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Abstract— Schema matching is a basic operation of
data integration and several tools for automating it have
been proposed and evaluated in the database community.
Research in this area reveals that there is no single schema
matcher that is guaranteed to succeed in finding a good
mapping for all possible domains, and thus an ensemble
of schema matchers should be considered. In this paper
we introduce schema meta-matching, a general framework
for composing an arbitrary ensemble of schema matchers,
and generating a list of best-ranked schema mappings.
Informally, schema meta-matching stands for computing
a “consensus” ranking of alternative mappings between
two schemata, given the “individual” graded rankings pro-
vided by several schema matchers. We introduce several
algorithms for this problem, varying from adaptations of
some standard techniques for general quantitative rank
aggregation to novel techniques specific to the problem of
schema matching, and to combinations of both. We provide
a formal analysis of the applicability and relative perfor-
mance of these algorithms, and evaluate them empirically
on a set of real-world schemata.

Index Terms— H.2.1.c: database integration; schema
matching; rank aggregation

I. INTRODUCTION

Schema matching is the task of matching concepts
describing the meaning of data in various data sources
(e.g.,database schemata, XML DTDs, HTML form tags,
etc.). As such, schema matching is recognized to be one
of the basic operations required by the process of data
integration [3]. The area of data integration has a rich
body of literature on schema matching, summarized in a
few surveys [7], [41] and special issues [11], [39]. Ex-
amples of algorithmic tools providing means for schema
matching are COMA [8], Cupid [31], OntoBuilder [23],
Autoplex [1], Similarity Flooding [34], Clio [36], Glue
[10], to name a few. Foundational principles of schema
matching are also discussed in [3], [22], [30], [32].

A typical classification of schema matching tasks
relates to the amount of automatic processing required
for achieving a task. Due to its cognitive complexity,
schema matching has been traditionally performed by
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human experts [5], [28]. For obvious reasons, manual
concept reconciliation in large scale and/or dynamic en-
vironments (with or without computer-aided tools) is in-
efficient and at times close to impossible. Introduction of
the Semantic Web vision [2] and shifts toward machine-
understandable Web resources and Web services have
made even clearer the vital need for automating schema
matching. The move from manual to semi-automatic
schema matching has been justified in the literature
using arguments of scalability (especially for matching
between large schemata [26]) and by the need to speed-
up the matching process. The motivation for moving to
fully-automatic(that is, unsupervised) schema matching
stems from the possible absence of a human expert in
the decision process. In particular, such situations char-
acterize numerous emerging applications triggered by the
vision of the Semantic Web and machine-understandable
Web resources [2], [43]. To illustrate this further, con-
sider the recent Web service challenge competition held
in 2006.1 The teams at this competition were required
to discover and compose Web services in a completely
unsupervised manner. While the first competitions are
still based on exact string matching of parameters, the
next competitions have been declared to involve issues
of heterogeneous and constrained schema matching.

Attempting to address the schema matching problem,
numerous heuristics (schema matchers or simply match-
ers hereafter) have been proposed and evaluated in the
database community (e.g., see [1], [4], [9], [18], [19],
[23], [25], [34], [42]). However, choosing among this
variety of tools is far from being trivial. First, the number
of schema matchers is continuously growing, and this
diversity by itself complicates the choice of the most
appropriate tool for a given application domain. Second,
as one would expect, recent empirical analysis shows
that there is no (and may never be) a single dominant
schema matcher that performs best, regardless of the
data model and application domain [22]. In fact, due to
effectively unlimited heterogeneity and ambiguity of data
description, it seems unavoidable that optimal mappings
for many pairs of schemata will be considered as “best

1http://insel.flp.cs.tu-berlin.de/wsc06/
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mappings” by none of the existing schema matchers.
Striving to increase robustness in the face of the biases

and shortcomings of individual matchers, several tools
have enabled combining principles by which different
schema matchers judge the similarity between concepts.
The idea is appealing since an ensemble of comple-
mentary matchers can potentially compensate for the
weaknesses of each other. Indeed, several studies report
on encouraging results when using schema matcher
ensembles (e.g., see [8], [13], [23], [31], [38]). Given
that, the first goal of our work is to formally analyze
the applicability and limitations of prior works on en-
sembling schema matchers, and provide a more general
ensemble framework that overcomes these limitations.

