
The Use of Machine-Generated Ontologies in

Dynamic Information Seeking

Giovanni Modica1, Avigdor Gal2, and Hasan M. Jamil1

1 Mississippi State University, Mississippi State University MS 39762, USA
fgmodica, jamilg@cs.msstate.edu,

WWW home page: http://www.cs.msstate.edu/~fgmodica, jamilg
2 Technion, Israel Institute of Technology, Technion City, Haifa 32000, Israel

and Rutgers University, Piscataway, New Jersey 08854, USA
avigal@ie.technion.ac.il

WWW home page: http://ie.technion.ac.il/~avigal

Abstract. Information seeking is the process in which human beings re-
course to information resources in order to increase their level of knowl-
edge with respect to their goals. In this paper we o�er a methodology
for automating the evolution of ontologies and share the results of our
experiments in supporting a user in seeking information using interactive
systems. The main conclusion of our experiments is that if one narrows
down the scope of the domain, ontologies can be extracted with a very
high level of precision (more than 90% in some cases). The paper is a
step in providing theoretical, as well as practical, foundation for auto-
matic ontology generation. It is our belief that such a process would allow
the creation of
exible tools to manage metadata, either as an aid to a
designer or as an independent system (\smart agent") for time critical
missions.

1 Introduction and Motivation

Information seeking is the process in which human beings recourse to information re-

sources in order to increase their level of knowledge with respect to their goals. Dating

years back, information seeking has a�ected the way modern libraries operate (using

tools such as catalogs, classi�cations, and indexing) and perpetrated the World Wide

Web in the form of search engines. While the basic concept of information seeking re-

mains unchanged, a growing need of automation of the process has called for innovative

tools to propagate some of the tasks involved in information seeking to the machine

level. Therefore, databases are widely used for the eÆcient storage and retrieval of infor-

mation. Also, techniques from the area of Information Retrieval [21] were re�ned over

the years to predict the relevance of information to a person's needs and to identify

appropriate information for a person to interact with. Finally, the use of computer-

based ontologies [25] was suggested to classify the available information based on some

natural classi�cation scheme that would allow a more focused information seeking.1

1 For example, ontology.org is an independent industry and research forum, formed in
1998, that is focused upon the application of ontologies in Internet commerce.

Most Internet portals (including Yahoo! and OpenDirectory) use \cybrerians" to

maintain Internet Directories. Common practice nowadays assume that once ontolo-

gies are created, computer-supported tools can utilize them as part of the information

seeking process. The next natural step in then to let the machine generate the ontolo-

gies. One may consider two incentives in doing so. The �rst is rooted in the initial

creation of ontologies, which is a tedious, time-consuming process. The second incen-

tive is rooted in the rapid evolution of ontologies. If ontologies are managed manually,

any change to them requires human intervention. This can bring to a halt an electronic

process in the absence of constant human support. While the latter attracted a little

attention in previous years, it has become a major sticking point with the introduction

of eCommerce and electronic exchange markets, a rapidly changing environment in

which virtual manufacturers, retailers, and consumers join in to perform activities in

cyberspace.

It is the evolution of ontologies which we o�er to automate. In particular, we sug-

gest utilizing ontologies in supporting a user in seeking information using interactive

systems. As an example, consider a researcher who is interested in renting a car to

attend her favorite conference (e.g., CoopIS) in her favorite city (say Trento, Italy).

Using Web services, the researcher attempts at comparing available rates from many

di�erent car rental companies, in order to reach an educated decision in obtaining her

goal. Alas, this process of information seeking is tedious as well as frustrating. Informa-

tion has to be typed in over and over again, and in most cases a manual comparison of

terms and conditions is needed in evaluating the outcomes. An alternative exists in the

form of car rental portals (e.g., Travelocity.com). However, as most general-purpose

tools, such portals cater to popular needs, and therefore may only o�er a limited set of

options (such as the cheapest car available). Therefore, if our researcher is interested

in a deal which o�ers no mileage constraints (since our researcher will attend another

conference, say in Rome) and no constraints on cross-border usage (for the purpose of

vacating at Switzerland once the conference is over), she has to resort to manual search

of terms and conditions.

