 tables
with, all in all, 242 columns. It holds the entire
website content, over 700 GBytes in the case of
Wikipedia. The tables can be functionally grouped
as follows:

• Article and content management (6): page,
revision, text, image, user newtalk,
math

• History and archival management (4):
archive, filearchive, oldimage,
logging

• Links and website structure (9):
categorylinks, externallinks,
imagelinks, interwiki, langlinks,
pagelinks, redirect, templatelinks,
trackbacks

• User management and permissions (5):
user, user groups, ipblocks, watchlist,
page restrictions

• Performance and caching (7): objectcache,
querycache, querycache info, job,
querycachetwo, transcache, searchindex

• Statistics and special feature support (3):
recentchanges, hitcounter, site stats

Note the presence of many tables devoted to per-
formance tuning, by means of caching and indexing,



Figure 2: MediaWiki Schema Size: the Number of Tables

Figure 3: MediaWiki Schema Size: the Total Number of
Columns

and to preservation of deleted or historical copies of
the system’s main content, e.g., articles and images.

3 SCHEMA EVOLUTION IN
MEDIAWIKI

In this section, we analyze the schema evolution
of MediaWiki based on its 171 schema versions, as
committed to SVN between April 2003 (first schema
revision) and November 2007 (date of this analysis).

3.1 Basic Statistics

Schema Size Growth In Figure 2 and 3, we report
the size of MediaWiki DB schema in history, in terms
of the number of tables and columns, respectively.
The graphs show an evident trend of growth in sizes,
where the number of tables has increased from 17
to 34 (100% increase) and the number of columns
from 100 to 242 (142%). Sudden drops in the graphs
are due to schema versions with syntax errors, i.e.,
schema versions that could not be properly installed.
In both graphs we observe different rates of growth
over time, which seem to be related to the time pe-
riods preceding or following official releases of the
overall software (see Table 1).

Figure 4: Histogram of Table Lifetime

Figure 5: Histogram of Column Lifetime

Schema growth is due to three main driving forces
as follows:
• performance improvement, e.g., introduction of

dedicated cache tables,

• addition of new features, e.g., support for logging
and content validation,

• the growing need for preservation of DB content
history, i.e., introduction of tables and columns
to store outdated multimedia content such as the
“filearchive” table.
Table/Column Lifetime Figure 4 shows a his-

togram representation of the table lifetimes, in terms
of number of versions. The lifetimes range from very
long ones, e.g., the user table that was alive through-
out the entire history, to short ones, e.g., random ta-
ble that only survived for two revisions. On average,
each table lasted 103.3 versions (60.4% of the total
DB history). Figure 5 presents lifetimes of columns
in histogram, where columns lasted 97.17 versions on
average (56.8% of the total DB history). Interestingly,
both figures show that there are two main groups of
tables and columns: “short-living” and “long-living”.
The former might be due to the fact that the schema
has been growing lately so a significant portion of ta-
bles and columns has been introduced only recently.
The latter can be explained noting that the core ta-
bles/columns tend to be rather stable throughout the
entire history.



Table 1: MediaWiki Software Releases and the Number of
DB Schema Versions Immediately Preceding Each Release

software release schema version # of schema
releases date used (ordinal) versions

1.1 Dec 8, 2003 7 7
1.2 Mar 24, 2004 14 7
1.3 Aug 11, 2004 28 14
1.4 Mar 20, 2005 48 20
1.5 Oct 5, 2005 79 31
1.6 Apr 5, 2006 93 14
1.7 Jul 7, 2006 102 9
1.8 Oct 10, 2006 110 8
1.9 Jan 10, 2007 127 17

1.10 May 9, 2007 145 18
1.11 Sep 10, 2007 171 26

Table 2: Macro-Classification of Schema Changes (One
evolution step may have more than one change type)

Type of # of evolution % of evolution
Change steps steps
Actual 94 54.9%
Schema
Index/Key 69 40.3%
Data Type 22 12.8%
Syntax Fix 20 11.7%
Rollback 15 8.8%
Doc Only 13 7.6%
Engine 6 3.5%

Per-month Revision Count In Figure 6, we show
how many schema versions were committed during
each month in history, providing an estimation of the
development effort devoted to the DB backend over
time.

