
Product Matching through Ontology Mapping in Comparison

Shopping

Sangun Park1, Wooju Kim2, Sunghwan Lee2, Siri Bang2

Abstract

Research on ontology merging and mapping is one of the most important issues in the Semantic

Web because ontologies are developed and used by various sites and organizations respectively.

Electronic commerce is the area that require ontology mapping on product comparison over

different product classification taxonomies of various shopping malls. But, strict mapping strategy

may lead a customer’s configuration to search failure. Therefore we suggest a mapping algorithm

for product matching that can provide more products by increasing sensitivity with reasonable

decrease of specificity. We compared our algorithm with PROMPT based on experiments with 6

sets of source ontology and target ontology.

1. Introduction

Research on ontology merging and mapping is one of the most important issues in the Semantic

Web environment because ontologies are developed and used by various sites and organizations

respectively [3, 4, 6, 7, 11]. In electronic commerce area, each shopping mall has its own

vocabulary and product hierarchy that cause a semantic interoperability problem [1, 14]. Gathering

and merging product information from tremendous shopping malls in most product comparison

sites depends on manual work by human. But, it is extremely inefficient to manage promptly

changing information about products. That is, electronics commerce is the domain which

essentially needs automatic ontology mapping on product names and attributes for efficient product

search over multiple shopping malls.

Most research on ontology mapping [2, 5, 9] focuses on precision because incorrect matching

among different ontologies can cause severe problems. PROMPT [11] is one of the approaches that

adopt such conservative strategy with exact matching. But, product search in comparison shopping

requires more flexible mapping between user’s configuration and products. According to the

Boston Consulting Group [13], 48% of all users have experienced unsatisfactory search results on

desired products and 28% of all product purchase tryouts could not reach purchase because of

search failure. If we use conservative and strict mapping on product search, customers will get only

few products which exactly match with the configuration. Strict mapping strategy that may involve

search failure is not desirable because customers want rich information on products.

Therefore, our research objective is to increase the number of matched products with the

customer’s configuration in automatic product mapping compared to the other ontology mapping

1 The u-City Research Institute, Yonsei University, 134, Shin-Chon Dong, Seoul, South Korea,

sangun.park@gmail.com
2 Department of Information and Industrial Systems Engineering, College of Engineering, Yonsei University, 134,

Shin-Chon Dong, Seoul, South Korea {wkim@yonsei.ac.kr;sunghwan@yonsei.ac.kr;siri27@nate.com}

39

Proceedings of iiWAS2006

approaches. This can be achieved by increasing recall rate with reasonable decrease in precision to

satisfy the requirements of product search and comparison in electronic commerce domain.

2. Sensitivity and Precision

Precision can be calculated by dividing the number of correctly matched terms by the number of all

matched terms as shown in (1) where t_pos is the number of correctly matched terms and f_pos is

incorrectly matched terms [8]. Therefore, if one wants to enhance precision, the best way is to

minimize incorrectly matched terms. That is the reason that most approaches of ontology mapping

adopt conservative and strict strategy.

posfpost

post
precision

__

_
(1)

Meanwhile, sensitivity divides the number of correctly matched terms by the number of terms that

should be matched, pos as shown in (2) [8]. Strict matching strategy tries to increase precision as

much as possible in spite of low sensitivity. But, this strict strategy is not desirable in comparison

shopping as we mentioned in Section 1.

pos

post
ysensitivit

_
(2)

Specificity is used with sensitivity together for classification performance measures and calculated

as shown in (3) where neg is the number of terms that should not be matched and t_neg is the

number of correctly not matched terms [8]. If we try to increase sensitivity by matching more

products, specificity can be worse because correctly non-matched terms will decrease. Therefore,

we use sensitivity and specificity in the performance evaluation and comparison of our algorithm

and PROMPT.

neg

negt
yspecificit

_
(3)

Then, how to increase sensitivity compared to exact matching? The easiest way is using synonyms

from WordNet [10]. By matching all synonyms of the given product, we can match more products

and increase the chance of matching more correct products. But, it also can decrease precision

because f_pos in (1) increases. So, using only synonym is not recommendable. In WordNet, a word

has different senses and each sense has its own synonyms. If we can choose an appropriate sense of

the given product from WordNet, it is possible to prevent precision from dropping too much by

narrowing the synonym range.

Also, a product has upper categories in its product hierarchy. We can use the hierarchy to choose

appropriate matching products from the target ontology by comparing hierarchies of the source and

target ontology.