But even having a good ensemble of complementary
schema matchers cannot guarantee that an optimal map-
ping between the schemata (e.g., a mapping that would
have been generated by a human expert) will always be
identified as the top choice of the ensemble. To address
such situations to the largest degree possible, one can
adopt the approach in whichK (and not just one) top-
ranked schema mappings are generated and examined2

either iteratively or simultaneously [22], [21], [27], [29].
Our second goal is thus to connect between the ensemble
approach and the top-K approach, increasing the robust-
ness of the schema matching process by enjoying the best
of these two worlds.

To achieve our goals, here we introduce a generic
computational framework,schema metamatching, for
computing the top-K prefix of a “consensus” ranking
of alternative mappings between two schemata, given
the graded valid mappings of schema attributes provided
“individually” by the members of an ensemble. A valid
mapping in this case is a mapping that satisfied matching
constraints (e.g., cardinality constraints) specific to the
application.3

Our starting point is based on rank aggregation tech-
niques developed in the areas of Web search and database
middleware [12], [17]. First, we show that theThreshold
algorithm, originally proposed in the context of database
middleware [17], can be applied to our problem almost

2Automatic examination of alternative schema mappings is beyond
the scope of this paper; it is typically tool dependent, and may involve
analysis of query variations [35], Web server error messages, etc.

3Alternatively, the ensemble members can first provide rankings
of only the attribute-levelmappings, while ignoring the application
constraints posed on the schema matching process. It is apparent
that such an approach would significantly reduce the complexity of
individual rankings. But these rankings then need to be combined into
a “consensus” ranking of validschemamappings. To the best of our
knowledge, there is no evidence in the literature that such an approach
can provide, at a low complexity cost, a semantically justified
“consensus” ranking over the schema mappings while respecting
schema-level matching constraints.

as is. Unfortunately, as we show, computing top-K map-
pings for schema meta-matching using theThreshold
algorithm may require time exponential in the size of
the matched schemata. Since in the original context of
domain-independent rank aggregation theThreshold al-
gorithm has been shown to be optimal in a strong sense,
we proceed with developing techniques that exploit the
specifics of the schema matching problem. For a certain
wide class of problems, we present a simple algorithm,
the Matrix-Direct algorithm whose time complexity is
polynomial in the size of the matched schemata and the
requiredK. Subsequently, we present theMatrix-Direct-
with-Bounding algorithm, which draws upon both the
Matrix-Direct and Threshold algorithms, addressing
matching scenarios where theMatrix-Direct algorithm is
inapplicable. We show that theThreshold and Matrix-
Direct-with-Bounding algorithms are (complexity-wise)
mutually undominated — that is, there exist problem
instances in which one algorithm performs dramatically
better than the other. To enjoy the best of both worlds
and even to improve upon them, we introduce the
CrossThreshold algorithm, a hybrid version of these
two algorithms, based on their in-parallel,mutually-
enhancingexecution. Our analysis shows the complexity
and effectiveness of adopting this hybrid algorithm.

We support our formal analysis with experiments on
a real-world data feed. In these experiments, we test the
relative performance of theThreshold, Matrix-Direct-
with-Bounding, and CrossThreshold algorithms on
numerous sets of various schema matchers. Our em-
pirical findings support the formal results, in particular
showing that theCrossThreshold algorithm dominates
both Threshold and Matrix-Direct-with-Bounding al-
gorithms.

It is important to note that the schema meta-matching
framework doesnot define the “consensus” ranking, but
only aims at its efficient generation. The “consensus”
ranking is defined by the actual choice of ensemble,
and this choice is orthogonal to our work. In particular,
the relative effectiveness of the “consensus” ranking is
independentof the choice of the schema meta-matching
algorithm. Therefore, our formal and empirical analysis
are devoted solely to the correctness of the algorithms
and their comparative performance.

To summarize, the main contributions of this paper
are:

• Introduction of schema meta-matching, a generic
computational framework for combining an ensem-
ble of arbitrary schema matchers for identifying top-
K schema mappings.