3.2 Macro-Classification of Changes

We group the 170 evolution steps based on the types
of evolution they present as in Table 2. While the “ac-
tual schema changes” have an impact on the queries,
as they modify the schema layout, the evolution of the
DBMS engine, indexes, and data types, (while being
relevant to performance) does not require any query
correction, because of the physical data-independence
provided by the DBMS. Table 2 shows the frequen-
cies12 of the types of changes among the 170 evolu-
tion steps. In particular, the table highlights that:

• almost 55% of the evolution steps involve ac-
tual schema changes (further discussed in Sec-
tion 3.3);

12Please not that each evolution step might contain more
than one type of change.

Table 3: Schema Modification Operators (SMOs)

SMO Description
CREATE TABLE introduces a new, empty table to the database,

as in SQL:2003 standard
DROP TABLE removes an existing table from the schema

and deletes the data in the table, as in
SQL:2003 standard

RENAME TABLE renames a table, without affecting the data.as
in SQL:2003 standard

DISTRIBUTE TABLE takes as input a source table and distribute tu-
ples into two newly generated tables, accord-
ing to the specified conditions, with the source
table dropped.

MERGE TABLE takes two source tables with the same schema
and creates a new table with the same schema
with a union of the two tables. It is required
that the two source tables do not present key
conflicts.

COPY TABLE creates a duplicate of an existing table
ADD COLUMN introduces a new column into the specified ta-

ble, where the new column is filled with the
values generated by a user-specified constant
or function (NULL by default).

DROP COLUMN removes an existing column from a table,
deleting all data in it.

RENAME COLUMN changes the name of a column, without affect-
ing the data.

COPY COLUMN makes a copy of a column into another table,
filling the value according to a join condition
between source and target tables.

MOVE COLUMN same as COPY COLUMN but the original
column is dropped.

Figure 6: Number of Schema Versions Committed during
Each Month

• over 40% of the evolution steps involve index/key
adjustments and this is due to the performance-
critical role of the DB in a data-intensive, high-
load, website such as Wikipedia;

• 8.8% of the evolution steps were rollbacks to pre-
vious schema versions;

• 7.6% of the analyzed evolution steps present only
documentation changes.



3.3 Micro-Classification of Changes

Schema Modification Operators To better under-
stand the Relational DB schema evolution, we intro-
duce a classification of the “actual schema changes”.
Different formalisms can be exploited for this pur-
pose. Shneiderman and Thomas proposed in [Shnei-
derman and Thomas, 1982] a comprehensive set of
schema changes, including structural schema changes
and also changes regarding the keys and dependen-
cies. More recently, Bernstein et al. have also
proposed a set of schema evolution primitives using
algebra-based constraints as their primitives [Bern-
stein et al., 2006, Bernstein et al., 2008].

Among several options, we chose the Schema
Modification Operators (SMOs) that we proposed in
[Moon et al., 2008, Curino et al., 2008c] (briefly de-
scribed in Table 3). SMOs capture the essence of the
existing works, but can also express schema changes
not modeled by previous approaches. For exam-
ple, by using function13 in the ADD COLUMN operator,
SMOs can support semantic conversion of columns
(e.g., currency exchange), column concatenation/s-
plit (e.g., different address formats), and other simi-
lar changes that have been heavily exploited in mod-
eling MediaWiki schema changes. The effective-
ness of SMOs have been validated in [Moon et al.,
2008, Curino et al., 2008c], where the PRISM and
PRIMA systems used SMOs to describe schema evo-
lution in transaction-time databases and to support
historical query reformulations over multi-schema-
version transaction-time databases.

The syntax of SMO is similar to that of SQL DDL
[ISO/IEC 9075-*: 2003, 2003,Eisenberg et al., 2004],
and provides a concise way to describe typical modi-
fications of a database schema and the corresponding
data migration. Every SMO takes as input a schema
and produces as output a new version of the same
schema. Table 3 presents a list of SMOs, operating on
tables (the first six) and on columns (the last five) of a
given DB schema, together with a brief explanation.
Note that simple SMOs can be arbitrarily combined
in a sequence, to describe complex structural changes,
as those occured in the MediaWiki DB schema evolu-
tion.

