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Abstract— Schema matching is a basic operation of human experts [5], [28]. For obvious reasons, manual
data integration and several tools for automating it have concept reconciliation in large scale and/or dynamic en-
been proposed and evaluated in the database community.yironments (with or without computer-aided tools) is in-
Research in this area reveals that there is no single schemag(icient and at times close to impossible. Introduction of
matcher that is guaranteed to succeed in finding a good y,, gomantic Web vision [2] and shifts toward machine-
mapping for all possible domains, and thus an ensemble .

understandable Web resources and Web services have

of schema matchers should be considered. In this paper i .
we introduce schema meta-matching, a general framework Made even clearer the vital need for automating schema

for composing an arbitrary ensemble of schema matchers, matching. The move from manual to semi-automatic
and generating a list of best-ranked schema mappings. Schema matching has been justified in the literature
Informally, schema meta-matching stands for computing using arguments of scalability (especially for matching
a “consensus” ranking of alternative mappings between between large schemata [26]) and by the need to speed-
tvyo schemata, given the “individual” grade.d rankings pro- up the matching process. The motivation for moving to
V|ded. by several_ schema matchgrs. We mtroducg SeveralfuIIy-automatic(that is, unsupervised) schema matching
algorithms for this problem, varying from adaptations of stems from the possible absence of a human expert in

some standard techniques for general quantitative rank the decisi | ficul h situati h
aggregation to novel techniques specific to the problem of € decision process. In particular, such situations char-

schema matching, and to combinations of both. We provide &Cterize numerous emerging applications triggered by the
a formal analysis of the applicability and relative perfor- Vision of the Semantic Web and machine-understandable

mance of these algorithms, and evaluate them empirically Web resources [2], [43]. To illustrate this further, con-
on a set of real-world schemata. sider the recent Web service challenge competition held
Index Terms—H.2.1.c: database integration; schema in 2006 The teams at this competition were required
matching; rank aggregation to discover and compose Web services in a completely
unsupervised manner. While the first competitions are
still based on exact string matching of parameters, the
|. INTRODUCTION next competitions have been declared to involve issues

Schema matching is the task of matching Concemgheterogeneous and constrained schema matching.
describing the meaning of data in various data sourcedttempting to address the schema matching problem,
(e.g.,database schemata, XML DTDs, HTML form taggjumerous heuristics (schema matchers or simply match-
etc). As such, schema matching is recognized to be ofies hereafter) have been proposed and evaluated in the
of the basic operations required by the process of d&tatabase communitye(g, see [1], [4], [9], [18], [19],
integration [3]. The area of data integration has a ridR3], [25], [34], [42]). However, choosing among this
body of literature on schema matching, summarized invariety of tools is far from being trivial. First, the number
few surveys [7], [41] and special issues [11], [39]. Exof schema matchers is continuously growing, and this
amples of algorithmic tools providing means for schentiversity by itself complicates the choice of the most
matching are COMA [8], Cupid [31], OntoBuilder [23],appropriate tool for a given application domain. Second,
Autoplex [1], Similarity Flooding [34], Clio [36], Glue as one would expect, recent empirical analysis shows
[10], to name a few. Foundational principles of schenifat there is no (and may never be) a single dominant
matching are also discussed in [3], [22], [30], [32]. schema matcher that performs best, regardless of the

A typical classification of schema matching taskdata model and application domain [22]. In fact, due to
relates to the amount of automatic processing requireiectively unlimited heterogeneity and ambiguity of data
for achieving a task. Due to its cognitive complexitydescription, it seems unavoidable that optimal mappings
schema matching has been traditionally performed B many pairs of schemata will be considered as “best
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mappings” by none of the existing schema matchers.as is. Unfortunately, as we show, computing f&pmap-
Striving to increase robustness in the face of the biaggags for schema meta-matching using fhlereshold
and shortcomings of individual matchers, several toaddgorithm may require time exponential in the size of
have enabled combining principles by which differerthe matched schemata. Since in the original context of
schema matchers judge the similarity between concemgismain-independent rank aggregation Tieeshold al-
The idea is appealing since an ensemble of complgerithm has been shown to be optimal in a strong sense,
mentary matchers can potentially compensate for the proceed with developing techniques that exploit the
weaknesses of each other. Indeed, several studies reppécifics of the schema matching problem. For a certain
on encouraging results when using schema matcheéde class of problems, we present a simple algorithm,
ensemblesg.g, see [8], [13], [23], [31], [38]). Given the Matrix-Direct algorithm whose time complexity is
that, the first goal of our work is to formally analyzepolynomial in the size of the matched schemata and the
the applicability and limitations of prior works on en+equiredk . Subsequently, we present thiatrix-Direct-
sembling schema matchers, and provide a more geneavih-Bounding algorithm, which draws upon both the
ensemble framework that overcomes these limitationsMatrix-Direct and Threshold algorithms, addressing
But even having a good ensemble of complementatyatching scenarios where tMatrix-Direct algorithm is
schema matchers cannot guarantee that an optimal miappplicable. We show that thehreshold and Matrix-
ping between the schemata., a mapping that would Direct-with-Bounding algorithms are (complexity-wise)
have been generated by a human expert) will always eitually undominated — that is, there exist problem
identified as the top choice of the ensemble. To addrésstances in which one algorithm performs dramatically
such situations to the largest degree possible, one ¢mter than the other. To enjoy the best of both worlds
adopt the approach in whicR" (and not just one) top- and even to improve upon them, we introduce the
ranked schema mappings are generated and examin@mssThreshold algorithm, a hybrid version of these
either iteratively or simultaneously [22], [21], [27], [R9 two algorithms, based on their in-parallehutually-
Our second goal is thus to connect between the ensenmdadancingexecution. Our analysis shows the complexity
approach and the tofi- approach, increasing the robustand effectiveness of adopting this hybrid algorithm.
ness of the schema matching process by enjoying the besdtve support our formal analysis with experiments on
of these two worlds. a real-world data feed. In these experiments, we test the
To achieve our goals, here we introduce a generielative performance of th@hreshold, Matrix-Direct-
computational frameworkschema metamatchingor with-Bounding, and CrossThreshold algorithms on
computing the topk prefix of a “consensus” rankingnumerous sets of various schema matchers. Our em-
of alternative mappings between two schemata, givpirical findings support the formal results, in particular
the graded valid mappings of schema attributes providskowing that theCrossThreshold algorithm dominates
“‘individually” by the members of an ensemble. A valicboth Threshold and Matrix-Direct-with-Bounding al-
mapping in this case is a mapping that satisfied matchiggrithms.
constraints €.g, cardinality constraints) specific to the It is important to note that the schema meta-matching
application.® framework doesot define the “consensus” ranking, but
Our starting point is based on rank aggregation tecbaly aims at its efficient generation. The “consensus”
niques developed in the areas of Web search and datalvas&ing is defined by the actual choice of ensemble,
middleware [12], [17]. First, we show that tiiéreshold and this choice is orthogonal to our work. In particular,
algorithm, originally proposed in the context of databaske relative effectiveness of the “consensus” ranking is
middleware [17], can be applied to our problem almo&idependenof the choice of the schema meta-matching

2 AUtommati nation of alternati H s Vo algorithm. Therefore, our formal and empirical analysis
utomatic examination or alternative schema mappings y® .
the scope of this paper: it is typically tool dependent, amy involve are devoted solely to the correctness of the algorithms

analysis of query variations [35], Web server error messagte. and their comparative performance. _ _
SAlternatively, the ensemble members can first provide mg&i  TO summarize, the main contributions of this paper
of only the attribute-levelmappings, while ignoring the application gre:

constraints posed on the schema matching process. It isappa Introducti f h t tchi .
that such an approach would significantly reduce the coritplet e Introducuon or schema meta-matching, a generic

individual rankings. But these rankings then need to be doeahinto computational framework for combining an ensem-
a “consensus” ranking of valigchemamappings. To the best of our ble of arbitrary schema matchers for identifying top-
knowledge, there is no evidence in the literature that spcﬁp@r(.)ach. K schema mappings.