• Provision and formal analysis of four algorithms
for schema meta-matching. In particular, we analyze



3

an existing algorithm (Threshold) for general rank
aggregation adapted to our domain, and compare
its applicability and performance with a general-
ized version of the COMA [8] approach (Matrix-
Direct). We next develop and study two novel,
generically applicablealgorithms (Matrix-Direct-
with-Bounding and CrossThreshold). In particu-
lar, we show that theCrossThreshold algorithm
combines the benefits of all the other algorithms,
providing the generically most efficient solution to
the schema meta-matching problem.

• Comparative quantitative evaluation of the algo-
rithms that empirically supports the practical rel-
evance of our formal results.

The rest of the paper is organized as follows. In Sec-
tion II we provide some basic formalism and notation,
and introduce the schema meta-matching framework. In
Section III we discuss two basic algorithms that can
be used to implement schema meta-matching, namely
theThreshold andMatrix-Direct algorithms. In Section
IV we introduce theMatrix-Direct-with-Bounding algo-
rithm, and compare it with theThreshold algorithm. In
Section V we introduce theCrossThreshold algorithm,
a hybrid version of theThreshold and Matrix-Direct-
with-Bounding algorithms, and discuss its properties.
The corresponding experiments and empirical analysis
are presented in Section VI. We conclude in Section VII.

II. FORMALISM , NOTATION, AND PROBLEM

STATEMENT

We begin by introducing some formalism and notation
essential for defining the schema meta-matching prob-
lem.

Let schemaS be a finite set of someattributes. We
put no particular limitations on the notion of schema
attributes; attributes can be both simple and compound,
compound attributes need not necessarily be disjoint,
etc. For any schemata pairS and S′, let S = S × S′

be the set of all possibleattribute mappingsbetween
S and S′, and let the power-setΣ = 2S be the set
of all possibleschema mappingsbetween this pair of
schemata. LetΓ : Σ → {0, 1} be a boolean function that
captures the application-specific constraints on schema
mappings,e.g., cardinality and inter-attribute mapping
constraints.4 Given such a constraint specificationΓ,
the set of allvalid schema mappings inΣ is given by
ΣΓ = {σ ∈ Σ | Γ(σ) = 1}. A schema matcherA takes
as its input a schemata pairS, S′, as well as a constraint

4We refrain from an in-depth analysis of cardinality and other inter-
attribute mapping constraints. The interested reader is referred to [6],
[10], [20], [44].

specificationΓ, and provides us with an ordering�A

over ΣΓ. For schema mappingsσ, σ′ ∈ ΣΓ, σ �A σ′

means thatσ is estimated byA to be as good asσ′. It is
worth noting that such an ordering may be given either
implicitly or explicitly.

While various schema matching models have been
proposed, many of them follow a similar two-step pat-
tern [8] that we adopt here. In the first step, each
attribute mapping inS is automatically assigned with
a real-valued degree of similarity. IfS and S′ are of
arity n andn′, respectively, then this step results in an
n×n′ similarity matrixM (A), whereM (A)

i,j represents the
degree of similarity between thei-th attribute ofS and
thej-th attribute ofS′, as assigned byA. Various schema
matchers differ mainly in the measures of similarity
they employ, and thus yield different similarity matrices.
These similarity measures can be arbitrarily complex,
and may use various techniques for name matching,
domain matching, structure matching (such as XML
hierarchical representation), and semantic matching.

In the second step, the similarity information inM (A)

is used to quantify the quality of different schema map-
pingsσ in ΣΓ using some real-valuedlocal aggregation
function (or l-aggregator, for short)

f (A)
(

σ,M (A)
)

= f (A)
(

M
(A)
1,σ(1)

, . . . ,M
(A)
n,σ(n)

)

,

that is, a function that aggregates the degrees of simi-
larity associated with the individual attribute mappings
forming the schema mappingσ. The ordering�A on ΣΓ

is then

σ �A σ′ ⇔ f (A)
(

σ,M (A)
)

≥ f (A)
(

σ′,M (A)
)

for eachσ, σ′ ∈ ΣΓ. A popular choice ofl-aggregator
is the sum (or average) of attribute mapping degrees
of similarity (e.g., see [8], [23], [33]), but otherl-
aggregators have been found appealing as well (e.g.,
the Dice l-aggregator suggested in [8], threshold-based
aggregators [37],etc.). Without loss of generality, in
what follows we assume thatf is computable in time
linear inn andn′. However, at least technically, nothing
prevents us from using more sophisticated (and possibly
more computation-intense)l-aggregators.