Classification Using SMOs In this context we ex-
ploit SMOs as a pure classification instrument to pro-
vide a fine-grained analysis of the types of change
the schema has been subject to. While there might
be several ways to describe a schema evolution step
by means of SMOs, we carefully select, analyzing
the available documentation, the most natural set of
SMOs describing each schema change in the Medi-

13Both from system libraries and user defined.

Table 4: Micro-Classification of Schema Changes Using
SMOs and Frequencies

SMO type # of usages % of usage % per version
CREATE TABLE 24 8.9% 14%
DROP TABLE 9 3.3% 5.2%
RENAME TABLE 3 1.1% 1.75%
DISTRIBUTE TABLE 0 0.0% 0%
MERGE TABLE 4 1.5% 2.33%
COPY TABLE 6 2.2% 3.5%
ADD COLUMN 104 38.7% 60.4%
DROP COLUMN 71 26.4% 41.5 %
RENAME COLUMN 43 16.0% 25.1 %
MOVE COLUMN 1 0.4% 0.58%
COPY COLUMN 4 1.5% 2.33%
Total 269 100% –

Figure 7: Number of SMOs Used in Each Evolution Step

aWiki history. Table 4 shows the distribution of the
SMOs, presenting, for each type, how many times
it has been used in the entire schema evolution his-
tory. Is interesting to notice that the more sophisti-
cated SMOs (e.g., MERGE TABLE) while being indis-
pensable are not very common. The balance between
column/table additions and deletions highlights the
“content preserving” attitude of Wikipedia14.

Figure 7 shows the number of SMOs (overall) for
each evolution step. The curve shows how the schema
evolution has been mainly a continuous process of ad-
justment, with few exceptions shown as spikes in the
figure, coinciding with major evolution steps, such as:

• v6696 (41st version) - v6710 (42nd version), 92
SMOs: a change in the storage strategy of the ar-
ticle versions,

• v9116 (61st version) - v9199 (62nd version), 12
SMOs: a change in link management,

• v20393(138th version) - v20468 (139th version),
9 SMOs: history management (deletion and log
features added to several tables).

14The main noticeable exception is the set of informa-
tion supporting the user rights management, which has been
strongly reduced in the DB after version v9335 (65th ver-
sion), as it was moved to the application layer.



20 40 60 80 10
0

12
0

14
0

16
00

20

40

60

80

100

%
 o

f 
q
u
er

y 
su

cc
es

s real-world 
templates

 lab-gen
templates

lab-gen
queries

version (ordinal)

Figure 8: Average query success rate against preceding
schema versions (the queries are designed for the last ver-
sion, and run against all the previous versions).

3.4 The Impact on the Applications

In order to study the effect of schema evolution on
the frontend application, we analyze the impact of the
schema changes on six representative sets of queries.
Each experiment tests the success or failure of a set
of queries, originally designed to run on a specific
schema version, when issued against other schema
versions.

To simulate a case where current applications are
run on databases under older schema versions, we test
three sets of queries, valid on the last schema version,
on all the previous schema versions (Figure 8). Also,
to study how legacy applications succeed or fail on
newer versions of the database schema, we test three
sets of legacy queries on all the subsequent schema
versions (Figure 9). The six sets considered in our
experiments are as follows:

• real-world templates, current (Figure 8): the 500
most common query templates (extracted15 from
over 780 millions of query instances), derived
from the Wikipedia on-line profiler16 and post-
processed for cleaning17;

• lab-gen queries, current (Figure 8): 2496 query
instances generated by a local installation of
the current version of MediaWiki (release 1.11,
schema version 171), interacting with the fron-
tend18 and logging the queries issued against the

15The templates are extracted ignoring constants and re-
taining only the query structure.

16Available on-line at http://noc.wikimedia.org/
cgi-bin/report.py.

17The cleaning process was meant to remove syntactical
errors due to imprecise template extraction performed by
the Wikipedia profiler and to remove explicit invocations of
indexes, not available in our test-set.