can provide, at a low complexity cost, a semantically juesifi . . .
“consensus” ranking over the schema mappings while resgect © Provision and formal analysis of four algorithms

schema-level matching constraints. for schema meta-matching. In particular, we analyze



an existing algorithmThreshold) for general rank specification’, and provides us with an ordering 4
aggregation adapted to our domain, and compareer Y. For schema mappings, o’ € Xr, 0 =4 o’
its applicability and performance with a generalmeans that is estimated by4 to be as good as'. It is
ized version of the COMA [8] approachMétrix- worth noting that such an ordering may be given either
Direct). We next develop and study two novelimplicitly or explicitly.
generically applicablealgorithms Matrix-Direct- While various schema matching models have been
with-Bounding and CrossThreshold). In particu- proposed, many of them follow a similar two-step pat-
lar, we show that theCrossThreshold algorithm tern [8] that we adopt here. In the first step, each
combines the benefits of all the other algorithmsattribute mapping inS is automatically assigned with
providing the generically most efficient solution ta real-valued degree of similarity. 1§ and S’ are of
the schema meta-matching problem. arity n andn’, respectively, then this step results in an
« Comparative quantitative evaluation of the algonxn’ similarity matrixA/(4), whereM? represents the
rithms that empirically supports the practical reldegree of similarity between theth attribute ofS and
evance of our formal results. the j-th attribute ofS’, as assigned byt. Various schema
The rest of the paper is organized as follows. In Sematchers differ mainly in the measures of similarity
tion 1l we provide some basic formalism and notatiorthey employ, and thus yield different similarity matrices.
and introduce the schema meta-matching framework. These similarity measures can be arbitrarily complex,
Section Il we discuss two basic algorithms that cawnd may use various techniques for name matching,
be used to implement schema meta-matching, namégmain matching, structure matching (such as XML
the Threshold andMatrix-Direct algorithms. In Section hierarchical representation), and semantic matching.
IV we introduce theMatrix-Direct-with-Bounding algo-  In the second step, the similarity information i)
rithm, and compare it with th&hreshold algorithm. In is used to quantify the quality of different schema map-
Section V we introduce th€rossThreshold algorithm, pingsc in X using some real-valuedcal aggregation
a hybrid version of theThreshold and Matrix-Direct- function (or [-aggregator for short)
with-Bounding algorithms, and discuss its properties. N N N ) )
The corresponding experiments and empirical analysis fA (Uv M )) = f@ (Ml,g(l),--wa(n)) )

are presented in Section VI. We conclude in Section VII. , .
that is, a function that aggregates the degrees of simi-

larity associated with the individual attribute mappings
forming the schema mapping The ordering- 4 on Y

is then
We begin by introducing some formalism and notation

essential for defining the schema meta-matching prob-o =a o o W (O’,M(A)) > f (O’I,M(A))
lem.

Let schema$ be a finite set of somattributes We for €acha, o’ € ¥r. A popular choice of-aggregator
put no particular limitations on the notion of schemi$ the sum (or average) of attribute mapping degrees
attributes; attributes can be both simple and compourl, Similarity (e.g, see [8], [23], [33]), but other-
compound attributes need not necessarily be disjoifg9regators have been found appealing as weety. (
etc For any schemata pa§ and §', let S = S x §' the Dice [-aggregator suggested in [8], thresho!d-bgsed
be the set of all possiblattribute mappingsbetween aggregators [37]etc). Without loss of generality, in
S and S’, and let the power-seE = 25 be the set what follows we assume that is computable in time
of all possibleschema mappingbetween this pair of linear inn andn/. However, at Ieast_ tgchnically, nothing
schemata. LeF : ¥ — {0, 1} be a boolean function thatPr€vVents us from using more sophisticated (and possibly
captures the application-specific constraints on schef&ré computation-intenseéjaggregators.
mappings,e.g, cardinality and inter-attribute mapping Having defined the ordering 4 overXr, the schema
constrainté. Given such a constraint specificatidh, matcherA can now provide answers to various queries.
the set of allvalid schema mappings i is given by The most common query these days stands for retrieving
Spr = {0 € ¥ |T(0) = 1}. A schema matchen takes & t0p1 mapping
as its input a schemata pédfir S/, as well as a constraint

Il. FORMALISM, NOTATION, AND PROBLEM
STATEMENT

ol = argmax {f(o, M) | 0 € X1},

“We refrain from an in-depth analysis of cardinality and oiheer- . . . . . .
attribute mapping constraints. The interested readeifésresl to [6], (possibly) along  with its  quality e_St'matlon
[10], [20], [44]. fW (e, M4). In the top& approach, this query



is generalized to retrieving a tapth mapping local rankings, wheres; are some arbitrary weighting
: _1,Parameters. It is important to note that the choicey-of

g = argmax {f(A)(U’ MW) [0 esr\{o', 0 1}}afggregator is unavoidably ensemble-dependent, and thus

_ , here we consider it as givenproperty of the ensemble.

annotated withf()(o*, M4). In what follows, we refer  Haying formalized individual schema matchers and

to this query ag-top(i). In addition, the schema matchegnejr ensembles as above, we define sichkema meta-

can be queried for the estima®) (s, M) for an  matchingproblem to be that of generating tdg-valid

arbitrary mappingo € Xr, and here we denote Suchnappings betweerS and S’ with respect to an en-

a query byg-estim(o). Clearly, the time and spacesemple of schema matchers, . .., A,,, their respec-

complexity of answering these queries depend on bgfhe l-aggregators™, ..., f™), and the ensemble’s

the structure ofl’ and thel-aggregatorf(Y). On the aggregator”. Formally, givens, &', T, and K > 1, our

positive side, however, in many natural setting answeripgsk is to generatéo!, ..., o} C Tr, where thei-th

these queries can be efficient. For instance, wHenis pest mappingr is inductively defined as:
equivalent to sum, ant is devoted to enforcé-1 cardi-

nality constraint, then the time complexity of retrieving’ = arg max {(f, F)(o) | o €2p\{o!, ,ai‘l}},
ol is® O(in*) wheren = max {n,n’} [21], [24], [40], 7 ©)
and providing the estimaté(V) (o, M) can be done similar to Eq. 1 for the basic case of = 1.
in O(n).

Now, let us consider an ensemble of schema |, p,\nk AGGREGATION FORSCHEMA MATCHING
matchersAi, ..., A, utilizing (possibly different) lo- _ _
cal aggregatorg). ..., f™) respectively. Given two Having formalized the problem of schema meta-

schemataS and S’ as before, these matchers producd®atching, we now proceed with exploring it from the
an m x n x n' similarity cube ofn x n’ similar- computational standpoint. To stress some of the com-

ity matrices MM, ..., M. Such an ensemble ofPutational issues involved, consider a straightforward

schema matcherst,,..., A, is used to generate gProcedure for rank aggregation, where each judge (a

“consensus” ordering- over ¥ from the individual schema matcher, in our case) explicitly ranks the entire
orderings-1, ..., = This ordering aggregation is IOer_universe of alternatives, associating each alternatitie wi

formed via aggregating the weights eadh provides & certain Ievel_of “goqdness.” These indiyidual grad_es
to the schema mappings iBr. In turn, weight ag- &'€ then combined (this or anot_her way) into a gra(_jlng
gregation can always be modeled using a real-valudfderlying the “consensus” ranking, and we are provided
global aggregation functiorfor g-aggregator for short) With top-K elements of this aggregated ranked list.

F (f(l)(a, M(l)), o 7f(m)(0,7 M(m))) 8], [23]. In what Unfortungtely, in the case of schema matchw_lg, the size
follows, by(f, F) we denote the set dfaggregators and of the universe of alternatives makes this straightforward

g-aggregator in use, respectively. Likewise, we use tP%)proach unrealistic: Given two schematauddttributes
hotation each, there are already! alternativel : 1 mappings

~ between them, and this number is even larger for less
(f F)(o) =F (f(l)(o’,M(l)), e, fOm (O’,M(m))) constrained settings. Therefore, any realistic method for
schema meta-matching has to either consider individual
rankings represented implicitly in some compact form,
or carefully query the judges about the mappings while
. . limiting the number and complexity of these queries to
o=o & (f,F)(o)>{f, F)) the extent possible.

In the remainder of this paper we focus on the algo-
rithmic aspects of solving this problem. Before we begin
discussing various algorithms, it is worth observing that

1 1 m m A I ive approach of (i) generating top-K lists of
F <f( o M), £ (0 M ))) T m lz_:klf( (o, $n4£p ings with respect taly, ..., A,, using theg-top

(2) queries, and (ii) subsequent aggregation of these lists

where Eq. 2 can be interpreted as a (weighted) sum (witing F, is not sound. To illustrate this, consider the
A = m) or a (weighted) average (with = 1) of the top-1 mappingo'. First, strange as it may seem,

for the aggregated weight provided By, ..., A, with
(f, F) to the mappingr. The aggregated orderirtg on
Yr is then

for eacho, o’ € Yr. For instance, many-aggregators
proposed in the literature can be generalized as

SGiven ¢',...,0'"!, time complexity of retrieving o’ is 5Note that in contrast to the case of Web meta-search [12], our

O(n®) [21], [24], [40]. judgesare ready to answer any query about mapping rankings.