Having defined the ordering�A overΣΓ, the schema
matcherA can now provide answers to various queries.
The most common query these days stands for retrieving
a top-1 mapping

σ1 = arg max
σ

{f(σ,M) | σ ∈ ΣΓ} ,

(possibly) along with its quality estimation
f (A)(σ1,MA). In the top-K approach, this query
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is generalized to retrieving a top-i-th mapping

σi = arg max
σ

{

f (A)(σ,M (A)) | σ ∈ ΣΓ \ {σ1, · · · , σi−1}
}

,

(1)
annotated withf (A)(σi,MA). In what follows, we refer
to this query asq-top(i). In addition, the schema matcher
can be queried for the estimatef (A)(σ,M (A)) for an
arbitrary mappingσ ∈ ΣΓ, and here we denote such
a query by q-estim(σ). Clearly, the time and space
complexity of answering these queries depend on both
the structure ofΓ and the l-aggregatorf (A). On the
positive side, however, in many natural setting answering
these queries can be efficient. For instance, whenf (A) is
equivalent to sum, andΓ is devoted to enforce1-1 cardi-
nality constraint, then the time complexity of retrieving
σi is5 O(iη4) whereη = max {n, n′} [21], [24], [40],
and providing the estimatef (A)(σ,M (A)) can be done
in O(η).

Now, let us consider an ensemble ofm schema
matchersA1, . . . , Am, utilizing (possibly different) lo-
cal aggregatorsf (1), . . . , f (m), respectively. Given two
schemataS and S′ as before, these matchers produce
an m × n × n′ similarity cube of n × n′ similar-
ity matrices M (1), . . . ,M (m). Such an ensemble of
schema matchersA1, . . . , Am, is used to generate a
“consensus” ordering� over ΣΓ from the individual
orderings�1, . . . ,�m. This ordering aggregation is per-
formed via aggregating the weights eachAi provides
to the schema mappings inΣΓ. In turn, weight ag-
gregation can always be modeled using a real-valued
global aggregation function(or g-aggregator, for short)
F

(

f (1)(σ,M (1)), · · · , f (m)(σ,M (m))
)

[8], [23]. In what
follows, by 〈~f, F 〉 we denote the set ofl-aggregators and
g-aggregator in use, respectively. Likewise, we use the
notation

〈~f, F 〉(σ) ≡ F
(

f (1)(σ,M (1)), · · · , f (m)(σ,M (m))
)

for the aggregated weight provided byA1, . . . , Am with
〈~f, F 〉 to the mappingσ. The aggregated ordering� on
ΣΓ is then

σ � σ′ ⇔ 〈~f, F 〉(σ) ≥ 〈~f, F 〉(σ′)

for eachσ, σ′ ∈ ΣΓ. For instance, manyg-aggregators
proposed in the literature can be generalized as

F
(

f (1)(σ,M (1)), · · · , f (m)(σ,M (m))
)

=
λ

m

m
∑

l=1

klf
(l)(σ,M (l)),

(2)
where Eq. 2 can be interpreted as a (weighted) sum (with
λ = m) or a (weighted) average (withλ = 1) of the

5Given σ1, . . . , σi−1, time complexity of retrieving σi is
O(η3) [21], [24], [40].

local rankings, wherekl are some arbitrary weighting
parameters. It is important to note that the choice ofg-
aggregator is unavoidably ensemble-dependent, and thus
here we consider it as agivenproperty of the ensemble.

Having formalized individual schema matchers and
their ensembles as above, we define theschema meta-
matchingproblem to be that of generating top-K valid
mappings betweenS and S′ with respect to an en-
semble of schema matchersA1, . . . , Am, their respec-
tive l-aggregatorsf (1), . . . , f (m), and the ensemble’sg-
aggregatorF . Formally, givenS, S′, Γ, andK ≥ 1, our
task is to generate{σ1, . . . , σK} ⊆ ΣΓ, where thei-th
best mappingσi is inductively defined as:

σi = arg max
σ

{

〈~f, F 〉(σ) | σ ∈ ΣΓ \ {σ1, · · · , σi−1}
}

,

(3)
similar to Eq. 1 for the basic case ofm = 1.

