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Abstract

Research on ontology merging and mapping is one of the most important issues in the Semantic 

Web because ontologies are developed and used by various sites and organizations respectively. 

Electronic commerce is the area that require ontology mapping on product comparison over 

different product classification taxonomies of various shopping malls. But, strict mapping strategy 

may lead a customer’s configuration to search failure. Therefore we suggest a mapping algorithm 

for product matching that can provide more products by increasing sensitivity with reasonable 

decrease of specificity. We compared our algorithm with PROMPT based on experiments with 6 

sets of source ontology and target ontology. 

1. Introduction 

Research on ontology merging and mapping is one of the most important issues in the Semantic 

Web environment because ontologies are developed and used by various sites and organizations 

respectively [3, 4, 6, 7, 11]. In electronic commerce area, each shopping mall has its own 

vocabulary and product hierarchy that cause a semantic interoperability problem [1, 14]. Gathering 

and merging product information from tremendous shopping malls in most product comparison 

sites depends on manual work by human. But, it is extremely inefficient to manage promptly 

changing information about products. That is, electronics commerce is the domain which 

essentially needs automatic ontology mapping on product names and attributes for efficient product 

search over multiple shopping malls. 

Most research on ontology mapping [2, 5, 9] focuses on precision because incorrect matching 

among different ontologies can cause severe problems. PROMPT [11] is one of the approaches that 

adopt such conservative strategy with exact matching. But, product search in comparison shopping 

requires more flexible mapping between user’s configuration and products. According to the 

Boston Consulting Group [13], 48% of all users have experienced unsatisfactory search results on 

desired products and 28% of all product purchase tryouts could not reach purchase because of 

search failure. If we use conservative and strict mapping on product search, customers will get only 

few products which exactly match with the configuration. Strict mapping strategy that may involve 

search failure is not desirable because customers want rich information on products. 

Therefore, our research objective is to increase the number of matched products with the 

customer’s configuration in automatic product mapping compared to the other ontology mapping 
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approaches. This can be achieved by increasing recall rate with reasonable decrease in precision to 

satisfy the requirements of product search and comparison in electronic commerce domain. 

2. Sensitivity and Precision 

Precision can be calculated by dividing the number of correctly matched terms by the number of all 

matched terms as shown in (1) where t_pos is the number of correctly matched terms and f_pos is 

incorrectly matched terms [8]. Therefore, if one wants to enhance precision, the best way is to 

minimize incorrectly matched terms. That is the reason that most approaches of ontology mapping 

adopt conservative and strict strategy. 
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Meanwhile, sensitivity divides the number of correctly matched terms by the number of terms that 

should be matched, pos as shown in (2) [8]. Strict matching strategy tries to increase precision as 

much as possible in spite of low sensitivity. But, this strict strategy is not desirable in comparison 

shopping as we mentioned in Section 1. 
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Specificity is used with sensitivity together for classification performance measures and calculated 

as shown in (3) where neg is the number of terms that should not be matched and t_neg is the 

number of correctly not matched terms [8]. If we try to increase sensitivity by matching more 

products, specificity can be worse because correctly non-matched terms will decrease. Therefore, 

we use sensitivity and specificity in the performance evaluation and comparison of our algorithm 

and PROMPT. 

neg

negt
yspecificit

_
(3)

Then, how to increase sensitivity compared to exact matching? The easiest way is using synonyms 

from WordNet [10]. By matching all synonyms of the given product, we can match more products 

and increase the chance of matching more correct products. But, it also can decrease precision 

because f_pos in (1) increases. So, using only synonym is not recommendable. In WordNet, a word 

has different senses and each sense has its own synonyms. If we can choose an appropriate sense of 

the given product from WordNet, it is possible to prevent precision from dropping too much by 

narrowing the synonym range. 

Also, a product has upper categories in its product hierarchy. We can use the hierarchy to choose 

appropriate matching products from the target ontology by comparing hierarchies of the source and 

target ontology. 
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In this paper, we propose an ontology mapping algorithm for product matching based on above two 

ideas. The algorithm searches for an appropriate product in a target ontology which matches with a 

given product of a source ontology. 

3. Product Matching through Ontology Mapping 

There are three steps in our ontology mapping algorithm. The first step is word sense 

disambiguation. This means choosing appropriate sense for a given product in a source ontology by 

comparing the product hierarchy and hypernym structure of each sense. The second step is 

searching for product candidates from a target ontology by using synonyms of the sense which was 

acquired at the first step. The last step is choosing the most appropriate product from candidates by 

comparing product hierarchies between the source ontology and the target ontology. 