Algorithm TA weight (f, F)(c) > 7,.,, wherer,, is determined in
1) Starting withi = 1, do incremental (on growing) parallel step 1b. If so, at this point we cannot be sure that the
querying of Ay, ..., A with g-top(i). This querying is  best mapping has already been seen, because the next
unbounded, corregpondlng to a ;orted access in parallel tomappinga’ generated by-top could have aggregated
each of them rankings of alternative valid mappingsr. . - , L
T weight (f, F)(¢') > 7,.,. If this is the case, then clearly
a) As a mappings is introduced by one of the matchers, . T .
obtain the remaining™® (o, MM, - . o) (g, 110™) no mappingo seen so far could be the best mapping,
by querying the other matchers witlrestim(c), and  since (f, F)(¢’) > (f, F)(o). Thus, it is safe to halt
compute the aggregated weight, F) (). If this weight  only when we see a mapping whose aggregated weight
is one of the &' highest we have seen so far, then s ot |eastr, . Similarly, for K > 1, the stopping rule

remembero. c . . e
b) For1 < [ < m, let o, be the mapping returned by Verifies a sufficient condition to ensure that the fegp-

the last q-top query to A(). Define the threshold value mappings have been seen.

Toa :F(f‘”(auM“)),m J‘””(Um,M‘””))- If at The only property required to ensure the complete-
leastK” mappings have been seen whose weight is at leasthegs of theTA algorithm is monotonicity of they-
Tra: then halt. - : . . aggregatorr' in the following sense [17]: A functiod”

2) Let Y be a set containingd mappings with the highest . icif f . , h th
grades seen so far. The output is then the graded sefS lmonOtolmq' 0;‘ ev/ery t}’VO mappings, o° such that
{[07 <ij>(U)} |Uey}_ O (e, M) > fO(o’, M) holds foralll <1 <m,

we have(f,F)(o) > (f,F)(c’). Since this require-
ment does not seem to induce any practical limitation,
henceforth we adopt this assumption of monotonicity
for g-aggregators. Likewise, for ease of presentation
and without loss of generality, we assume tlatis

computable in time linear imn.

may appear in none of the: individual top% lists, ~ Considering the time complexity of th&A algo-
and thus will definitely not appear in an aggregated listhm while ignoring the specifics of the schema meta-
of any length. Such a case may occur whenexkis Mmatching problem, it can be easily shown that this
not one of the topx mappings of any ofd,,..., 4,,, @lgorithm may have to access in a sorted manner as
yet these experts are so in odds with each other tfiagny as half of each sorted list.§, see Example 6.3
the common consensus becomes a convenient medidBrél7]). And while we found no setting of schema-
mappmg Second, even if! appears in some, or evermatChing problem on which th@A algorithm performs
most, individual topK lists, it can be improperly rankedthat bad, the next theorem shows that in the context of
in step (i), and possibly even discarded from the aggréchema meta-matching it may still have exponentially
gated topk list. This can occur if the relative aggregatedPng runs.

ranking of o' is significantly affected by the scores it

gets from the experts that individually ranked it lowefheorem 1 The time complexity of schema meta-
than top#'. matching usingdTlA is Q((3)!).

Fig. 1. The Threshold AlgorithmT@), adopted for schema meta:
matching.

A. Adopting the Threshold Algorithm

The problem of optimal aggregation of several quan®: "€ Matrix-Direct Algorithm
tatively ordered lists has been recently studied in the con-Theorem 1 provides a strong motivation to seek
text of middleware for multimedia database systems [14hore efficient alternatives to tHEA algorithm. In [17],
[15], [17], [16]. The most efficient general algorithmhowever, this algorithm is shown to be optimal in a
for this problem, called the Threshold algorithmA( strong sense of “instance optimality.” For the formal
for short), has been introduced in [17], and we begufefinition of instance optimality we refer the reader
by presenting this algorithm in terms of our problem ito [17]; roughly, for any set of data and any other
Figure 1. rank aggregation algorithm with the time complexity

The intuition behind theTA algorithm is elegantly Comp(A), instance optimality of th&A algorithm im-
simple. For each schema matchdg, the algorithm plies that its time complexity is of the order of that 4f
utilizes g-top queries to generate as many mappings ire., Comp(TA) = O(Comp(A)). Hence, at least at first
a ranked order as needed. Assume that= 1, i.e, view, it seems that using th€A algorithm for schema
we are interested only in the best mapping. Assumeeta-matching is the best we can do. However, below
further that we are at a stage in the algorithm whewe show that, for a certain class of aggregat(g"?sF),
we have not seen any mapping whose aggregatedan extremely simple technique exploiting specifics of



the schema matching problem provides a significanﬂygorithm MD
better performance. Note that this does not contradich) GivenA,, ..., 4,., (schematically) construct a new schema

the instance optimality of theTA algorithm as the matcher A* with (a) similarity matrié)M* such(’ t)hat, for
latter is a generic algorithm, independent of the actual 1b§li =nl<j< E*Mf‘,j = F(M;;,---,M;;"), and
grading mechanisms. In particular, th& algorithm in (b) l-aggregatorf (o, 7).

. ) ) 2) Using queriesy-top(1),...,qg-top(K) to A*, generate top-
our domain considers only the outputsegtop queries, K valid mappings with respect td*.

and does not intervene in their processing. Hence, it+s
possible that one can devise algorithms outperforming
TA by exploiting some properties of the specific problemdg. 2. The Matrix-Direct KID) Algorithm.
domain at hand.

To begin with an example, let us considerand g-

aggregators The commutativity between the and g-aggregators
n leads to an extremely efficient algorithm for schema
vie{l,...,m}: fO>e, MV = ZMZ.(Q(i) meta-matching. Specifically, in Figure 2 we present the
-1 @) Matrix-Direct algorithm (orMD, for short), generalizing
. ik 0 0 the applicability of the composite method of COMA [8]
(f, F)(o) = Zklf (0, M), to any schema meta-matching problem in which (i) all
=1

_ _ ~ the judges use the sami@aggregator, and (ii) the and
Obse_rve t_hat the summations in Eq. 4 can be dlStI’IbUt@daggregators commute on the given set of similarity
resulting in matrices. The correctness and time complexity of the
nm " MD algorithm are stated by Theorem 2 below.
([F) (o) = Y kM),

i=1 I=1 Theorem 2 Given a set of schema matchers

where the vector notatiorf is replaced withf to A1, --,4m, and a pair of local and global aggregators
explicitly highlight the uniqueness of theaggregator (/> F), let M* be a matrix defined asM;; =

in this case. That is, if thd-aggregatorf and g- F(MZ%),--- ,Mi(,?)), forall 1 <i<mn1<j<n.
aggregatorF happen to be as in Eq. 4, then usiag If f and F commute on the similarity matrices
for local weight aggregation ang for global weight M), ... M(™  then the MD algorithm correctly
aggregation will beequivalentto usingf and F in their finds top#& valid mappings with respect to the
original roles. In other words, in case of Eq. 4 we havaggregated ranking in time)(n?m + ®), where ® is
(f,F)(c) = (F, f) (o) for any mappingr between any the combined time complexity of iteratively executed
pair of schemata and S’. The special case of Eq. 4queriesg-top(1),...,q-top(K) over M*.

can be generalized as follows.

_ , . ) IV. MATRIX-DIRECT ALGORITHM WITH BOUNDING
Definition 1 Given a set of similarity matrices

MM ... M over a pair of schemas, S’, and a Reading so far, it seems natural to conclude that the

pair of [-aggregatorf and g-aggregatorF, we say that schema meta-matching problems satisfying the condi-
f and F commute onM® ... M if and only if, tions of Theorem 2 should be processed uditigy while
for every mappingy betweenS and S’, we have: all other problems should be pI’OCGSSGd usng(i.e.,

we are back to an instance optimal algorithm for general

(f, ) (o) = (F\ [) (o) () guantitative rank aggregation). However, below we show

Likewise, if f and F commute on all possible setdhat, while the former conclusion is sound, the latter is

of similarity matrices, then we say thgt and F' are Not necessarily so.

strongly commutative
_ _ Definition 2 Consider a set of similarity matrices
For instance, the aggregatofsand I as in Eq. 4 are p;(1)  a7(m) gver a pair of schemas, §’, and two

strongly commutative. To illustrate commutativity in thgets of7- and g—aggregators(f F) and (f’ F'). We
absence of strong commutativity, consider a pair of agay that <f7 F dominates(f F) on M), .. M)

gregators corresponding tein andproduct respectively. (genoted as(f’,F’) ~ (f.F) ) if, for every mappingr
While these two aggregators are clearly not strongfy)m s to S’ we have:

commutative, they do commute, for instance, on any set
of boolean similarity matrices. (f',F'Y(o) > {f,F)(0) (6)