III. R ANK AGGREGATION FORSCHEMA MATCHING

Having formalized the problem of schema meta-
matching, we now proceed with exploring it from the
computational standpoint. To stress some of the com-
putational issues involved, consider a straightforward
procedure for rank aggregation, where each judge (a
schema matcher, in our case) explicitly ranks the entire
universe of alternatives, associating each alternative with
a certain level of “goodness.” These individual grades
are then combined (this or another way) into a grading
underlying the “consensus” ranking, and we are provided
with top-K elements of this aggregated ranked list.
Unfortunately, in the case of schema matching, the size
of the universe of alternatives makes this straightforward
approach unrealistic: Given two schemata ofn attributes
each, there are alreadyn! alternative1 : 1 mappings
between them, and this number is even larger for less
constrained settings. Therefore, any realistic method for
schema meta-matching has to either consider individual
rankings represented implicitly in some compact form,
or carefully query the judges about the mappings while
limiting the number and complexity of these queries to
the extent possible.6

In the remainder of this paper we focus on the algo-
rithmic aspects of solving this problem. Before we begin
discussing various algorithms, it is worth observing that
a naı̈ve approach of (i) generatingm top-K lists of
mappings with respect toA1, . . . , Am using theq-top
queries, and (ii) subsequent aggregation of these lists
using F , is not sound. To illustrate this, consider the
top-1 mapping σ1. First, strange as it may seem,σ1

6Note that in contrast to the case of Web meta-search [12], our
judgesare ready to answer any query about mapping rankings.
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Algorithm TA
1) Starting withi = 1, do incremental (on growingi) parallel

querying of A1, . . . , Am with q-top(i). This querying is
unbounded, corresponding to a sorted access in parallel to
each of them rankings of alternative valid mappingsΣΓ.
a) As a mappingσ is introduced by one of the matchers,

obtain the remainingf (1)(σ, M (1)), · · · , f (m)(σ, M (m))
by querying the other matchers withq-estim(σ), and
compute the aggregated weight〈~f, F 〉(σ). If this weight
is one of theK highest we have seen so far, then
rememberσ.

b) For 1 ≤ l ≤ m, let σl be the mapping returned by
the last q-top query toA(l). Define the threshold value
τ

T A
= F

“

f (1)(σ1, M
(1)), · · · , f (m)(σm, M (m))

”

. If at
leastK mappings have been seen whose weight is at least
τ

T A
, then halt.

2) Let Y be a set containingK mappings with the highest
grades seen so far. The output is then the graded set
nh

σ, 〈~f, F 〉(σ)
i

| σ ∈ Y
o

.

Fig. 1. The Threshold Algorithm (TA), adopted for schema meta-
matching.

may appear in none of them individual top-K lists,
and thus will definitely not appear in an aggregated list
of any length. Such a case may occur wheneverσ1 is
not one of the top-K mappings of any ofA1, . . . , Am,
yet these experts are so in odds with each other that
the common consensus becomes a convenient mediocre
mapping. Second, even ifσ1 appears in some, or even
most, individual top-K lists, it can be improperly ranked
in step (ii), and possibly even discarded from the aggre-
gated top-K list. This can occur if the relative aggregated
ranking of σ1 is significantly affected by the scores it
gets from the experts that individually ranked it lower
than top-K.

A. Adopting the Threshold Algorithm

The problem of optimal aggregation of several quanti-
tatively ordered lists has been recently studied in the con-
text of middleware for multimedia database systems [14],
[15], [17], [16]. The most efficient general algorithm
for this problem, called the Threshold algorithm (TA,
for short), has been introduced in [17], and we begin
by presenting this algorithm in terms of our problem in
Figure 1.