18In order to generate as many as possible types of

40 60 80 10
0

12
0

14
0

16
0

0

20

40

60

80

100

%
 o

f 
q
u
er

y 
su

cc
es

s

version (ordinal)

synthetic probe queries

lab-gen
templates

lab-gen
queries

Figure 9: Average query success rate against following
schema versions (the queries are designed for the 28th ver-
sion, and run against all the following versions).

underlying MySQL DBMS;

• lab-gen templates, current (Figure 8): 148 tem-
plates of queries extracted from the above lab-gen
queries, current;

• lab-gen queries, legacy (Figure 9): 4175 query in-
stances generated by a local installation of an old
version of MediaWiki (release 1.319, schema ver-
sion 28), interacting with the frontend and logging
the queries issued against the underlying MySQL
DBMS;

• lab-gen templates, legacy (Figure 9): 74 tem-
plates extracted from the above lab-gen queries,
legacy;

• synthetic probe queries, legacy (Figure 9): 133
synthetic queries accessing single columns (i.e.,
select tab j.atti from tab j) of schema version
28, designed to highlight the schema portion af-
fected by the evolution.

Each set has been tested against all schema ver-
sions: the resulting query execution success rates are
shown in Figure 8 (for the first three sets) and Figure 9
(for the last three sets). The outliers in the graphs
(sudden and extremely low values) are due to syntac-
tically incorrect DB schema versions.

The first three sets are shown in Figure 8. It is
interesting to notice that:

• proceeding from right to left, a series of descend-
ing steps illustrates that more and more of the cur-
rent queries become incorrect as we move to older
schemata.

queries, we tried to trigger all features accessible from the
web browser.

19The oldest version compatible with the environment of
our experimental setting.



• the sudden drop in query success – of about 30%
– which appears between commit revisions v6696
(41st schema version) and v6710 (42nd schema
version)20 highlights one of the most intense evo-
lution steps of the MediaWiki data management
core, involving a deep change in the management
of article revisions;

• the lab-generated and real-world templates carry
very similar information. This seems to indicate
that our local query generation method is capable
of producing a representative set of queries.

Figure 9 shows a graph of the average execution suc-
cess rates for the latter three query sets. Some inter-
esting observations are as follows:

• the synthetic probe queries, by failing systemati-
cally when a column or a table are modified, high-
light the portion of the schema affected (changed
in such a way that makes query to fail) by the evo-
lution. The figure shows how the schema evolu-
tion invalidates (in the worst case) only the 32%
of the schema.

• in the last version, a very large portion (77%) of
the lab-gen templates fails due to schema evolu-
tion.

• for lab-gen templates, the big evolution step be-
tween commit revisions v6696 (41st schema ver-
sion) and v6710 (42nd schema version) invalidates
over 70% of the queries.

• lab-gen templates failure rate compared to syn-
thetic probe queries failure rate (representing the
affected portion of the schema) exposes that the
schema modifications mainly affected the por-
tion of the schema heavily used by the applica-
tion (32% of the schema being affected invalidates
77% of the query templates).

• the gap between the success rate of legacy query
instances (2.9%) and legacy query templates
(22%) shows that the failing templates actually
correspond to the most common query instances
(in our distribution).

Finally it is interesting to notice that the number
of features of the MediaWiki software has grown in
time; this explains the growth in the number of the
query templates extracted from legacy queries (74)
and current queries (148). This also affects the per-
centage (but not the absolute number) of queries fail-
ing due to each schema evolution (the current-query
graph appear smoother).

20See [Curino et al., 2008a] for SVN commit version to
ordinal numbers conversion.

All in all these experiments provide a clear evi-
dence of the strong impact of schema changes on ap-
plications, and support the claim for better schema
evolution support.

4 ANALYSIS TOOL SUITE

To collect the statistics described in this paper,
we developed a set of tools, organized in a tool-suite
available on-line [Curino et al., 2008b]. This step-by-
step process, primarily designed to help researchers to
gain better insight in the schema evolution of existing
Information Systems, can be effectively exploited by:

• DB administrators and developers, in any data-
centric scenario, to analyze the history of the DB
schema and create a (summarized) view of its evo-
lution history. The tool suite will support the anal-
ysis of the evolution process and help to highlight
possible flaws in the design and maintenance of
the Information System.

• Researchers and designers of support methods
and tools for DB evolution and versioning, to test
their approaches against real-life scenarios.