40

Proceedings of iiWAS2006

In this paper, we propose an ontology mapping algorithm for product matching based on above two

ideas. The algorithm searches for an appropriate product in a target ontology which matches with a

given product of a source ontology.

3. Product Matching through Ontology Mapping

There are three steps in our ontology mapping algorithm. The first step is word sense

disambiguation. This means choosing appropriate sense for a given product in a source ontology by

comparing the product hierarchy and hypernym structure of each sense. The second step is

searching for product candidates from a target ontology by using synonyms of the sense which was

acquired at the first step. The last step is choosing the most appropriate product from candidates by

comparing product hierarchies between the source ontology and the target ontology.

3.1. Word Sense Disambiguation for Product Categories

Selection of an appropriate sense for a given product is important to keep precision at a reasonable

level. If we use synonyms of all senses of the product, it will decrease precision because incorrect

matching can increase. Moreover, word sense disambiguation can enhance precision. For example,

when a customer selects notebook which is a computer, a book for notes can be matched for

notebook in addition to notebook computers. The basic idea of word sense disambiguation is

comparing a product hierarchy and hypernym hierarchies of senses of the product in WordNet. The

sense notebook that is a computer has a different hypernym hierarchy with that of a book for notes

as shown in Fig. 1. By comparing the product hierarchy of ODP (Open Directory Project) [12] in

the left column of Fig. 1 and hypernym hierarchies in WordNet of the right column, we can choose

a proper sense for notebook.

The first step of disambiguation is searching for hypernyms from a hierarchy of a sense that match

with upper categories of the product. For example, notebooks in ODP has three upper categories,

consumer electronics, computers, and systems. Therefore, we search for matching terms from

hypernyms of senses as shown in the formula (4).

hierarchyproduct theofcategory upper an is where

} and |{,

x

phypernymshxSYNSETShhpxcs
 (4)

CS() returns a set of hypernyms that match to a given upper category x from a given sense

hierarchy p. The following shows the results for upper categories of notebooks.

CS(system, sense_2) = {}

CS(computers, sense_2) = {computer}

CS(consumer electronics, sense_2) = {}

41

Proceedings of iiWAS2006

Fig. 1. A Product Hierarchy of ODP and Corresponding Hypernym Hierarchies in WordNet

The next step is calculating a measure represents the similarity between an upper category and a

sense. If a matching hypernym is close to the sense, then the similarity is high because a closer

hypernym is more important. The function hypernymproximity() returns the similarity by

calculating a minimum distance between the matching hypernym and the base node of the sense in

the hypernym hierarchy as shown in (5).

otherwise

pxcsif

basepxcsdistMinpxoximityhypernympr

0

),(

)),,((_

1

),((5)

The distance between the nodes is the number of arcs between them. For example, sense_2 of Fig.

1 has the term Computer in its hypernym hierarchy that matches with the upper category

Computers. The number of arcs between Notebook and Computer in sense_2 is 4. Therefore,

hyperproximity(computers, sense_2) is 1/4. We can calculate hyperproximity for all upper

categories as follows.

hyperproximity(Systems, path 2) = 0

hyperproximity(Computers, path 2) = 1/4

hyperproximity(Consumer Electronics, path 2) = 0

The last step is calculating similarity between a product and senses. The function pathproximity()

adds all hyperproximity of a given sense and divides it by the number of nodes of the product

hierarchy as shown in (6).

42

Proceedings of iiWAS2006

n

pxoximityhypernympr

pitypathproxim
basecategoriesupperx _

,

)((6)

For example, pathproximity of sense_2 can be calculated as follows based on the above

hyperproximity results:

0625.0
4

0
4

1
0

2_senseitypathproxim

In our example, pathproximity of sense_1 is 0 because there is no matching hypernym for the upper

categories in sense_1. Therefore, sense_2 is selected for the appropriate sense and we use the

synonyms of sense_2, {notebook, notebook computer} in the remaining steps.

3.2. Generation of Candidates for the Best Matching Category Path

Once we found an exact sense for the product from WordNet, the next step is to search for the

candidates for the best matching category path from a target ontology.

Searching for candidates uses the synonyms that acquired from the previous step. In our example,

we will search for product categories that match with {notebook, notebook computer} in

Amazon.com ontology. We could get ‘Notebooks’, ‘Notebook’, and ‘All Notebooks’ from product

categories. After the completion of search, we need to delete redundant categories of the product.