Likewise, if Eq. 6 holds for all possible sets of S|m|Iar|tys\|gonthm MDB

matrices, then we say th@“ F') strongly dominates 1y GivenA4,, ..., A,., (schematically) construct a new schema
<f,F> matcher A* with (a) similarity matrix M* such that, for
1<i<nl<j<n, M= 2y, -, M), and
Consider a schema meta-matching problem defined b% (Sbt)alr;%gg\ﬁ?ﬁtc’_mi”afi n)(;rememal (on growing queryin
a set of similarity matrices\/(), ..., M (™ and a set of A* V%ith q_lt;p(i’)_ g querying
of [- and g-aggregators f, I) thatdo nptcomm_ute on a) As a mappingo is introduced, obtain the actual
M® .. M) Suppose that there exists a pair of func- weights £ (o, M®), -, ™ (o, M(™)) by querying
tions (h, H) that (i) do commute onM ™, ... M), A1, Ay with g-estim(o), and compute the aggre-
and (ii) dominate(f,F) on these matrices. The next gated weight(f, I') (o). If this weight is one of thek
. . . . highest we have seen so far, then rememher
Corollary 3, which follows immediately from the defi-  p) pefine the threshold value,, ., to beh(o, M*).2 If K
nition of the MD algorithm, gives us a simple property mappings have been seen whose weight is at teast, ,
of this algorithm that provides some intuition for the then halt. N _ _ _
subsequent steps of construction. 3) Let Y be a set containingd mappings with the highest

grades seen so far. The output is then the graded set
_ o ([ F) )] lo e},

Corollary 3 Given a set of schema matchers
Ay,..., Ap, and a pair of local and global aggregators ajt is worth noting that, due to commutativity afand 2 (either
(h, H) commuting oM (D). M) the top# result strong or just with respect o/, ..., M (™), we haver,, ,, =
of the MD algorithm with respect tqh, H) is a correct {L.1)(0) = (h, H)(o).
top-K* aggregation with respect to any set of and
g-aggregators(f, F), such that both(h, H) = (f, F)
and (f, F) = (h, H) hold on M) . M(m),

Fig. 3. The Matrix-Direct with BoundingMDB) algorithm.

In general, nothing prevents Corollary 3 to be realize

ﬂie currently used settings in schema matchang,([4
To illustrate that, consider the following set of four real- y g 9:([4],

valued functions:f(z) = 22, F(x) = z/2,h(x) = 37D, is:

2?/2,H(z) = x. While f and F do not commute on ) -

reals ¢°(f(z)) = 22/2 and f(F(2)) = 22/4), the func- 1@ M) =) (Mjo() 8 (Mjo() > t5))  (8)
tions h and H are strongly commutative i (h(z)) = 7=l

h(H(z)) = 2?/2), and we haveH (h(z)) = F(f(z)). whered is the Kronecker discrete delta function. Ac-
However, the practical realizability of Corollary 3 withcording to Eq. 8, individual pair-wise attribute map-
respect to schema meta-matching is less clear, as ipisgs that do not pass a predefined, matcher-specific
not clear whether there exists a set of four functions thiéareshold are nullified. In both cases, it is not hard to
will be interesting in practice for schema meta-matchingerify that f and F do not commute (in all but trivial
Corollary 3, however, does provide us with some useases of effectively redundant thresholds.) On the other
ful intuition. Consider a schema meta-matching problelrand, functionsh and H standing for simple sum and
defined by a set of similarity matrice/("), ..., M) weighted sum (as in Eq. 4) are (strongly) commutative,
and /- and g—aggregators(ﬁ F) that do not commute and we have(f, F) < (h,H) for both Egs. 7 and 8.
on MM ... M), Suppose that there exists a pair dfor such cases we now present the Matrix-Direct-with-
functions (h, H) that do commute onM™) ..., M (™ Bounding algorithm (oMDB, for short). This algorithm
and dominate(ﬁ F') on these matrices, yet is not domidraws upon both th&A andMD algorithms, addressing
nated by(ﬁ F). For instance, lef” be a weighted sum problems with non-commutative pairs of local and global

as in Eq. 4, andf be defined as: aggregation functions, while being more efficient than
theTA algorithm in at least some such problem instances.
f(z')(o_ M) = 2?21 M; (4 ZJ 1 Mj o) >t The MDB algorithm is shown in Figure 3. Consider
’ 0, otherwise ’ a schema meta-matching problem with schema matchers

(7) Ai,...,An, and aggregatoréf, F) that do not com-
wheret; > 0 is some predefined constant thresholanute on M, ... M(™  As we already mentioned,
The intuition behind Eq. 7 is that judges that cathe basic idea behind th®DB algorithm is to use
no longer provide mappings with sufficient similaritya pair of functions(h, H) (that both dominate(ﬁ F)
measure (set as the threshaldl “quit” by nullifying and commute om\/( ... AM(™)) as an upper bound
all further mappings. Another example, reflecting one &br the “inconvenient” (ﬁ F) of our actual interest.



Informally, the MDB algorithm behaves similarly to theorder preserving: Intuitively, th®1DB algorithm is most
MD algorithm if the latter is given with the aggregatorefficient if the order induced byh, H) over alternative
(h, H). However, instead of reporting immediately oschema matchings coincides with the order induced by
the generated mappings the MDB algorithm uses the <f, F), and (h, H) is sufficiently tight to allow the
decreasing aggregated weiglits H) (o) to update the discovered mappings to crosg, ., quickly enough. On
value of a threshold,, .. In turn, much as the way thethe other extreme, th®DB algorithm is least efficient if
thresholdr,., is used in theTA algorithm, the threshold the order induced byh, H) is the inversion of the order
Tupp 1S USed to judge our progress with respect to theduced by(f, F). Later we provide an algorithm that
Weights<f, F) that really matter. Theorem 4 shows thamnakes use of the “good” mappings that were discovered
the MDB algorithm is correct for any such upper bounly theMDB algorithm even whefh, H) fails to provide
(h,H). a sufficiently tight threshold. As for order preserving, the
superiority of the algorithm should hold for all problem
Theorem 4 Consider_a set of schema matcheristances and all choices &f, and it is not clear how (if
Ay,..., Ay, with (f,F) being their I- and g- at all) this notion can be defined in a problem-instance
aggregators. Given a function paith, H) that both independent manner.
commute and dominatgf, F) on MM, ... . M(™, the  In the absence of a general relation as above, the
MDB algorithm correctly finds topk” valid mappings question now is whether we can say something about
with respect to(f, F'). the attractiveness of th&A algorithm with respect to
(t,ﬂe MDB algorithm that is equipped with a “reasonable”
pair of bounding aggregators. Theorem 6 below provides
an affirmative answer to this question, and shows That

can significantly outperfornMDB.

Returning to the question of performance, recall th
our intention in developing th&DB algorithm was to
provide an alternative to th®A algorithm for ensemble-
aggregation settings where the standdid is not appli-

cable. Have we achieved our goal, or will ti& algo- Thegrem 6 Given a schema meta-matching problem
rithm always be more efficient anyway? We now shostance, the time complexity of théDB algorithm on
that, for schema meta-matchinglDB can significantly hjs instance can be exponentially worse than this of the
outperformTA. TA algorithm.

Theorem 5 Given a schema meta-matching problem V. THE CROSSTHRESHOLD ALGORITHM
instance, the time complexity of tri algorithm on The main conclusion to be drawn from Theorem 6 is

this instange can be exponentially worse than that of tlﬁ?at theMDB algorithm should not replace but rather
MDB algorithm. complement th@A algorithm. Thus, it would be natural

Theorem 5 shows that tHeA algorithm does not dom- t0 adopt a parallel execution ofA and MDB, i.e,
inate theMDB algorithm, but it says nothing about thePerformingm + 1 parallel g-top querying of schema
opposite direction: Does th®IDB algorithm dominate Matchers. This way, we involve both algorithms in com-
the TA algorithm, or maybe the relative attractivenedduting the topX” mappings, halting as soon as one of
of these two algorithms (complexity-wise) depends dhese algorithms reaches the desired goal.
the actual meta-matching instance at hand? The problen] h€ question that suggests itself immediately is
with answering this question in a general manner is thafiether we can improve the performance of this parallel
the running time of theVIDB algorithm depends on the€xecution of theTA and MDB algorithms by either
choice of bounding functions. Therefore, dominance §fonitoring their intermediate behavior, or lettingA
the MDB algorithm over theTA algorithm would mean and MDB share some information gathered from their
that, foreachmeta-matching problem instance agach OWn individual computations. Our discussion of this
K, the optimal choice of bounding function&:, H) will possibility leads to specification and analysis of a mixed
make theMDB algorithm at least as efficient FA. At version of theTA and MDB algorithms, in whichTA
this stage, we have no evidence that this is actually tABd MDB are executed in parallel, yet these parallel
case. In fact, so far it is not even clear that the abo@&ecutions are not independent, but communicating and
notion of optimality has a clear mathematical semanticgutually enhancing.