Feedback

Additional Sessions

Seeking by
ExampleCreation

Initial Ontology

Training Session

Ontology
Adaptation Seeking

Information
Automatic

Fig. 1. The process of ontology adaptation

Figure 1 outlines the various stages of ontology creation and adaptation, as sug-

gested in this paper. An initial ontology is created, using either extraction tools or

an existing ontology. Equipped with the ontology, the user performs an information

seeking session, in which the machine captures the inserted data and matches it with

the ontology. This step is followed by an iterative process, in which new information

seeking sessions are performed automatically. Each such session requires the �ne tuning

of the available ontology to the one currently in use, to be followed by an automated

information seeking. The results become available to the user and additional feedback

is used to enhance the existing ontology and to improve the system's capabilities for

the next session. We term the initial session a training session, since this is the session

in which the machine learns the data needs of the user. There is also a continuous learn-

ing process, which enables the machine to improve the ontology with each additional

session.

We shall use as a running case study the Web sites of three car rental companies,

namely Avis, Hertz and Alamo. We shall use the former as the training Web site for

creating the initial ontology and the latter to perform ontology adaptation. In our ex-

periments we extract ontologies from HTML documents. We recognize the fact that

XML may serve as a better candidate for ontology exploration. In fact, while one can

exarch terms and structure from XML documents, one has to mine for ontologies

in HTML documents. However, current trends in deploying XML as part of the or-

ganization data management scheme suggest that while XML may be used for B2B

communication, and to some extent as a storage mechanism, interactive sessions still

use HTML. Therefore, it is possible that XML data on the server side is \translated"

into HTML before being shipped out to the client. It is also worth noting that once an

ontology is extracted (from either XML or HTML documents), the process of ontology

adaptation remains unchanged.

1.1 Related Work

The problem we tackle in this paper falls into the category of semantic heterogeneity,

which is well documented in the literature. The area of information science has an

extensive body of literature and practice on ontology construction using tools such as

thesauri and on terminology rationalization and matching of di�erent ontologies [3,

22, 26, 28]. In the area of databases and information systems many models were sug-

gested to support the process of semantic reconciliation, including the SIMS project [4],

SCOPES [18], dynamic classi�cational ontologies [14], COIN [16], and CoopWARE [13],

to name a few. What is common to these solutions is their reliance on the designer's in-

tervention, rather than supporting a fully automatic semantic reconciliation.2 However,

redesign and re-implementation of metadata can incur tremendous cost. Therefore, au-

tomatic reconciliation becomes a must in such an a environment.

Database research has extensive literature on data integration, including [8], [2],

and [15], yet there is little impact of this research on the state-of-the-art in commercial

systems. We believe this chasm can be attributed to the fact that most of these ap-

proaches rely on semantic reconciliation to be resolved �rst (probably manually), before

attending to the more \technical" aspects of the integration. However, researchers and

practitioners alike are coming to realize that there can be no solution to the delivery of

integrated information unless one tackles head-on the semantic heterogeneity problem

[19]. This research works towards this goal.

Some research was devoted to automatic schema analysis and integration (e.g.,

[23], [17], and [9]). In [23], the analysis is based on a hand-crafted attribute hierarchy,

which we avoid. The work of [9] and [17] are similar in that they analyze a schema,

2 The slogan of OpenDirectory, \Humans do it better," re
ects this approach.

given in an abstract form of a graph, using formal methods of graph analysis. The

tools and methodologies suggested in [9], when applied to schema integration are \not

suÆcient and must be enriched with semantic consideration, such as the interpretation

of terms within an application domain in order to correctly compare elements." Our

experiments, as shown in this paper, show that it is possible to automatically (and

correctly) derive matchings, without reverting to manual interpretation. In [17], it is

shown that the process of �nding an optimal typing for semi-structured data is NP-

hard. Therefore, a method is presented based on heuristics to approximately type

a large collection of semi-structured data. No extension of the method to deal with

schemata matching is given in [17].

Like many before us, we attempt to perform semantic reconciliation using syntactic

comparisons. However, we also enhance our model to include a measure of accuracy,

which becomes a powerful tool whenever automated reasoning is involved. The pro-

vision of a measure of accuracy allows a user to determine her own tolerance to im-

precision and to instruct the system to request for help once imprecision becomes too

great. As our experiments demonstrate, if one narrows down the scope of the domain,

ontologies can be extracted with a very high level of accuracy.