We now discuss some of the features of our tool-
suite referring to its application to the MediaWiki DB.

First of all, by means of an appropriate tool, the
171 MediaWiki DB schema versions have been down-
loaded from SVN repository and batch-installed in a
MySQL DBMS21. We developed a tool, named statis-
tics collection, that can be applied on this data to
derive the basic statistics of schema versions, such
as schema size and average table/column lifetime.
The statistics collection tool queries the MySQL
data dictionary (the information schema meta-
database) to gather the statistical measures presented
in Section 3.1.

For fine-grained view of the schema evolution we
also provide the SMO extractor tool. This tool, by op-
erating on the differences between subsequent schema
versions, semiautomatically extracts a set of candi-
date SMOs describing the schema evolution, min-
imizing the user effort22. To estimate query suc-
cess against different schema versions, the users can
exploit a tool named query success analyzer. This
tool performs a query success rate analysis by batch-
running its input queries against all schema versions.
The tool, relying on MySQL query engine, measures

21MySQL version 5.0.22-Debian.
22Complex evolution patterns as the one appeared from

the 41st and 42nd schema versions in MediaWiki, require
the user to refine the set of SMOs according to his/her un-
derstanding of the schema evolution.



and computes both per-query and aggregate success
ratios.

For users’ convenience, we also provide a
log analyzer which can be used to extract and clean
the SQL query instances and templates from the raw
mysql log format.

Every component of the tool-suite stores the col-
lected information, in a non-aggregated form, in a
database, named evolution metadb. This database is
later queried to provide statistical measures of the
schema evolution. This approach, relying on the SQL
aggregation operators, offers the user a flexible in-
terface. The graphs and tables presented in this pa-
per have been derived by means of appropriate SQL
queries on the evolution metadb; all the data collected
for our MediaWiki analysis are released to the pub-
lic [Curino et al., 2008a].

5 TOWARD A UNIFIED
BENCHMARK

DB schema evolution has been recognized to be a
relevant problem among both researchers and prac-
titioners, but despite the number of proposed solu-
tions [Roddick, 1995, Ram and Shankaranarayanan,
2003, Bernstein, 2003, Bernstein and Rahm, 2003,
Velegrakis et al., 2003, Yu and Popa, 2005], a unified
benchmark is currently missing – although needed as
noted in [Bernstein et al., 2006].

The case study we present in this paper represents
our initial step towards the definition of a reusable and
standardized benchmark. To the best of our knowl-
edge, this is the first attempt to provide a publicly-
available, real-world DB schema evolution bench-
mark to date.

The benchmark we are developing will contain
the results of the analysis of several case studies of
open-source systems, currently under development,
together with the MediaWiki example presented here.
In addition we are developing a set of tools to sup-
port our benchmarking procedure. Among such tools
we have the query success analyzer discussed in the
previous section and a data generator, used to batch-
populate with synthetic data (of variable size) all
available versions of the DB under analysis. The
data generator, while producing randomized data,
is tailored to create DB contents that maximize the
query answer predictability by means of data regular-
ity, thus easying correctness checks of the techniques
under test.

While the overall benchmark is still under devel-
opment, we made available on-line at [Curino et al.,
2008a] our MediaWiki data-set (schemata, queries,

data and the evolution metadb DB discussed in
the previous section) in order to provide researchers
and practitioners with rich and interesting data to
evaluate and test their approaches. This data-set has
already been successfully exploited to test the PRISM
and PRIMA system in [Moon et al., 2008, Curino
et al., 2008c].

We believe that, w.r.t. the goal of developing a
unified benchmark for DB schema evolution, Medi-
aWiki is an ideal starting point because:

• it is a real-life application used by 30,000 wikis,

• is the software platform used by Wikipedia, one of
the 10 most popular websites in the World Wide
Web,

• its code and data are well-documented and re-
leased under GPL License,

• several differently-sized DB contents (the DB
dump of different public wikis), ranging from tens
of KBytes to hundreds of GBytes [Almeida et al.,
2007], are available to the public23,

• there is an on-line profiling system providing real-
life queries from the Wikipedia site, along with
their frequencies and typical workload details24,
and

• the system is based on common, open-source in-
struments (such as Apache, MySQL, and Squid).