It is worth noting here that the actual tightnessof H) _ .

with respect to{ £, F') is only one factor in determining”A- IS an early winner a true winner?

the efficiency of theMDB algorithm, and the optimality A naive approach to accelerate parallel execution of
as above should also relate to this or another notion tbe TA andMDB algorithms corresponds to the hypoth-



esis that by observing the performance of bd#and Algorithm CrossThreshold

MDB in identifying the top: mappings (whereé < K), a

1) GivenAy,...

, A, (schematically) construct a new schema

decision can be taken to continue with only one of these matcher A* with (a) similarity matrix A/* such that, for

algorithms in identifying the remainin§l — i mappings.
Observe that such an “early winner detection” will be
especially helpful in problems wherde facto MDB
outperformsTA, sinceTA'’s execution ofn parallelg-top
qguerying is more costly than executipDB.
Unfortunately, such a selection strategy provides us
with no guarantee that the performance will not worsen
after abandoning the “so-far looser” algorithm. More
interestingly, our experiments show that this absence
of guarantee is not of theoretical interest only. For
instance, Figure 4 compares the performance of the
TA and MDB algorithms on two schemata from the
hotel reservation domain. The x- and y-axes in Figure 4
correspond to the requested number of the top mappings

1<i<n1<j<n, M=HMD,. .
(b) l-aggregatoth(o, M ™).

2) Starting withs = 1, do incremental (on growing) parallel
querying of Ay, ..
a) As

b) Let o1,..

(m)
: 7Mi,j )1 and

2,77

.y A, A* with g-top (7).

a mapping o is introduced by one of
these m + 1 matchers, obtain the remaining
FO (e, M), [ (e, M™) by querying
the other matchers (excludingl*) with g-estim(o),
and compute the aggregated weighft, F)(c). If this
weight is one of theK highest we have seen so far, then
remembero.

.,0m, 0« be the mappings returned by the
last g-top queries byAs, ..., A, A, respectively. De-
fine the threshold value = min {7, ,, 7,5}, Where
Toa = F(f“)(al,M(l)),m ,f<m)(am,M<m))) and
Tups = h(o«, M™). If K mappings have been seen
whose weight is at least, then halt.

K, and the (plotted on a logarithmic scale) number of3) Let Y be a set containing<’ mappings with the highest
iterations performed by the algorithms, respectively. On grades seen so far. The output is then the graded set
this problem instance, thBIDB algorithm manages to {[U <f’F>(U)} o EY}'
get the top4 mappings faster than th€A algorithm.
However, from K = 6 on, TA outperforms MDB. Fig. 5.
This example demonstrates that in practice as well, the
relative performance of th€A andMDB algorithms for
anyi < K cannot serve as a perfect indicator for theichieving a new threshold that is more effective than the
future behavior. (We discuss our experiments in moggiginal two. This way, the schema mappings selected
details in Section VI.) by the TA algorithm as candidates for the tdp-set can
be “approved” by means of the information obtained by
the MDB algorithm, and vice versa.
Figure 5 formalizes the resulting algorithm which we

refer to asCrossThreshold. The joint threshold- used
in this algorithm is set tamin{r,.,,7,,,,}, and The-
orem 7 shows the correctness of tGeossThreshold
algorithm with such a threshold. Note that this choice of
7 for the CrossThreshold algorithm is optimal, because
N 2 3456 7 8 910111213 14 15 16 17 18 19 20 any otherr’ > 7 cannot be more effective than,

K while settingr to any value lower thamin {r.,,7,,,,}
cannot guarantee the soundness of the procedure.

TheCrossThreshold algorithm.

Iterations
100

—o—TA
—s—MDB

<

Fig. 4. Crossing performance of tfiéd and MDB algorithms on a
certain problem instance from our experiments.
Theorem TLletAy, ... Ay be a set of schema match-
ers with (f, F') being their/- and g-aggregators. Given
: a function pair(h, H) that both commute and dominate
B. Can theTA and MDB algorithms help each other? - - ’
g P (f,Fy on MM ... M the CrossThreshold algo-

While we have shown that neither tHé algorithm rithm correctly finds topk valid mappings with respect
nor the MDB algorithm can be safely abandoned, g (f, F).

natural next step would be to allow these two algorithms

to share a pool of togs candidates. This way, both al- While Theorem 7 shows the correctness of the
gorithms will contribute to each other new candidates &ossThreshold algorithm, the reader may rightfully
they come along, possibly replacing other, less attractim®nder whether it can provide any computational
candidates (discovered by either of the two algorithmspeedup compared to the basic independent parallel
Moreover, such a pool sharing suggests aggregatiegecution of theTA and MDB algorithms. Below we
the thresholds used in th@A and MDB algorithms, provide an affirmative answer to this question.
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Considering the generation of tdp- mappings for provided to theCrossThreshold algorithm by theg-top
a general schema meta-matching problem,/léte the queries toA,..., A, and A*, respectively.
minimal number of iterations required for this purpose
by the CrossThreshold algorithm, andI,,, I,,,, be Lemma8If I < I, andr[I] =7.,[I], thenY'\Y,, #
the corresponding minimal number of iterations requirdd and for eachr € Y\ Y, ,, we have:
by independently running th&A and MDB algorithms, > .
respectively. If usingCrossThreshold provides any (. F)0) = 7rall] (12)
computational speedup on this problem instance, theBmma 9 1f 1 < I

MDB and T[I] = 7—IWDB [[]’ thenY\
we should have

Y, ., # 0, and for eachv € Y \'Y,,,,, we have:
I < min {ITA’IMDB} (9) <](T: F> (U) = Tups [I] (13)

To obtain some intuition on when (if at all) Eq. 9 may At first view it seems that the restrictions posed by

hold, letr[x], 7., [z], andr,, , , [] be the values obtainedLemmas 8 and 9 are too strict for tkk¥ossThreshold

after x iterations byr, 7.,, and 7,,,,, respectively. algorithm to provide a significant computational speedup

By definition of theCrossThreshold algorithm and its (if any). However, below we show that even in such

reported topK list Y, we have boundary situations, the speedup is not only possible,
. but also potentially significant.

va G Y : <f7 F>(U) 2 T[I] = mln {TTA [’[]7TIWDB [I]}’

(10) Theorem 10 There exist schema meta-matching prob-
and, without loss of generality, assume that[/] # lem instances for which the time complexity of both the
Tups ] TA andMDB algorithms is exponentially worse than that

First, suppose that the value off] is contributed by of the CrossThreshold algorithm.
the TA algorithm, i.e, 7[I] = 7, ,[I], and thus Eq. 10

can be reformulated as VI. EMPIRICAL EVALUATION

> We have implemented the generic versions of the four
VoeY: F > 1 .
7 o Be) 2 ] (11) algorithms TA, MD, MDB, and CrossThreshold.” In

On the other hand, Eq. 9 in particular implies thdhis implementation, each algorithm can be plugged-in
there exists at least one mapping € Y that has With a concrete schema model.g, relational), a set of
not been seen bYA. Thus, after] iterations, such a (standard or user-defined) schema matchers, and a pair
mappingo is exclusivelyprovided to the shared pool ofof I- and g-aggregators.

candidates by th&1DB algorithm, yet theTA algorithm ~ As a testbed, we have gathered 24 Web forms from

can successfully verify membership ofin the top#& 6 different domains, namely dating and matchmaking,
list. The situation withr[I] = 7,,,,[I] is symmetric; Job hunting, Web mail, hotel reservation, news, and

MDB

in this case, there exists at least one mapping ¥ cosmetics. We first extracted the schemata of these

that is exclusively discovered by tHEA algorithm, and Web forms using the OntoBuilder ontology extractor.
yet its membership in the tof- list can be successfullyThen, we generated the similarity matrices for all pairs
verified by theMDB algorithm. of domain-compatible Web forms using four different
We now formalize this intuition to characterizes¢hema matchers callder m Val ue, Conposi ti on,
schema meta-matching problem instances on which #&d Precedence [23]. The valid schema mappings
CrossThreshold algorithm can provide a computationah@ve been defined to be all the mappings obeylifg
speedup over its basic, “asynchronous” counterpa¢@rdinality constraint.
Starting with Egs. 9-10, we provide two lemmas that N our experiments, we have evaluated tfi@,
significantly reduce the spectrum of scenarios in whid§DB, and CrossThreshold algorithms on five pairs
such a speedup is theoretically possible. Specificalff, these matchers, namelyTer m Val ue}, {Term
Lemmas 8 and 9 below restrict the global aggregatbf €cedence}, {Term Conposition}, {Val ue,
value of mappings that are identified by one algorithff ecedence}, and {Val ue, Conposi ti on}. Like-
and verified with the appropriate threshold of the oth&fise, all these 15 schema meta-matching settings have
algorithm to beequalto the joint threshold-. been evaluated on nine pairs 6f and g-aggregators

Extending the notation introduced in Section V-B, let "Requires Java 2 JDK 14 (or higher, and is

Y=Y,UY,,, bea (possib!y not disjoint) cover Ofqvailable as part of the OntoBuilder distribution from
Y, whereY,, andY, contain the topK mappings http://ie.technion.ac.il/OntoBuilder.