The rest of the paper is organized as follows. Section 2 outlines our methodology

in creating ontologies from dynamic Web pages. Ontology adaptation is discussed in

Section 3. Section 4 provides a brief overview of the system's architecture. Finally,

some experiment results and future research directions are discussed in Section 5.

2 Ontology Creation

In this paper we develop a methodology for ontology creation in which the user plays an

important role, yet with minimum e�ort. We hope to make this methodology into a fully

automated model for ontology creation at a later stage. The methodology involves two

phases, namely the training phase and the adaptation phase. In the training phase we

build an initial ontology in which a user's data needs are encoded. The adaptation phase

involve an iterative mergence of closely related ontologies with the current ontology

at hand. During each iteration, the current ontology is re�ned and generalized. The

re�ned ontology at any stage can be used to query the Web sites and gather information

in a seamless way.

This section provides an overview of the process of ontology creation. Section 2.1

presents the underlying ontological structures we have utilized in this process, based

on [6, 7]. The creation of the initial ontology is given in Section 2.2.

2.1 The Ontological Structures

In our ontological analysis we have used the work of Bunge [6, 7]. We have adopted a

conceptual modeling approach rather than a knowledge representation approach (in the

AI sense). While the latter requires a complete re
ection of the modeled reality for an

unspeci�ed intelligent task, to be performed by a computerized system in the future [5],

the former requires the minimal set of structures to perform a given task (in our case,

assisting a user in handling dynamic information seeking). Therefore, we have chosen a

subset of the ontological constructs provided by Bunge for our work and have added a

new construct, we term precedence, for posing temporal constraints. We recognize the

limited capabilities of HTML (and to that e�ect, also XML) to represent rich ontological

constructs, and therefore we have had to eliminate many important constructs (e.g.,

the class structure), simply because they cannot be realistically extracted from the

content of Web pages.

We shall now provide a brief description of the ontological constructs to be used in

this paper.

Terms (things): We extract a set of terms3 from a Web page, each term is asso-

ciated with one or more form entries. The term is taken from the labeling of the

entry and the match is done based on the proximity of the label and the entry. For

example, some of the terms we have extracted from the Avis reservation page are

Pick-Up Location Code, Pick-Up Date, Pick-Up Time, Return Date, Return

Time, and Return Location Code. The usefulness of this construct is further ex-

empli�ed in Section 3.

Values: Based on Bunge [6], an attribute is a mapping of things and value-sets into
speci�c statements. Therefore, we can consider a combination of a label and its
associated data entry (value) to be an attribute. In certain cases, the value-sets to
be associated with a term are constrained using drop lists, check boxes, and radio
buttons. For example, the term Pick-Up Date is associated with two value-sets, the
�rst is fDay; 1; 2; : : : ; 31g and the other is fJanuary; February; : : : ; Decemberg.
Clearly, the former is associated with the date of the month and the latter is
associated with the month. Whenever constrained value-sets are available, we can
enhance our knowledge of the domain, since such constraints become valuable when
comparing two terms that do not exactly match through their labels. For example,
the term being used by Alamo for Return Date is Dropoff Date. Although the
terms do not match, and the terms Return and Dropoff are not synonyms (dropo�
is not even considered a word in English, according to Oxford dictionary [1]),
our algorithm was able to match these terms using the value-sets, since the term
Dropoff Date has a value-set of f(Select); 1; 2; : : : ; 31g.

It is our belief that designers would prefer constraining �eld domains as much

as possible, to minimize the e�ort in writing exception modules. Therefore, it is

unlikely that a �eld with a dropdown list in one form will be designed as a text �eld

in another form. In the case of a small-sized domain, alternative designs may exist

(e.g., AM/PM may be represented as either a dropdown list or radio buttons).

Since our algorithm extracts domains and represent them in a uni�ed manner, the

end result will remain the same, whether the designer use dropdown list or radio

buttons.

Composition: We di�erentiate simple terms from composite terms. A composite

term is composed of other terms (either simple or composite). In the Avis reser-

vation Web page, all of the terms mentioned above are grouped under Rental

3 The choice of words to describe ontological structures in Bunge's work had to be
general enough to cover any application. We feel that the use of thing, which may be
reasonable in a general framework, can be replaced with a more concrete description
in this application.