Benchmark Users The benchmark under devel-
opment is mainly intended to: (i) educate database
administrators on typical schema evolution scenar-
ios, in order to avoid common design errors and im-
prove the quality of initial schema designs, (ii) sup-
port the community of researchers working on the
schema versioning / schema evolution problems, (iii)
provide researchers and practitioners, designing solu-
tions for data migration, with a rich test-case for tools
and methodologies, (iv) provide a rich set of examples
of evolution to enable evolution pattern mining.

6 RELATED WORKS

In this section, we compare our analysis with the
existing case studies on schema evolution for tradi-
tional information systems [Sjoberg, 1993, Marche,
1993]. Both analysis process and results are com-
pared.

[Sjoberg, 1993] discusses database schema evo-
lution in a health management system (HMS). This

23See http://download.wikimedia.org/.
24Available at: http://noc.wikimedia.org/

cgi-bin/report.py.



Table 5: Comparison of Schema Growth in MediaWiki and Those in Other Case Studies

Case Interval Number of Tables Number of Columns
(months) First Last Increase Inc/year First Last Increase Inc/year

Sjoberg-all 18 23 55 139% 92.6% 178 666 274% 182.7 %
Sjoberg-oper 13 47 55 17% 15.7% 528 666 26% 24.0 %
Marche 31.6 9.6 10.6 10% 3.8 % 118.9 139.0 17% 6.5 %
MediaWiki-all 55 17 34 100% 21.8 % 100 242 142% 31.0 %
MediaWiki-oper 48 18 34 89% 22.3 % 106 242 128% 32.0 %

careful analysis of nine schema versions shows an in-
crease in the number of tables from 23 to 55 and in
the number of columns from 178 to 666 during 18
months (consisting in 5 months of development and
13 months of operational phase). Sjoberg discusses
how application queries are affected when the schema
evolves, as we do in Section 3.4.

In [Marche, 1993], a collective case study is pre-
sented for seven database applications from the fol-
lowing domains: personal skills, sales and payments,
apprenticeship, project tracking, property inventory,
lease invoicing, and faculty staff. For each appli-
cation, Marche compares only two schema versions,
taken at interval ranging from 6 to 80 months. The
author does not specify whether such versions corre-
spond to the development or operational phase of the
systems under analysis. This analysis reports an in-
crease in the average number of relations and columns
from 9.6 to 10.6, and from 118.9 to 139.0, respec-
tively. The work also analyzes the root cause of each
column’s schema change, which can be the following:
added functionality, dropped, moved, expanded cod-
ing, contracted coding, structural, extended functions,
and semantic.

In addition to a major change of environment,
from Traditional to Web Information Systems, our
work improves the previous case studies as follows:

• Number of schema versions: We analyze 171
published25 versions of the schema whereas the
previous works use respectively nine and two ver-
sions. This was possible due to the open-source
nature of the MediaWiki project, uncommon in
case of traditional, proprietary applications.

• Detailed schema evolution analysis: We classify
schema changes at a finer level of granularity by
means of SMOs, while the previous works mainly
discuss ADD/DROP of tables and columns based on
the diffs between two adjacent schema versions.
We benefited from the rich documentation of SVN
schema revisions and of the SQL schema files to

25More schema versions are available in the unstable
branches of the versioning system. We focused on the main
development branch.

obtain insight in each evolution step and derive the
corresponding SMOs.

• Legacy application failure analysis: [Sjoberg,
1993] studied the effect of schema evolution on
applications, predicting query failure based on
query workload and schema changes between two
successive schema versions. In our setting we
were able to report the actual success rate of the
execution of queries from an old release of Me-
diaWiki (v1.3) on 144 subsequent schema ver-
sions, together with the success rate of 500 tem-
plates extracted from millions of queries run on
the Wikipedia installation of MediaWiki, tested
against the 170 previous schema versions.

• Licensing and data-set release: Thanks to the li-
censing of MediaWiki and Wikipedia, we are able
to release [Curino et al., 2008a] the entire data-
set used for our analysis to the public, enabling
other researchers to exploit such data to extract
their own statistics or to test their approaches.