MDB
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Iterations Motels/Hotel Locator Iterations American Singles/Date Miester
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Fig. 6. TheTA and MDB algorithms with schema matchef3er m Precedence} and (f, F) = (avg(0.25), avg), evaluated on two
different pairs of schemata.

(f,F), namely (avg, min) and (avg(t),avg), where the number of iterations performed by the algorithms
avg(t) stands for the average version of Eq. 7, anglotted on a logarithmic scale). It is easy to see that the
t € {0.025,0.05,0.1,0.15,0.2,0.25,0.5,0.75}. To elim- MDB algorithm significantly outperforms th@A algo-
inate possible influence of having differdriggregators rithm on the problem instance depicted in Figure 6(a),
for different schema matchers on the conclusivenessvdfile the TA algorithm significantly outperforms the
the evaluation, in all these 135 experiment configuré4DB algorithm on the problem instance depicted in Fig-
tions the matchers have been set to use the samaire 6(b). Thus, Figure 6 clearly shows that performance
aggregator. Likewise, in all these configurations we haimcomparability between th&@A and MDB algorithms
used (avg,avg) as the dominating pair of boundingis not restricted to some extreme pathological problem
aggregatorsh, H), and generated up t& = 20 top instances. Moreover, this example illustrates that these
mappings. two algorithms are incomparable even if there is no
To summarize, we have experimented with 12 pairs dffference between their settings neither in the choice
schemata, 5 groups of schema matcher pairs, and 9 pafrsschema matchers, nor in the choice lefand g-
of [- andg-aggregators, to a total of 540 comparative exxggregators.
periments between thBA, MDB, andCrossThreshold

H H H™ TA > MDB MDB > TA TA=MDB no winner
algorlth_ms. Below we discuss the results of our empirica v E(00%) e T = L L
evaluation ofTA, MDB, andCrossThreshold. Note that (avg(0.05), avg) 7% 53% 22% 8%
empirical evaluation of thD algorithm is redundant, [ (av&(0.10).avg) 28% 40% | 18% | 13%

. . . . (avg(0.15), avg) 42% 33% 15% 10%

as the running time oMD on a given problem instance ag(0.20), avs) 7% 23% 9% 8%
can be derived analytically from Theorem 2. (avg(0.25), avg) 65% 20% 3% 12%
(avg(0.50), avg) 78% 15% 0% %

(avg(0.75), avg) 97% 2% 0% 2%

. . avg, min 95% 2% 0% 3%

A. Evaluating theTA and MDB algorithms ( > TAOBLE | - - -

Recall that Theorems 5 and 6 show that e and RELATIVE PERFORMANCE OF THEMDB AND TA ALGORITHMS.
MDB algorithms do not dominate each other. These
formal results, however, say little about the practical
relationship between the two algorithms. Interestingly, Table | summarizes the relative performance of the
our experiments on real-world schemata support thDB and TA algorithms on various pairs of schemata
formal conclusion of Theorems 5 and 6 that there is ramd various choices of schema matcher groups. The rows
clear winner between th€ andMDB algorithms. in Table | correspond to the different choices of the
To start with a concrete example, in Figure 6 wand g-aggregators, while its four columns capture the
present the performance of tH& andMDB algorithms percentage of experiments in which A performed
on two different pairs of schemata, while employingt least as well asvDB for all 1 < K < 20 and
the same pair of matchers{Term Precedence}, outperformedVDB for at least one suclk, (i) MDB
and thesamepair of [- and g-aggregators(f, F') = performed at least as well & for all 1 < K < 20 and
(avg(0.25), avg) (bounded by(h, H) = (avg,avg).) The outperformedTA for at least one sucli’, (i) TA and
x- and y-axes in these graphs correspond respectivbipB performed exactly the same, and (iv) none of these
to the requested number of the top mappirdgs and two algorithms dominated the other fall 1 < K < 20.
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This table further illustrates that the performance o
the MDB and TA algorithms is generally incomparable. 05 gt
Likewise, as it was expected, Table | shows that th oy
performance of theMDB algorithm correlates with the 135
relative informativeness of our bounding aggregator-= i2 7|
(avg, avg) with respect to the actué andg-aggregators 12 L\
in use. Specifically, the lower the threshold is, the bette 11} \&
\

the MDB algorithm performs.

B. Evaluating theCrossThreshold algorithm e, i

Next we compare the empirical performance of the
CrossThreshold algorithm with the independent in-Fig. 7. The CrossThreshold algorithm versus independent in-
parallel execution of th&A and MDB algorithms. Re- parallel execution of th§A and MDB algorithms.
calling that theCrossThreshold algorithm is always
at least as effective as its basic counterpart, and that
Theorem 10 implies the theoretical feasibility of Eq. 9yould expect the performance of ti@ossThreshold
our intention here is to check whether the computatior@igorithm on these problems to be similar to that of
gain from using theCrossThreshold algorithm can also the TA algorithm, as it seems that thdDB algorithm
be observed in practice. will have nothing to contribute to the process. However,
Let I, = min{I, ,,I,, .} denote the numberFigure 7 shows exactly the opposite; not only does the
of iterations required to solve a given schema met&rossThreshold algorithm outperformed th&A algo-
matching problem using the basic in-parallel executigiihm on this problem set, but the marginal contribution
of the TA and MDB algorithms. Figure 7 illustrates theof using it was the largest among all the pairs-oand
relative performance of th€rossThreshold algorithm g-aggregators considered.
with respect to in-parallel execution by plotting the ratio This phenomenon corresponds to a certain interesting
Imin/I averaged over all twelve tested pairs of schemdtam of “mutual assistance” between tAié& and MDB
and five tested pairs of schema matchers. Since walgorithms inCrossThreshold, possibility of which we
always havel < I, the (averaged) ratid,,,/I is have exploited in our proof of Theorem 10. Recall our
always bounded from below by. Each vertex on this discussion that the efficiency of tHdDB algorithm is
surface corresponds to an average ratio for a certaiffiected bytwo separate factors. First, top mappings with
number of required mappings (x-axis), and a certain respect to(f, F) might be pushed down when using
choice ofi- and g-aggregator functions (y-axis). (h, H). However, even if this is not the case and the
Figure 7 clearly shows that using ti@rossThresh- MDB algorithm immediately finds the true top mappings,
old algorithm is beneficial not only in theory, butthe algorithm may not be able to verify them due to
also in practice. Averaging over all 540 experimentéihe thresholdr,, ., which is too high. Now, consider
sessions, theCrossThreshold algorithm was~ 16% MDB embedded in th€rossThreshold algorithm and
faster than its basic counterpart. For the aggregatbischema matching problem instance corresponding to
pairs (avg(t),avg), the relative benefit of using thethe latter situation. Despite the fact that tMDB al-
CrossThreshold communication between th®@ and gorithm fails to report the togs mappings, it can still
MDB algorithms was roughly proportional to the cutofsuccessfully provide the rigigandidatesin turn, these
valuet. The intuition behind this relationship is that, asandidates can be approved by the (lower) threshold
t gets closer td), the values that the bounding functions,,.,, while the TA algorithm may fail to generate good
(avg, avg) provide to the mappings are closer to thosgandidates by itself. In such situations the marginal
provided by the actual aggregatofsvg(t),avg), and contribution of using theCrossThreshold algorithm is
thus theMDB algorithm is getting closer to the “perfect’expected to be the highest, and this was exactly the
algorithm MD. typical situation in our experiments on problem instances
Now, consider the pair of local and global aggregatovéth (f, F') = (avg, min).
(avg, min). Recall that in our experiments with this To summarize, our experiments demonstrate the prac-
pair of aggregators th@A algorithm outperformed the tical advantages of using tli&rossThreshold algorithm
MDB algorithm in 95% of the experiments for any over the basic in-parallel execution of th& andMDB
1 < K <20 (see the last row in Table I). If so, then onalgorithms. Hence, th€rossThreshold algorithm pro-
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vides a more appealing solution for situations in whichechnion V.P.R. Fund — E. and J. Bishop Research Fund,
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APPENDIX the mapping captured by the main diagonalsidf!)