3.1. Word Sense Disambiguation for Product Categories 

Selection of an appropriate sense for a given product is important to keep precision at a reasonable 

level. If we use synonyms of all senses of the product, it will decrease precision because incorrect 

matching can increase. Moreover, word sense disambiguation can enhance precision. For example, 

when a customer selects notebook which is a computer, a book for notes can be matched for 

notebook in addition to notebook computers. The basic idea of word sense disambiguation is 

comparing a product hierarchy and hypernym hierarchies of senses of the product in WordNet. The 

sense notebook that is a computer has a different hypernym hierarchy with that of a book for notes 

as shown in Fig. 1. By comparing the product hierarchy of ODP (Open Directory Project) [12] in 

the left column of Fig. 1 and hypernym hierarchies in WordNet of the right column, we can choose 

a proper sense for notebook.

The first step of disambiguation is searching for hypernyms from a hierarchy of a sense that match 

with upper categories of the product. For example, notebooks in ODP has three upper categories, 

consumer electronics, computers, and systems. Therefore, we search for matching terms from 

hypernyms of senses as shown in the formula (4). 

hierarchyproduct   theofcategory upper an  is   where

} and |{,

x
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CS() returns a set of hypernyms that match to a given upper category x from a given sense 

hierarchy p. The following shows the results for upper categories of notebooks.

CS(system, sense_2) = {} 

CS(computers, sense_2) = {computer} 

CS(consumer electronics, sense_2) = {} 
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Fig. 1. A Product Hierarchy of ODP and Corresponding Hypernym Hierarchies in WordNet 

The next step is calculating a measure represents the similarity between an upper category and a 

sense. If a matching hypernym is close to the sense, then the similarity is high because a closer 

hypernym is more important. The function hypernymproximity() returns the similarity by 

calculating a minimum distance between the matching hypernym and the base node of the sense in 

the hypernym hierarchy as shown in (5). 

otherwise
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The distance between the nodes is the number of arcs between them. For example, sense_2 of Fig. 

1 has the term Computer in its hypernym hierarchy that matches with the upper category 

Computers. The number of arcs between Notebook and Computer in sense_2 is 4. Therefore, 

hyperproximity(computers, sense_2) is 1/4. We can calculate hyperproximity for all upper 

categories as follows. 

hyperproximity(Systems, path 2) = 0 

hyperproximity(Computers, path 2) = 1/4 

hyperproximity(Consumer Electronics, path 2) = 0 

The last step is calculating similarity between a product and senses. The function pathproximity()

adds all hyperproximity of a given sense and divides it by the number of nodes of the product 

hierarchy as shown in (6). 
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For example, pathproximity of sense_2 can be calculated as follows based on the above 

hyperproximity results: 
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In our example, pathproximity of sense_1 is 0 because there is no matching hypernym for the upper 

categories in sense_1. Therefore, sense_2 is selected for the appropriate sense and we use the 

synonyms of sense_2, {notebook, notebook computer} in the remaining steps. 

3.2. Generation of Candidates for the Best Matching Category Path 

Once we found an exact sense for the product from WordNet, the next step is to search for the 

candidates for the best matching category path from a target ontology.  

Searching for candidates uses the synonyms that acquired from the previous step. In our example, 

we will search for product categories that match with {notebook, notebook computer} in 

Amazon.com ontology. We could get ‘Notebooks’, ‘Notebook’, and ‘All Notebooks’ from product 

categories. After the completion of search, we need to delete redundant categories of the product. 

To do this, the algorithm generates serial hierarchies of the categories by extracting all upper 

categories. We generated three hierarchies in our example as follows: 

/Product/ Electronics /Accessories/Computer Accessories/Notebook 

/Product/Electronics/ Computers/Notebooks 

/Product/Electronics/Computers/Notebooks/All Notebooks

3.3. Choice of the Best Matching Product Category 

To choose the best matching product category, we designed two measures for the calculation of 

similarities between the given product hierarchy and candidates. One is co-occurrence and the 

other is order-consistency. The measure co-occurrence is the ratio of the number of common 

categories between a source hierarchy and a target hierarchy to the number of categories of the 

target hierarchy.

Fig. 2 shows the source hierarchy and two target hierarchies in our example. The two target 

hierarchies have two common matching categories, Electronics and Computers(Computer

Accessories), in addition to Notebooks(Notebook) as shown in Fig. 2. But, the upper target 
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hierarchy has 4 categories and the lower has 5 categories. Therefore, co-occurrence of the target 

hierarchies are 3/4 and 3/5 respectively. 

Fig. 2. The Source Hierarchy and the Target Hierarchies 

However, co-occurrence is not enough to represent similarity because co-occurrence cannot 

measure orders of categories in the hierarchy. As shown in Fig. 3, Y1 and Y2 have the same co-

occurrence value, but Y1 is more similar to Search Context than Y2 because the order of categories 

in Y1 is the same with the order in Search Context while the order of Y2 is different. The other 

measure order-consistency compares this order of categories. The order in Search Context is 

subdivided into precedence relations that are binary relations of two nodes. For example, There are 

three precedence relations, {a, b}, {b, c}, and {a, c} in Search Context. Y1 keeps all the precedence 

relations while Y2 keeps only two.

a b cSearch Context

a b cCategory Path Y1

a c bCategory Path Y2

Fig. 3. An Example Search Context and Category Paths 

The final similarity between a source product and a target product is the average of co-occurrence 

and order-consistency. We choose a threshold on the similarity to determine whether we match the 

source product with the target product or not. We expect that the matching result will be changed 

by controlling not only the ratio of co-occurrence and order-consistency to the similarity but also 

the threshold. 