Pick-Up & Return Information. It is worth noting that these terms are, in them-

selves, composite terms. For example, Pick-Up Time is a group of three entries, one

for the hour, the other for the minutes, and the third for either AM or PM. In this

case, since the entries themselves are nameless, we assign the terms within this

group using the group name (e.g., Pick-Up Time 1, Pick-Up Time 2, etc.) An-

other composite term in the same Web page is titled Airline Information (with

the terms *Airline Name and *Flight # { the * represents an optional �eld). The

algorithm in Section 3 makes use of composition to overcome granularity di�er-

ences. It is worth noting that there is a rich body of literature on mereology (e.g.,

[24, 27]). However, the minimal support of ontological structures in HTML render

these di�erences immaterial in this framework.

Precedence: The last construct we have considered is the precedence relationship

among composite terms. In any interactive process, the order in which one provides

the data may be of importance. In particular, data given in an earlier stage may

restrict the number of options that are available for a later entry. For example,

the Avis Web site determines the car groups available for a given session, using

the information regarding the pick-up location and the pick-up time. Therefore,

once those entries are �lled in, the information is sent back to the server and the

next form is brought up. Such precedence relationships can usually be identi�ed

by the activation of a script, such as (but not limited to) the one associated with a

SUBMIT button. In any such case, we compose all simple and composite terms that

are separated by script execution and assign a precedence relationship accordingly.

It is worth noting that the precedence construct rarely appears as part of the basic

ontology constructs. This can be attributed to the view of ontologies as static

entities whose existence is independent of temporal constraints. We anticipate that

contemporary applications, such as the one presented in this paper, will need to

embed temporal reasoning in ontology construction.

2.2 Target Ontology

Before we describe our ontology extraction process, we introduce two quality metrics,

namely recall and precision, exploited for e�ective ontology creation through dynamic

ontology adaptation.

Fig. 2. Rental Pick-Up and Return Information on Avis Web site.

Metrics Following common IR practice for retrieval e�ectiveness (e.g., [11]), We shall

use the following two metrics for performance analysis. The �rst is the recall (complete-

ness) metric, de�ned as the ratio of relevant terms retrieved for a given ontology over

the number of relevant terms in that ontology. The denominator is taken as the num-

ber of �elds to be �lled during the reservation process. A subjective analysis recovers

the numerator. For example, consider Figure 2, which provides the rental pick-up and

return information on Avis Web site. The relevant terms are all given to the left of the

�elds (in this case). However, it is possible that an algorithm would use the statement

\(For example: 12 00 PM = Noon)" as the term for the line below it (assuming it is a

header). This will constitute an irrelevant term.
The second metric is precision (soundness), the ratio of the number of relevant

terms retrieved over the total number of terms retrieved. In our experiments we shall
use the combined measure as suggested in [20]. For a precision value P , a recall value
R, and an importance measure b, the combined measure E is computed to be

E = 1�
(1 + b2)PR

b2P +R

A low E value indicates a higher combined value of P and R.

Ontology Extraction The extraction process begins with an empty ontology. Once

the Web site is accessed by the system browser, the page is parsed into a data struc-

ture, called the DOM tree (short for document object model), which identi�es the page

elements. This W3C standard for hierarchical data structure is basically a tree that

represents the whole HTML page. The DOM tree can be used in a fairly straightforward

manner to identify form elements, labels, input elements, etc. A DOM tree potentially

contains \noise" due to incorrect speci�cation of the source HTML code including dif-

ference in order of opening and closing tags and missing closing tags. Hence, suitable

\cleaning" and �ltering is required before achieving an error-free tree. Examples of

such cleaning process include elimination of super
uous tags, removal of formatting

and scripting tags, etc.

Fig. 3. Possible input layout combinations.

The diversity of layout techniques and principles used in Web design complicates

the label identi�cation process for input elements even in a well-structured DOM tree.

We have used a set of heuristics, learned from a training set of HTML documents,

to recognize an HTML page layout. These documents depict all possible table and

non-table input layouts we have encountered. Examples of input layout include text

and image labels for input elements (or forms), and table type and row type label

and input �eld forms. Figure 3 demonstrates some of these combinations used in the

training set. Type 1 and Type 2 show tabular input formats for vertical and lateral

layouts respectively. Type 3 and Type 4 show the same for plain (non tabular) input

formats. Training the system using this example set resulted in a quite successful label

identi�cation process (see Section 3 for details). We attribute this success to the use

of the ontological structures presented in Section 2.1. In particular, structures such

as terms and values have greatly improved the identi�cation by providing a critical

semantic interpretations of source HTML documents. The composition and precedence

structures have helped locating terms and associating the labels with the names of the

elements by identifying semantic proximity and order of page elements.