Theorem 1 The time complexity of schema mets@ndM ). Evidently, forl Gilﬂ}v we haveo; (El)2+.

matching usingTA is Q((2)!). and, for eacho; # o € 2_ , we_havef(a,M ) >

f(or, M®). Therefores; will be discovered by th@A

Proof: The proof of this lower bound is by con-algorithm after exactly%)! g-top queries to each o)

struction of a certain set of similarity matrices for whicland A?). On the other hand, we ha¥ N %5 = {0},
the TA algorithm finds the best mapping only afteand thus, for each mappingec %, we have:

O((3)"):

Consider two algorithmsA; and A, and a pair of I EEC R,
schemata andS’, each consisting af attributes, where (f,F)(¢) = min {H M) H Mw(i)}
n = 2k, k € N (and thus,n = n). Likewise, let the =t =
l-aggregatorsf() = (2 both be the regulaproduct - {g(x—E% Zt:e:vlvise

(denoted byf), Xr be the set of alll-1 mappings from
3}, and theg-aggregatorF’ be the utilitarian aggregator
min. Given S and S’, the similarity matrices\/(") and
M® induced byA; and A,, respectively are as follows:

This means that, under the considered aggregagtors
and F', the top1 mapping betweers and S’ has to be
or. However, it will take theTA algorithm(%)! iterations

] ‘ o to discovero;. [ |
z, (i <n/2) NG <n/2) A #5)
MY =la—e i=j ,
/ _ Theorem 2 Given a set of schema matchers
0, otherwise .
Aq,..., Ay, and a pair of local and global aggregators
x, i>n/2ANj>n/2Ni# ] (f,F), let M* be a matrix defined asM;;, =
Mfi) =S zT—€ t=j . F(Mz(;)7 7Mi(’7;1)), forall 1 <i < nl<j< n.
0, otherwise If f and FF commute on the similarity matrices

_ O M® .. M then the MD algorithm correctly
for arbitrary positive values af ande, wheree < =, finds top& valid mappings with respect to the

andzcl — € > 0. Below we illustrate these matrices foraggregated ranking in tim@(nzm + ), where d is
n=4:

the combined time complexity of iteratively executed

r—e¢ x 0 0 queriesg-top(1),...,qg-top(K) over M*.
Mo = T T—c€ 0 0 o )
0 0 xz—€¢ 0 Proof: The correctness is immediate from the
0 0 0 =z-—e construction of thévID algorithm and Definition 1. A%
c—e 0 0 0 is assumed to be computable in time linear in the number
@ 0 o—¢ 0 0 of I's parameters, generatiny* takes timeO(n?m).
N 0 0 z—e¢ = Thus, the overall complexity of théD algorithm is
0 0 zow—e O(n*m + ®). For instance, for aggregators as in Eq. 4

and I' enforcing 1-1 cardinality constraint, the time

' i (1) ' i . ) :
First, considerM!*). Each valid mapping betweencomplexny of theMD algorithm isO(* K + n*m). m

the firstn/2 attributes ofS and the firstn/2 attributes

of S’ (see the top left quadrant af/()) results in a Theorem 4 Consider a set of schema matchers
non-zero value off restricted to these attributes. Therey with (f F) being their I- and g¢-

n . i 1s-
are (3)! such mappings. Any other mapping of anygareqators. Given a function paith, H) that both
of these attributes will nullify the value of. On the commute and dominat@F Fyon MO, ..., MM, the

other hand, the lasht /2 att.ributes of S have to b_e MDB algorithm correctly finds tops valid mappings
mapped to then/2 last attributes ofS’, and there is with respect to<f F)

only one such mapping leading to a non-zero value

of f, namely the main diagonal of the bottom right Proof: LetY be as in step 3 of theIDB algorithm.
quadrant of M), Therefore, we have constructivelywe need only show that every mapping € Y has
shown thatM (M) induces exactly5)! mappingss such at least as high weight according ((f, F) as every
that f(o, M) > 0. Denote this set of mappings bymappings’ ¢ Y. By definition of Y, this is the case
¥ C ¥r. By a similar construction, the same hold$or each mapping’ ¢ Y that has been seen DB.
for M@, i.e, |SF| = (%)!. Now consider the set8f Thus, assume that’ was not seen. By the definition
and ¥, and leto; denote the indentity mappinge., of 7,,,, as in step 2b of theDB algorithm and the

MDB
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incrementality of queryingd* with g-top, for each such at the seconditeration the MDB algorithm we have

unseery’ and for eachr € Y we have: Tyup = (¥ — )" 1. (x/2). The MDB algorithm would
S - halt at the second iteration if,,, < (f, F')(or), which

/ / M D
(o F) o) 272 (h H)(o7) = {f, F)(o) holds for example for: = 0.98 ande = 0.01. Likewise,

.. at termination ofMDB. in the proof of Theorem 1 we have already shown that

The second inequality holds sineé has not been seenis the best mapping with respect {¢, F). Hence, the

and therefore(h, H)(¢') cannot receive a value highefime complexity of theTA algorithm on this problem

than 7. Thus, we have proven thaf contains topx instance withKX = 1 is exponentially worse than this of

mappings with respect t@ﬁ F). m the MDB algorithm (with properly chosen upper bound
<h7H>) |

Theorem 5 Given a schema meta-matching problem

instance, the time complexity of tA& algorithm on Theorem 6 Given a schema meta-matching problem

this instance can be exponentially worse than that of tifgstance, the time complexity of tihdDB algorithm on
MDB algorithm. this instance can be exponentially worse than this of the

TA algorithm.
Proof: The proof is by example of the correspond-

ing problem instance. Specifically, we consider the class Proof: This proof is by example of a corresponding
of schema meta-matching problems used in the prddfss of schema meta-matching problems: On any in-
of Theorem 1, and show that, for a certain subclass ggnce of this problem class, tfi# algorithm identifies
these problems, thelDB algorithm can identify the bestthe best mapping on the first iteration, yet it will be the
mapping after only two iterations. last mapping discovered by th&IDB algorithm.
Consider the schema meta-matching problem exactlyConsider two algorithmsA; and A,, and a pair of
as in the proof of Theorem 1, and assume furtherthat SchemataS and &', each consisting of: attributes.
(0,1]. We already showed that on this problem instanédkewise, let thel-aggregatorf be theproductoperator,
the TA algorithm perform€2((2)!) iterations fork = 1. g-aggregatorf’ be the min operator, andr be the
Recall that the aggregatofsandF in this example stand Set of all 1-1 mappings fromX. Given S and S’ the
for productand min, respectively. Hencef and F do Similarity matricesM (") and M), induced byA; and
not commute on this problem similarity matrices, and2. respectively are as follows:
thus theMD algorithm cannot be used for this problem

where 7 is the value ofr,

instance. Now, consider a pair of functiofis H), where yo {e, i=j

both h and H stand for a simplaverage Observe that, " 0, otherwise
since the entries of both matricag®) and M ? lie in . 1— 3 i=j
the interval[0, 1], we have(f, F) < (h, H). Likewise, My = {17 otherwise

sinceh and H are (trivially) strongly commutative, we
can solve this problem instance using MBB algorithm  for an arbitrary1/3 > ¢ > 0. Below we illustrate such
with (h, H). The matrix M*, constructed by thé¢IDB  matrices forn — 4:
algorithm from the matrices/®) and M@ using H,

is defined as below on the left, where on the right it is

illustrated forn = 4: 8 0 8 8
MY = €
) ) o, 0 0 € O
z/2, (i <n/2) NG <n/2) NG F# ) 00 0 e
Mr o= JE/2 @>n/2)NG>n/2) A # )
YT Ya—e i=j 1—3e 1 1 1
0, otherwise M®  — 1 1—3e 1 1
r—€e x/2 0 0 1 1 1—3e 1
X /2 x—¢ 0 0 1 1 1 1—3e
M =
0 0 r—e x/2 o ] ]
0 0 /2 T—e€ Considering the execution of th&A algorithm on