4. Empirical Evaluation and Results 

In this section, we compare the mapping results between our algorithm and PROMPT. PROMPT 

compares two different taxonomies and automatically recommends the matching terms by using 

synonyms [11]. Furthermore, PROMPT enables users to do direct mapping. However, it is 
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impossible to perform direct mapping in product search. Therefore, we consider only the 

recommended values by PROMPT 

4.1. Experiment Design for Evaluation 

To conduct an experiment, we selected two well-known shopping malls –Amazon.com and 

Buy.com – and ODP [12]. In the case of Amazon.com and Buy.com, product category mapping is 

fairly easy because they provide similar product categories. However, shopping categories of ODP 

use different product names and classifications from the shopping malls. Therefore, we can expect 

that product category mapping between ODP and shopping malls will show lower performance 

than between two shopping malls. 

We constructed product ontologies from Amazon.com, Buy.com, and ODP respectively for our 

experiment. The product ontology of Amazon.com consists of 136 nodes, Buy.com consists of 225 

nodes, and ODP consists of 133 nodes. A set of the experiment consists of one source ontology and 

one target ontology. For example, Amazon.com for the source ontology and Buy.com for the target 

ontology is one set. Therefore, there are 6 sets in the experiment. As the results of the experiment, 

we obtained 12 sensitivity and specificity pairs for our algorithm and PROMPT. 

4.2. Experiment Results 

Table 1 shows the performance results on sensitivity and specificity. On average, sensitivity of our 

algorithm is better than PROMPT by 46.5% and worse by 24.3%. It shows that our objective is 

successfully achieved. The maximum and minimum differences of sensitivity are 67.6% and 24.8% 

respectively while the maximum and minimum differences of specificity are -37.6% and -5.6% 

respectively.

Table 1. Performance Results on Sensitivity and Specificity 

Sensitivity Specificity
Experimental Set 

Our Algorithm PROMPT Our Algorithm PROMPT

Amazon  Buy 96.9% 61.7% 56.4% 91.1%

Amazon  ODP 93.3% 25.7% 78.9% 84.5%

Buy  Amazon 93.5% 56.0% 61.0% 94.8%

Buy  ODP 97.2% 40.6% 69.5% 89.6%

ODP  Amazon 92.9% 36.0% 50.5% 88.1%

ODP  Buy 85.7% 60.9% 70.5% 84.7%

Average 93.3% 46.8% 64.5% 88.8% 

Fig. 4 shows the comparison graph on sensitivity and Fig. 5 shows the comparison on specificity. 

Our algorithm shows the best performance in product matching from Amazon.com to ODP 

compared to PROMPT with 67.6% of sensitivity increase and only 5.6% of specificity decrease. It 

will be the best if we can improve sensitivity and specificity at the same time. But, it is hard to 

accomplish. Therefore, we need to balance them in order to fulfill requirements of the given 
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domain. At least in electronic commerce domain, we expect that our algorithm is better than 

PROMPT.

Amazon & Buy Amazon & ODP Buy & Amazon Buy & ODP ODP & Amazon ODP & Buy

Our Algorithm

PROMPT

Fig. 4. Comparison of Sensitivity 
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40.0%

60.0%

80.0%

100.0%

Amazon & Buy Amazon & ODP Buy & Amazon Buy & ODP ODP & Amazon ODP & Buy

Our Algorithm

PROMPT

Fig. 5. Comparison of Specificity 

5. Conclusion 

In this paper, we proposed an ontology mapping algorithm that provides efficient product matching 

between heterogeneous product classifications. And, we performed a comparative evaluation 

between our algorithm and PROMPT with 6 experimental sets. The experiment results showed that 

our algorithm is more effective than PROMPT in product comparison of electronic commerce 

domain. 
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There is an interesting future research issue. Sensitivity and specificity can be changed by 

controlling not only the ratio of co-occurrence and order-consistency to the similarity but also the 

threshold as we described in Section 3. We expect that we can find the optimal values of the 

parameters – the ratio and the threshold. We are planning to conduct experiments finding the 

optimal values. 

There are huge application areas of ontology mapping, but it is inefficient to apply the same 

mapping strategy to all the areas. We suggested a mapping algorithm which is appropriate for 

product comparison in electronic commerce domain by increasing sensitivity. We expect that our 

research contributes the practical application of ontology mapping on electronic commerce. 
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