Web IS vs Traditional IS Table 5 provides results of
the MediaWiki schema growth compared to the cases
reported in the cited literature.

While [Sjoberg, 1993] reports the growth during
the entire studied period (5 months of development
and 13 months of operation) and that during the oper-
ational phase only, tagged in Table 5 respectively as
Sjoberg-all and Sjoberg-oper, we focus our compari-
son on the operational phase, which has a bigger im-
pact on users and maintenance costs. For this reason
we show as MediaWiki-oper the growth of the Medi-
aWiki schema, by removing from the overall history
the first six versions – preceding the first official re-
lease. [Marche, 1993] does not clearly specify which
phase of the software life-cycle each schema version
was taken from, so we simply report the available
data. Adjusted statistics appear in Table 5. Com-
paring the time-normalized (Increase/year) schema
growth, MediaWiki-oper is faster than every previous
result in Traditional Information Systems. The opera-
tional growth is about 38% more intense than the one
of Sjoberg-oper, and about 539% than the average of
the seven cases of Marche.



This difference can be attributed to the following
reasons:

• The collaborative, open-source nature of the de-
velopment and usage of MediaWiki, determines
the presence of several independent contributions,
influencing the speed of growth.

• The success of Wikipedia triggered the need for
intense tuning for performance and accessibility,
leading to a quicker evolution than traditional IS.

• The interest for maintaining historical information
grew during the development, affecting positively
the schema size.

These interesting findings on MediaWiki suggest
the need for: (i) more comprehensive studies on Web
Information Systems schema evolution, (ii) tool to
gracefully support the inevitable schema evolution,
and (iii) a unified benchmark for schema evolution
and versioning. This paper provides the first step to
achieve these ambitious goals.

7 CONCLUSIONS

The explosion of Web Information Systems (WIS)
is creating a throve of interesting research problems
and technical challenges. In particular, the DBMS
systems that are at the core of many WIS are now
faced with new challenges and requirements—which
we have analyzed in this in-depth study of Medi-
aWiki, the sofware behind Wikipedia, a WIS of great
renown and importance. Our study shows that Medi-
aWiki has undergone a very intensive schema evolu-
tion, as a result of the cooperative, multi-party, open-
source development and administration that is com-
mon in leading-edge WIS projects. Thus, the WIS
environment, (i) contrasts with the smaller, less-open
and slow-turnover setting of typical in traditional in-
formation systems, (ii) creates a more urgent needs
for better automation and documentation tools for
supporting graceful schema evolution in WIS. In this
paper we analyze and quantify the schema evolution
problem of WIS and introduce concepts and tools that
represent an important first step toward realizing (ii).

At the conceptual level, we have introduced the
Schema Modification Operators (SMOs), and shown
that this formalism can naturally express complex
schema changes by combining a small number of ele-
mentary operators. SMOs proved effective both in an
operational mode to support schema evolution [Moon
et al., 2008, Curino et al., 2008c], and in an “a pos-
teriori” mode to support in-depth analysis. Moreover,
we also developed a simple set of software tools to
facilitate the analysis of schema evolution, and the

derivation of the SMOs describing such an evolu-
tion. This tool-suite proved effective in the analysis
of MediaWiki and is available online at [Curino et al.,
2008b]. The structured representation of the evolution
history of MediaWiki that we derived in this project is
also available for downloading [Curino et al., 2008a].
Such data-set is currently being extended by analyz-
ing other leading WIS projects in order to create a rich
schema evolution benchmark. Once completed, this
benchmark will (i) provide the community with a rich
set of schema evolution examples that can be studied
to avoid common up-front design errors and improve
schema management best practices, and (ii) represent
a critical validation tool for techniques and systems
designed to automate the schema evolution process
(including those that are currently under development
in our lab). Indeed, the desirability of such a bench-
mark was stressed in the past by other researchers
working in related areas [Bernstein et al., 2006].

ACKNOWLEDGEMENTS

The authors would like to thank Alin Deutsch for the
numerous in-depth discussions on schema mapping
and query rewriting.

REFERENCES
Almeida, R. B., Mozafari, B., and Cho, J. (2007). On the

evolution of wikipedia. In Int. Conf. on Weblogs and
Social Media.