To do this, the algorithm generates serial hierarchies of the categories by extracting all upper

categories. We generated three hierarchies in our example as follows:

/Product/ Electronics /Accessories/Computer Accessories/Notebook

/Product/Electronics/ Computers/Notebooks

/Product/Electronics/Computers/Notebooks/All Notebooks

3.3. Choice of the Best Matching Product Category

To choose the best matching product category, we designed two measures for the calculation of

similarities between the given product hierarchy and candidates. One is co-occurrence and the

other is order-consistency. The measure co-occurrence is the ratio of the number of common

categories between a source hierarchy and a target hierarchy to the number of categories of the

target hierarchy.

Fig. 2 shows the source hierarchy and two target hierarchies in our example. The two target

hierarchies have two common matching categories, Electronics and Computers(Computer

Accessories), in addition to Notebooks(Notebook) as shown in Fig. 2. But, the upper target

43

Proceedings of iiWAS2006

hierarchy has 4 categories and the lower has 5 categories. Therefore, co-occurrence of the target

hierarchies are 3/4 and 3/5 respectively.

Fig. 2. The Source Hierarchy and the Target Hierarchies

However, co-occurrence is not enough to represent similarity because co-occurrence cannot

measure orders of categories in the hierarchy. As shown in Fig. 3, Y1 and Y2 have the same co-

occurrence value, but Y1 is more similar to Search Context than Y2 because the order of categories

in Y1 is the same with the order in Search Context while the order of Y2 is different. The other

measure order-consistency compares this order of categories. The order in Search Context is

subdivided into precedence relations that are binary relations of two nodes. For example, There are

three precedence relations, {a, b}, {b, c}, and {a, c} in Search Context. Y1 keeps all the precedence

relations while Y2 keeps only two.

a b cSearch Context

a b cCategory Path Y1

a c bCategory Path Y2

Fig. 3. An Example Search Context and Category Paths

The final similarity between a source product and a target product is the average of co-occurrence

and order-consistency. We choose a threshold on the similarity to determine whether we match the

source product with the target product or not. We expect that the matching result will be changed

by controlling not only the ratio of co-occurrence and order-consistency to the similarity but also

the threshold.

4. Empirical Evaluation and Results

In this section, we compare the mapping results between our algorithm and PROMPT. PROMPT

compares two different taxonomies and automatically recommends the matching terms by using

synonyms [11]. Furthermore, PROMPT enables users to do direct mapping. However, it is

44

Proceedings of iiWAS2006

impossible to perform direct mapping in product search. Therefore, we consider only the

recommended values by PROMPT

4.1. Experiment Design for Evaluation

To conduct an experiment, we selected two well-known shopping malls –Amazon.com and

Buy.com – and ODP [12]. In the case of Amazon.com and Buy.com, product category mapping is

fairly easy because they provide similar product categories. However, shopping categories of ODP

use different product names and classifications from the shopping malls. Therefore, we can expect

that product category mapping between ODP and shopping malls will show lower performance

than between two shopping malls.

We constructed product ontologies from Amazon.com, Buy.com, and ODP respectively for our

experiment. The product ontology of Amazon.com consists of 136 nodes, Buy.com consists of 225

nodes, and ODP consists of 133 nodes. A set of the experiment consists of one source ontology and

one target ontology. For example, Amazon.com for the source ontology and Buy.com for the target

ontology is one set. Therefore, there are 6 sets in the experiment. As the results of the experiment,

we obtained 12 sensitivity and specificity pairs for our algorithm and PROMPT.

4.2. Experiment Results

Table 1 shows the performance results on sensitivity and specificity. On average, sensitivity of our

algorithm is better than PROMPT by 46.5% and worse by 24.3%. It shows that our objective is

successfully achieved. The maximum and minimum differences of sensitivity are 67.6% and 24.8%

respectively while the maximum and minimum differences of specificity are -37.6% and -5.6%

respectively.

Table 1. Performance Results on Sensitivity and Specificity

Sensitivity Specificity
Experimental Set

Our Algorithm PROMPT Our Algorithm PROMPT

Amazon Buy 96.9% 61.7% 56.4% 91.1%

Amazon ODP 93.3% 25.7% 78.9% 84.5%

Buy Amazon 93.5% 56.0% 61.0% 94.8%

Buy ODP 97.2% 40.6% 69.5% 89.6%

ODP Amazon 92.9% 36.0% 50.5% 88.1%

ODP Buy 85.7% 60.9% 70.5% 84.7%

Average 93.3% 46.8% 64.5% 88.8%

Fig. 4 shows the comparison graph on sensitivity and Fig. 5 shows the comparison on specificity.