M® andM @ as defined above, first notice that the only
Sincex — e > z/2 for any e < z/2, the mapping mappinge, for which we havef (o, M) > 0, is the
processed in thdirst iteration of theMDB algorithm mappingo; (i.e., the identity permutation). Therefore,
will be the mappingo;, corresponding to the maino; will be discovered by théfA algorithm on thefirst
diagonal of M*, with (f, F)(o;) = (z — €)™ Also, iteration, withmr4 = (f, F')(o). Second, notice that all
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the entries ofAM () and M@ lie in the interval[0,1]. by monotonicity of ', we haver’ = 7/ <f F) (")
Thus, for allo; # o € Xr, we have(f, F)(o) = 0. for everyo’ ¢ Y. Otherwise, ifTMDB < 7! ., from
Finally, sincef (o7, M®) > 0, we have(f, F)(s) > 0, the incrementality of queryingl; with g-top, We have
and thuso; is the best mapping with respect {, F). 7' > (h, H)(c') > (f, F)(c') for everyo’ ¢ Y. But by
It is not hard to see that the aggregatgrand F do definition ofY, for everyo € Y we have(f, F)(c) > 7.
not commute on oun/() and M. Consider a pair of Therefore, for every’ ¢ Y, we have(f, F)(c) > 7’ >

functions(h, H), where bothh and H stand for a simple (f, F')(¢’), as desired. [ |
average Since the entries of both matriceg (") and
M® lie in the interval[0, 1], we have(f, F) < (h, H). Lemma 8 If I < I,, and7[I] = 7, []], thenY'\ Y, , #

Likewise, sinceh and H are (trivially) strongly commu- ¢ and for eachr ¢ YV \Y,,, we have

tative, we can solve this problem instance usingMtzB

algorithm with (h, H). The matrix M*, constructed by (f.F)(o) = 7,,[I] (14)
MDB from the matricesM ") and M using H, is

defined as below on the left, where on the right it is Proof: The assumption of the lemma thak 1
illustrated forn = 4 implies that there exists at least one mapping Y’ that

would have been discovered by (independently running)
TA only at some iteratiod” > I, and thus we hav& \

Mi; = {

M*

1 o
27O Zt;ejrwise . # 0. Now, considering mappingse Y'\Y, ,, recall
g maw L= F(fO (o1, M), 0 (0, MOM)),
whereoy, ..., o, are mappings provided b&l, e Am
at the iteration/, respectively. From the lemma assump-

€ tion (r[I] = ,.,[I]) and Eq. 10, we have

[0}

SIS
D= | Nl
N
N[
N[ | [SIEENSIES
m
| NIl

NI SN |

=

For each mapping € Xr, let k, be the number of  7,,[I]
attributes: € S, such thatz (i) = i (i.e., the number of
the attribute mappings ia that lie on the main diagonal
of M*). For eacho € X, we havek, € {1,2,...,n—

(017 (1))77f(m)(UM7M(m)))

F(f!
(f,F)(o)
F(f(l)(a M(l)) f(m)(o-,M(m)))

IN

3,n —2,n}, and: (15)
1 k. —0 for all o € Y. On the other hand by the definition of the
o M*) — 2 0T g-top queries we havg® (o, M) > 0 (o, M®) for
(o M) = 2w 0<kssn=2 each mapping; as in Eq. 15. Thus, by the monotonicity
36 hke=n of F' we have

Therefore, for eaclr; # o € ¥, we have(h, H)(o) > F(fM (g1, MW), ..., ™ (g, M™)) >

(h,H)(or), and thus (the best mappingt) will be the 1) 1) (m) (m)
last mapping discovered by thdDB algorithm. | B0, M), oo, 700 M (1)62)

Theorem 7 Let Ay,..., A, be a set of schema matchand together, Eq. 15 and Eq. 16 imply Eq. 14. =
ers with (f, F) being thelrl and g-aggregators. Given

a function pair(h, H) that both commute and dommatq_emma 9T <1 and r[I] = 7,,,,[I], thenY \
(f,F)y on MM ... M) the CrossThreshold algo- £ 0, and for eachr € Y \ Y., we have:
rithm correctly finds topK valid mappings with respect Yoo mer

to (f, F). (f, F)(0) = Ty 1] 7)

Proof: LetY be the set of mappings as in step 3 proof:  Similar to the proof of Lemma 8, the
of the CrossThreshold algorithm. We need only showassumption thatr < I implies that there exists

MDB

that every mappings € Y has a weight at least asat least one mapping < Y that would have been
high, according to(f, F), as every mapping’ ¢ Y. discovered by (independently running)DB only at
By definition of Y, this is the case for each mappin@ome iteration/’ > I, and thus we havé \ Y,,, ,, # 0.

o' ¢ Y that has been seen by ti@rossThreshold considering such mappings € YV \ Y,,,,, from the
algorithm. Assume that’ was not seen, and let, 7/ ., assumption that[I] = 7,,, . [I], we have

andTMDB be the value of, 7, ,, andr,,, ., respectlvely,

at the termination oCrossThreshold. If 7/ > 7/ | Toonll] = (h, HY(0') < (ﬁ F)(o), (18)
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wheres’ is the mapping discovered by ttDB algo-
rithm at the iteration/. Likewise, sinces € Y \ Y,

DB t4e i=j
we have: (i£)AG+j<n+1)

i+j=n+1
otherwise

5 +e %—0—6
x+e 3F+te
5+e x+e

o
+
o

M,L'* -

»J

SOl

(h, H) () < (h, H) (") (19)

(S

Finally, since(h, H) dominates(f, F), we have:

(SIE]
[n)

[ W]

(f,F)(0) < (h, H)(0). (20) M =

»
vy 4 vls O

[0}

NN ETNER
S+ 4+ ++
+ vlsvlaniE ©

%

€

wig O
SISV

Together, Egs. 18-20 provide us with the lemma claim
that (f, F)(o) = 7,,,, 1] [ |

MDB

First, consider the execution of thA algorithm on
this problem instance. Let, stand for the mappings
Theorem 10 There exist schema meta-matching prolgaptured by the primary diagonal. That is, foK i < n,
lem instances for which the time complexity of both the (i) = 4. It is not hard to see that
TA andMDB algorithms is exponentially worse than that
of the CrossThreshold algorithm. (f,F)(o,) = min{(z + 2¢)", 2"} = 2",

Proof: The proof is by example of the correspond?Nle: f(?)r each mappings 7&(2)01’ we have either
ing problem instance. Consider two algorithmas, and (0, M) = 0 or f(o,M®) = 0, and thus
A,, and a pair of schematsl and $’, each consisting (f;F)(e) = 0. Hence, the tod- mapping for this
of n attributes. Likewise, let thé-aggregatorf be the Problem instance cannolt be anything Rut .
regularproduct and theg-aggregato be the utilitarian ~©N the other hand) (") induces® (% — 1)!) map-
aggregatomin. Given S and ', the similarity matrices PINgSc having
M® and M@, induced byA; and A,, respectively are f (o—,M(l)> —(r 420" = f (oI,M(1)> ’

as follows:
and M) induces® ((2 — 1)!) mappingso having
a T + 2¢, (i:j)\/(i—l—j<n+1)
M” o {07 otherwise f (O‘, M(2)> =" = f (0‘1, M(2)> R
MO = {I (=) V(itj>n+l) Therefore, the best mappings might be discovered by
’ 0, otherwise

the TA algorithm only after® ((2 — 1)!) iterations.

In turn, consider the performance of thdDB algo-
such thatz > 0, ¢ > 0, andz + 2¢ < 1. Below we rithm on this problem instance, and further assume that
ilustrate the matrices fon = 5: 2" < (z + €)/n. From the description of\/*, it is not
hard to see that the best mappimgwill be discovered

r42% 4% r42 w4+ 2 by the MDB algorithm on the first iteration. However,

T+2 42 z+2 0 8 observe that the lowest value obtained#y,, on M*
MY = [ 42 z+2 w2 0 0 will be higher than(z + €)/n. Since(f, F)(s,) = a",
5”4626 8 8 ““”626 xf% we conclude that th&/DB algorithm couldverify that
s 0 0 0 0 the candidater, is indeed the best mappings only after
0z 0 0 =z © (n!) iterations.
M® 00 z = « Now, consider the “cooperative” execution B and
8 2 v MDB in the scope of theCrossThreshold algorithm.

Following our discussion above, assume thatwould
o _ _ _ __fail to discovero, for the first® ((% —1)!) iterations.

Likewise, consider a pair of bounding functiong,yever, immediately after the first iteration we have
(h, H), where bothh and H stand foraverage Since — 2", Recall thato, is discovered by theViDB

. . 1 2 . . TA
the entries of both matrices/() and M) lie In ﬂle algorithm at the first iteration. It is easy to see that after
interval [0, 1], we have(f, ') < (h, H). The matrixM*,  he first iteration of theCrossThreshold algorithm we
constructed by theVIDB algorithm from the matrices pave, — -

_ _ : ., and thus we immediately conclude that:
M® andM® usingH, is defined as below on the left,
where on the right it is illustrated fat = 5: (fyF)(o)=2" =71



Hence, the best mapping, is discovered by the
CrossThreshold algorithm immediately after the first
iteration, while both/,., and/,, . for this topd problem
are exponential im. [ |
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