The extraction process returns all the identi�able input elements as a set of 5-tuples

hu; n; l; t; Si where u is the URL of the page (source HTML document), n is the name

of the input �eld, l is the label of the input �eld, t is the type of the �eld, and �nally, S

is the set of values that are listed in a select, radio, or check box �elds. The end result

of the extraction process is an XML document containing the extracted ontology of

the site. The XML document properly identi�es the ontological structures discussed in

this section to facilitates e�ective information retrieval at a later stage.

Fig. 4. Extracted ontology in XML.

Example of an extracted ontology is shown in Figure 4. The content of this �gure

can be explained with the help of Figure 2 for Avis Web site, for which the ontology

in Figure 4 was generated. In Figure 4, the term Pick-Up Date is an example of a

successful extraction for the target ontology, while submit is not. It is worth noting

that in correspondence with the Pick-Up Date lateral tabular choice box in Figure 2, we

have two label-name pairs in the extracted ontology, i.e., Pick-Up Date-RENTALDAY

and Pick-Up Date-RENTALMONTH. The latter is extracted just because it was a term

in the Web site which will play no role in the extracted ontology (spurious terms). It

is also noteworthy that in case the Web site for which the ontology is being extracted

has multiple pages, the ontology is created as a combination of information from all

the pages the user has actually visited during the training session.

3 Ontology Adaptation

In the adaptation phase, the user suggests browsing other, similar Web sites. Each such

site goes through the extraction process, resulting in a candidate ontology. The candi-

date ontology is then merged with the existing ontology (termed target ontology). This

process re�nes and generalizes the existing ontology to include more terms, mapped

into the existing ontology, to the extent possible. This process is repeated for each new

Web site visited in the adaptation phase.

The adaptation e�ectiveness is measured in terms of the metrics recall and preci-

sion presented earlier. Recall measures the percentage of the candidate ontology terms

that were successfully mapped to the terms of the target ontology. Precision, on the

other hand, is used to quantify the semantic correctness of ontological mapping from

candidate ontology to target ontology. This measure is important because syntactic

mappings (matching) of labels are not always semantically correct. Together, recall

and precision attempts to quantify the adaptation e�ectiveness of a set of ontologies.

The adaptation of a candidate ontology with the target ontology involves a series

of steps, to be discussed shortly. Several heuristics are used in this process to improve

performance. For example, while it is possible to consider case sensitivity, we do not use

case sensitivity of labels and terms during adaptation process to improve recall measure.

Examples of other heuristics include removal of noise characters, hyphenations, etc. The

following steps are performed in succession on the two ontologies in the order they are

listed.

Ontologies are merged pair-wise and the best match for each existing term in the

target ontology is selected. The terms that are not matched or are poorly matched

(below a threshold) are usually not selected and discarded. However, a choice is given

to the user during the merging process (see discussion in Section 4) to select any

unmatched term for the inclusion in the merged ontology through the Form Viewer

module. During a query session, use of such terms in the query may result in accessing

only the sites (through the Navigation Module discussed in Section 4) that contain

these terms. However, unmatched terms may be matched by declaring them to be

synonymous through the use of a thesaurus as we explain later in this section and also

in section 4.

Textual Matching: In this step all the terms are compared pair-wise and tested for

identical textual match (equality test). Usually the recall after this step is very low

as labels and terms are unlikely to be named identically although they represent

the same term.

Ignorabale Character Removal: Characters such as `*', `/', `-', etc. are treated

as \noise" and are considered dispensable, and as such are removed from the terms.

Hence, after this step, terms such as *Country" and \country" will be considered

identical. The argument here is that such characters do not contribute in creating

a meaningful identi�er for a database �eld name.

De-hyphenation: Labels such as \pick-up" and \pick up" are considered identical

(e.g., [10]). Hence, hyphens in labels are removed to improve matching. From our

experiments, it turned out that by merging the hyphenated words, one yields better

recall than replacing hyphens with white space. Hence, we merge hyphenated words

by removing the hyphens. For example, \pick-up" will be replaced by \pickup".