Our algorithm shows the best performance in product matching from Amazon.com to ODP

compared to PROMPT with 67.6% of sensitivity increase and only 5.6% of specificity decrease. It

will be the best if we can improve sensitivity and specificity at the same time. But, it is hard to

accomplish. Therefore, we need to balance them in order to fulfill requirements of the given

45

Proceedings of iiWAS2006

domain. At least in electronic commerce domain, we expect that our algorithm is better than

PROMPT.

Amazon & Buy Amazon & ODP Buy & Amazon Buy & ODP ODP & Amazon ODP & Buy

Our Algorithm

PROMPT

Fig. 4. Comparison of Sensitivity

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

Amazon & Buy Amazon & ODP Buy & Amazon Buy & ODP ODP & Amazon ODP & Buy

Our Algorithm

PROMPT

Fig. 5. Comparison of Specificity

5. Conclusion

In this paper, we proposed an ontology mapping algorithm that provides efficient product matching

between heterogeneous product classifications. And, we performed a comparative evaluation

between our algorithm and PROMPT with 6 experimental sets. The experiment results showed that

our algorithm is more effective than PROMPT in product comparison of electronic commerce

domain.

46

Proceedings of iiWAS2006

There is an interesting future research issue. Sensitivity and specificity can be changed by

controlling not only the ratio of co-occurrence and order-consistency to the similarity but also the

threshold as we described in Section 3. We expect that we can find the optimal values of the

parameters – the ratio and the threshold. We are planning to conduct experiments finding the

optimal values.

There are huge application areas of ontology mapping, but it is inefficient to apply the same

mapping strategy to all the areas. We suggested a mapping algorithm which is appropriate for

product comparison in electronic commerce domain by increasing sensitivity. We expect that our

research contributes the practical application of ontology mapping on electronic commerce.

References

[1] Benetti, H., D. Beneventano, S. Bergamaschi, F. Guerra, and M. Vincini, An Information Integration Framework

for E-Commerce, IEEE Intelligent Systems 17(1) (2002).

[2] Castano, S., A. Ferrara, and S. Montanelli, H-MATCH: An Algorithm for Dynamically Matching Ontologies in

Peer-based Systems, Proc. of the 1st VLDB Int. Workshop on Semantic Web and Databases (SWDB 2003),

Berlin, Germany (2003).

[3] Decker, S., M. Erdmann, D. Fensel, and R. Studer: Ontobroker, Ontology Based Access to Distributed and Semi-

Structured Information, Proc. of DS-8, Semantic Issues in Multimedia Systems, Boston, MA, USA, ed., R & et.al.

Meersman (1999) 351-369.

[4] Ehrig, M. and S. Sraab, QOM: Quick Ontology Mapping, Lecture Notes in Computer Science, 3298 (2004) 683-

697.

[5] Ehrig, M. and Y. Sure, Ontology Mapping - An Integrated Approach, Lecture Notes in Computer Science, No.

3053 (2004) 76-91.

[6] Gal, A., G. Modica, and H. Jamil, Improving Web Search with Automatic Ontology Mapping, Mississippi State

Univ, Working Paper (2003).

[7] Guarino, N., C. Masolo, and G. Vetere, OntoSeek: Content-Based Access to the Web, IEEE Intelligent Systems,

14(3) (1999) 70-80.

[8] Han, J. and M. Kamber, Data Mining: Concepts and Techniques, Morgan Kaufmann Publishers (2000) 325-326.

[9] Kalfoglou, Y. and M. Schorelmmer, Ontology mapping: the state of the art, The Knowledge Engineering Review,

18(1) (2003) 1-32.

[10] Miller, G. A., WordNet a Lexical Database for English, Communications of the ACM, 38(11) (1995) 39-41.

[11] Noy, N.F. and M.A. Musen, The PROMPT Suite: Interactive Tools for Ontology Merging and Mapping,

International Journal of Human-Computer Studies, 59(1) (2003) 983-1024.

[12] Open Directory Project, http://www.dmoz.com, 2006.

[13] Pecaut, D., M. Silverstein, and P. Stanger, Winning the Online Consumer Insights into Online Consumer

Behavior, A Report by the Boston Consulting Group, <http://www.bcg.com>, 2000.

47

Proceedings of iiWAS2006