Bernstein, P. A. (2003). Applying model management to
classical meta data problems. In CIDR.

Bernstein, P. A., Green, T. J., Melnik, S., and Nash, A.
(2006). Implementing mapping composition. In
VLDB.

Bernstein, P. A., Green, T. J., Melnik, S., and Nash, A.
(2008). Implementing mapping composition. VLDB
J., 17(2):333–353.

Bernstein, P. A. and Rahm, E. (2003). Data warehouse sce-
narios for model management. In ER.

Curino, C. A., Moon, H. J., Tanca, L., and Zan-
iolo, C. (2008a). Pantha rei data set [on-
line] : http://yellowstone.cs.ucla.edu/
schema-evolution/index.php/Main Page.

Curino, C. A., Moon, H. J., Tanca, L., and Zan-
iolo, C. (2008b). Pantha rei tool suite [on-
line] : http://yellowstone.cs.ucla.edu/
schema-evolution/index.php/Tool Suite.

Curino, C. A., Moon, H. J., and Zaniolo, C. (2008c). Grace-
ful database schema evolution: the prism workbench.
In Submitted to VLDB.



Eisenberg, A., Melton, J., Kulkarni, K., Michels, J.-E., and
Zemke, F. (2004). Sql:2003 has been published. SIG-
MOD Rec., 33(1):119–126.

Franconi, E., Grandi, F., and Mandreoli, F. (2001). Schema
evolution and versioning: A logical and computa-
tional characterisation.

Galante, R. d. M., dos Santos, C. S., Edelweiss, N., and
Moreira, A. F. (2005). Temporal and versioning model
for schema evolution in object-oriented databases.
Data & Knowledge Engineering, 53(2):99–128.

Golfarelli, M., Lechtenbörger, J., Rizzi, S., and Vossen, G.
(2004). Schema versioning in data warehouses. In ER
(Workshops), pages 415–428.

ISO/IEC 9075-*: 2003 (2003). Database languages sql.

Marche, S. (1993). Measuring the stability of data models.
European Journal of Information Systems, 2(1):37–
47.

Moon, H. J., Curino, C. A., Deutsch, A., Hou, C.-Y.,
and Zaniolo, C. (2008). Managing and querying
transaction-time databases under schema evolution. In
Submitted to VLDB.

Moro, M. M., Malaika, S., and Lim, L. (2007). Preserving
XML Queries during Schema Evolution. In WWW,
pages 1341–1342.

Ram, S. and Shankaranarayanan, G. (2003). Research
issues in database schema evolution: the road not
taken. In Boston University School of Management,
Department of Information Systems, Working Paper
No: 2003-15.

Rizzi, S. and Golfarelli, M. (2007). X-time: Schema
versioning and cross-version querying in data ware-
houses. In ICDE, pages 1471–1472.

Roddick, J. (1995). A Survey of Schema Versioning Is-
sues for Database Systems. Information and Software
Technology, 37(7):383–393.

Shneiderman, B. and Thomas, G. (1982). An architecture
for automatic relational database system conversion.
ACM Transactions on Database Systems, 7(2):235–
257.

Sjoberg, D. I. (1993). Quantifying schema evolution. Infor-
mation and Software Technology, 35(1):35–44.

Urdaneta, G., Pierre, G., and van Steen, M. (2007).
Wikipedia workload analysis. Technical Report
IR-CS-041, Vrije Universiteit, Amsterdam, The
Netherlands. http://www.globule.org/publi/
WWA ircs041.html.

Velegrakis, Y., Miller, R. J., and Popa, L. (2003). Mapping
adaptation under evolving schemas. In VLDB.

Wikimedia Foundation (2007a). Mediawiki archi-
tecture http://meta.wikimedia.org/wiki/
MediaWiki architecture. [Online].

Wikimedia Foundation (2007b). The mediawiki workbook
2007 dammit.lt/uc/workbook2007.pdf. [Online].

Wikimedia Foundation (2008). The mediawiki http://
www.mediawiki.org. [Online].

Wikipedia (2008). Wikipedia, the free encyclopedia http:
//en.wikipedia.org/. [Online].

Yu, C. and Popa, L. (2005). Semantic adaptation of schema
mappings when schemas evolve. In VLDB.