Stop Terms Removal: Common terms such as `a', `to', `in', and `the' are consid-

ered stop terms (e.g., [12]). The removal of stop terms improve recall and does not

adversely a�ect the precision.

Substring Matching: Labels are matched pair-wise for substring matching. A para-

metric threshold for term matching is used.4 The match e�ectiveness for two terms

t1 and t2 is de�ned as the ratio between the number of words in term t2 that are

substrings of terms t1 and the number of words in term t2, providing a measure of

the semantic similarity of these two terms. If one term contains more of the words

of another term, the more similar they are. For example, the match e�ectiveness of

t1=Pickup Location and t2=Pick-up location code can be computed at 66%.

Content Matching: Fields with select, radio, and check box options are processed

using their value-sets. A match e�ectiveness is applied here too, calculated as the

number of options in the second term that match (using substring matching) with

the options in the �rst term, divided by the number of options in the second term.

For example, suppose that t1 is a Return-time term and t2 is a Dropoff-time

term with values such as f10:00am, 10:30am, 11:00amg and f10:00am, 10:15am,

10:30am, 10:45am, 11:00amg respectively. Then, if we inspect each value of t2 for

a match in t1 (using substring matching technique already described), we will not

�nd a match for values such as 10:15am, 10:45am, and so on. Hence the match

e�ectiveness of t2 (with respect to t1) will be calculated as 3

5
= 0:60% for this

example. The power of content matching can be further highlighted using the case

of terms Dropoff Date in Alamo and Return Date in Avis. These two terms have

associated value sets f(Select); 1; 2; : : : ; 31g and f(Day); 1; 2; : : : ; 31g respectively,

and thus their match e�ectiveness is 31

32
= 97%, and hence are identi�ed by our

method as semantically identical concepts.

Thesaurus Matching: Finally, terms and labels, not matched before, are matched

using an ever expanding thesaurus. The thesaurus is constructed from user inter-

actions with the adaptation module. Mismatched terms are presented to the user

for manual matching. Every manual match identi�ed by the user is accepted as a

synonym and optionally a label is assigned. Each such manual match expands and

enriches the thesaurus. This thesaurus is consulted in future matching to improve

recall and precision.

4 System Architecture

The modular architecture of the ontology creation and query system is shown in Figure

5. There are three main modules in this system { (i) user interaction module that

4 Usually a 50% match is considered a good measure, and hence we have used this
threshold in all the steps described in this section. However, the user can adjust this
threshold through the user interface, if desired.

HTML Viewer

Visualization Module

Observer

Source Viewer

DOM Analyzer
Form elems KBS

Navigation Info

Ontology
Module

Ontology

Form Viewer
HTML Element

Viewer

Interactive visualization subsystem

HT
ML

 Pa
rse

r

Us
er

int
era

cti
on

 m
od

ule DO
M

tre
e

DOM Viewer

Thesaurus
Editor

input URL

Navigation Module

Ob
ser

ver

No
n-i

nte
rac

tiv
e v

isu
ali

zat
ion

User

Fig. 5. The system architecture.

includes an HTML Parser and an interactive visualization module, (ii) an observer

module, consisting of the DOM analyzer, Navigation Module, Form Viewer, HTML

Element Viewer, and the HTML Viewer, and (iii) an Ontology Module.

The user interacts with the system through the user interaction module. She ac-

cesses a set of Web sites of interest through this module and provides feedback to

the system. Each visited site is parsed by the HTML Parser with the help of an

HTML/XML parser library to produce a DOM tree that represents the page. During

this process, the input page is �ltered to remove identi�able \noise" such as formatting

tags (e.g.,) and scripting tags (e.g., <script>) before it is passed on to the

DOM Analyzer. The DOM Analyzer identi�es the HTML elements for the Ontology

Module. Examples of HTML elements are <a>, <form>, <input>, and <select> el-

ements, and <meta> and <frame> tags. The DOM Analyzer also captures the labels

for each element in a form and forwards the information to the Navigation Module, to

navigate and query the Web sites when an actual query is submitted by the user in a

query session following the ontology extraction.

The observer module gathers information from the user interaction sessions. The

information is forwarded to the Ontology Module for creating a target ontology or

adapting a candidate ontology to a target ontology. The Ontology Module applies the

methodology presented in Section 3 to perform its functions. The Navigation Module

stores site-related information for future use. Its role in query processing is to recreate

the memorized user navigation pattern and apply site speci�c terminologies in queries

and thus it acts like a wrapper generator.

The Visualization Module acts as a link between the system and the user. It presents

a Web browser-like functionality through which the user can interact with the Web

sites. The Form and HTML element viewers are used in conjunction with the HTML

viewer for this interaction. These interactions cycle through the HTML Parser, the

observer and the Visualization Module before they become visible through these viewers

again. The DOM Viewer and the Source Viewer are non-interactive in nature and are

used for referencing purposes. The system also maintains a user editable thesaurus for

e�ective ontology creation. Once the ontology is created, the thesaurus is automatically

updated with new information.

5 Evaluation and Conclusion

In this work we have presented a tool to assist users in dynamic information seeking,

using machine-generated ontologies. Our experiments show promise in creating ontolo-

gies by extracting concepts and structure from Web pages and matching two somewhat

di�erent ontologies using tools from classical IR. Before we conclude, we would like to

present some results obtained in our study that substantiate our methodology.

Fig. 6. Precision versus Recall for Avis as target ontology with candidates Hertz (left)
and Alamo (right).

In our experiment, we have taken Avis as the target site for creating the car rental

ontology. Figure 6 shows two instances in which we adapt Avis with Hertz (left) and

Avis with Alamo (right). The X-axis corresponds to the various steps as described

in Section 3. The results in Figure 6 are intuitive and expected, and validates our

hypotheses. In the case of Avis and Hertz (left), high initial recall accounts for pairing

of terms that potentially contains semantically incorrect matches. Once content and

thesaurus matching is applied, these matches are rejected giving rise to diminished

recall values hand-in-hand with increasing precision values. Avis and Alamo has a

complementary situation where we have high initial precision and low recall that was

corrected at the end of the process. This scenario is a result of a very low, but correct

(100%), term matches during the initial stages in the merging process. Both metrics

have demonstrated good results (more than 50% in both cases with a precision of more

than 90% in the case of Hertz).

The metric E, discussed in section 2.2, can be used to demonstrate the gradual

improvement of the ontology creation as we iterate through the various steps. Figure

7(left) shows the combined E values for the entire process during ontology creation for

Avis-Hertz (left) and Avis-Alamo (right) presented in Figure 6. The plots suggest that

the combined measure E gradually approaches zero and thus increases the accuracy

of the ontology. Finally, Figure 7(right) shows that an improved thesaurus results in a

diminished E value and thus increases the accuracy of the ontology. We have used a

b value of 0.5 in all our current experiments. The choice of the parameter b = 0:5 in

the expression for E indicates the fact that the user is twice as interested in precision

than in recall.

Fig. 7. Combined measure E for the graphs in Figure 6 (left). E�ect of a thesaurus
(right).

The paper is a step in providing theoretical, as well as practical, foundation for

automatic ontology generation. It is our belief that such a process would allow the

creation of
exible tools to manage metadata, either as an aid to a designer or as

an independent system (\smart agent") for time critical missions. Also, an automatic

reconciliation process would allow data management systems to use data even though

it is originated from di�erent ontologies.

Acknowledgments

We would like to thank Nicholas Belkin for his assistance.

References

1. Concise Oxford Dictionary. Oxford Univ. Press, 8 edition, 1991.
2. S. Abiteboul, D. Quass, J. McHugh, J. Widom, and J.L. Wiener. The LOREL query

language for semistructured data. International Journal on Digital Libraries, 1(1),
1997.

3. J. Aitchison, A. Gilchrist, and D. Bawden. Thesaurus construction and use: a
practical manual. Aslib, London, third edition, 1997.

4. Y. Arens, C.A. Knoblock, and W. Shen. Query reformulation for dynamic informa-
tion integration. In G. Wiederhold, editor, Intelligent Integration of Information,
pages 11{42. Kluwer Academic Publishers, 1996.

5. A. Borgida. Knowledge representation, semantic data modelling: What's the dif-
ference? In Proceedings of the 9th International Conference on Entity-Relationship
Approach (ER'90), pages 1{2, Lausanne, Switzerland, 1990.

6. M. Bunge. Treatise on Basic Philosophy: Vol. 3: Ontology I: The Furniture of the
World. D. Reidel Publishing Co., Inc., New York, NY, 1977.

7. M. Bunge. Treatise on Basic Philosophy: Vol. 4: Ontology II: A World of Systems.
D. Reidel Publishing Co., Inc., New York, NY, 1979.

8. M.J. Carey et al. Towards heterogeneous multimedia information systems: The
Garlic approach. In Proceedings of the RIDE-DOM workshop, pages 124{131, 1995.

9. S. Castano, V. De Antonellis, M.G. Fugini, and B. Pernici. Conceptual schema
analysis: Techniques and applications. ACM Transactions on Database Systems
(TODS), 23(3):286{332, 1998.

10. C. Fox. Lexical analysis and stoplists. In W.B. Frakes and R. Baeza-Yates, edi-
tors, Information Retrieval: Data Structures & Algorithms, pages 102{130. Prentice
Hall, Englewood Cli�s, NJ 07632, 1992.

11. W.B. Frakes and R. Baeza-Yates, editors. Information Retrieval: Data Structures
& Algorithms. Prentice Hall, Englewood Cli�s, NJ 07632, 1992.

12. W. Francis and H. Kucera, editors. Frequency Analysis of English Usage. Houghton
Mi�in, New York, 1982.

13. A. Gal. Semantic interoperability in information services: Experiencing with Coop-
WARE. SIGMOD Record, 28(1):68{75, 1999.

14. J. Kahng and D. McLeod. Dynamic classi�cation ontologies for discovery in co-
operative federated databases. In Proceedings of the First IFCIS International
Conference on Cooperative Information Systems (CoopIS'96), pages 26{35, Brus-
sels, Belgium, June 1996.

15. T.D. Millstein, A.Y. Levy, and M. Friedman. Query containment for data integra-
tion systems. In Proceedings of the Nineteenth ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems, Dallas, Texas, May 2000. ACM
Press.

16. A. Moulton, S.E. Madnick, and M. Siegel. Context mediation on Wall Street. In
Proceedings of the 3rd IFCIS International Conference on Cooperative Information
Systems (CoopIS'98), pages 271{279, New York City, New York, August 1998.
IEEE-CS Press.

17. S. Nestorov, S. Abiteboul, and R. Motwani. Extracting schema from semistructured
data. In L.M. Haas and A. Tiwary, editors, SIGMOD 1998, Proceedings ACM SIG-
MOD International Conference on Management of Data, June 2-4, 1998, Seattle,
Washington, USA, pages 295{306. ACM Press, 1998.

18. A.M. Ouksel and C.F. Naiman. Coordinating context building in heterogeneous
information systems. Journal of Intelligent Information Systems (JIIS), 3(2):151{
183, April 1994.

19. A.M. Ouksel and A.P. Sheth. Semantic interoperability in global information sys-
tems: A brief introduction to the research area and the special section. SIGMOD
Record, 28(1):5{12, March 1999.

20. C.J. Van Rijsbergen, editor. Information Retrieval. Butterworths, London, 1979.
21. G. Salton and M. McGill. Modern Information Retrieval. McGraw-Hill, New York,

1983.
22. P.L. Schuyler, W.T. Hole, and M.S. Tuttle. The UMLS (Uni�ed Medical Lan-

guage System) metathesaurus: representing di�erent views of biomedical concepts.
Bulletin of the Medical Library Association, 81:217{222, 1993.

23. A.P. Sheth, S.K. Gala, and S.B. Navathe. On automatic reasoning for schema
integration. Intenational Journal on Intelligent Cooperative Information Systems
(IJICIS), 2(1):23{50, June 1993.

24. P. Simon. Parts: A Study in Ontology. Clarendon Press, New York, NY, 1987.
25. H. Smith and K. Poulter. Share the ontology in XML-based trading architectures.

Communications of the ACM, 42(3):110{111, 1999.
26. D. Soergel. Organizing information : principles of data base and retrieval systems.

Academic Press, Orlando, FA, 1985.
27. A. Varzi. On the boundary between mereology and topology. In R. Casati,

B. Smith, and G. White, editors, Philosophy and the Cognitive Sciences. Hoelder-
Pichler-Tempsky, Vienna, Austria, 1994.

28. B.C. Vickery. Faceted classi�cation schemes. Graduate School of Library Service,
Rutgers, the State University, New Brunswick, N.J., 1966.