The intuition behind theTA algorithm is elegantly
simple. For each schema matcherAi, the algorithm
utilizes q-top queries to generate as many mappings in
a ranked order as needed. Assume thatK = 1, i.e.,
we are interested only in the best mapping. Assume
further that we are at a stage in the algorithm where
we have not seen any mappingσ whose aggregated

weight 〈~f, F 〉(σ) ≥ τ
TA

, where τ
T A

is determined in
step 1b. If so, at this point we cannot be sure that the
best mapping has already been seen, because the next
mappingσ′ generated byq-top could have aggregated
weight 〈~f, F 〉(σ′) ≥ τ

T A
. If this is the case, then clearly

no mappingσ seen so far could be the best mapping,
since 〈~f, F 〉(σ′) > 〈~f, F 〉(σ). Thus, it is safe to halt
only when we see a mapping whose aggregated weight
is at leastτ

TA
. Similarly, for K > 1, the stopping rule

verifies a sufficient condition to ensure that the top-K
mappings have been seen.

The only property required to ensure the complete-
ness of theTA algorithm is monotonicity of theg-
aggregatorF in the following sense [17]: A functionF
is monotonicif, for every two mappingsσ, σ′ such that
f (l)(σ,M (l)) > f (l)(σ′,M (l)) holds for all 1 ≤ l ≤ m,
we have 〈~f, F 〉(σ) > 〈~f, F 〉(σ′). Since this require-
ment does not seem to induce any practical limitation,
henceforth we adopt this assumption of monotonicity
for g-aggregators. Likewise, for ease of presentation
and without loss of generality, we assume thatF is
computable in time linear inm.

Considering the time complexity of theTA algo-
rithm while ignoring the specifics of the schema meta-
matching problem, it can be easily shown that this
algorithm may have to access in a sorted manner as
many as half of each sorted list (e.g., see Example 6.3
in [17]). And while we found no setting of schema-
matching problem on which theTA algorithm performs
that bad, the next theorem shows that in the context of
schema meta-matching it may still have exponentially
long runs.

Theorem 1 The time complexity of schema meta-
matching usingTA is Ω((η

2 )!).

B. The Matrix-Direct Algorithm

Theorem 1 provides a strong motivation to seek
more efficient alternatives to theTA algorithm. In [17],
however, this algorithm is shown to be optimal in a
strong sense of “instance optimality.” For the formal
definition of instance optimality we refer the reader
to [17]; roughly, for any set of data and any other
rank aggregation algorithmA with the time complexity
Comp(A), instance optimality of theTA algorithm im-
plies that its time complexity is of the order of that ofA,
i.e., Comp(TA) = O(Comp(A)). Hence, at least at first
view, it seems that using theTA algorithm for schema
meta-matching is the best we can do. However, below
we show that, for a certain class of aggregators〈~f, F 〉,
an extremely simple technique exploiting specifics of
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the schema matching problem provides a significantly
better performance. Note that this does not contradict
the instance optimality of theTA algorithm as the
latter is a generic algorithm, independent of the actual
grading mechanisms. In particular, theTA algorithm in
our domain considers only the outputs ofq-top queries,
and does not intervene in their processing. Hence, it is
possible that one can devise algorithms outperforming
TA by exploiting some properties of the specific problem
domain at hand.

To begin with an example, let us considerl- and g-
aggregators

∀l ∈ {1, . . . ,m} : f (l)(σ,M (l)) =
n

∑

i=1

M
(l)
i,σ(i)

〈~f, F 〉(σ) =

m
∑

l=1

klf
(l)(σ,M (l)).

(4)

Observe that the summations in Eq. 4 can be distributed,
resulting in

〈f, F 〉 (σ) =

n
∑

i=1

m
∑

l=1

klM
(l)
i,σ(i),

where the vector notation~f is replaced withf to
explicitly highlight the uniqueness of thel-aggregator
in this case. That is, if thel-aggregatorf and g-
aggregatorF happen to be as in Eq. 4, then usingF
for local weight aggregation andf for global weight
aggregation will beequivalentto usingf andF in their
original roles. In other words, in case of Eq. 4 we have
〈f, F 〉 (σ) = 〈F, f〉 (σ) for any mappingσ between any
pair of schemataS and S′. The special case of Eq. 4
can be generalized as follows.

Definition 1 Given a set of similarity matrices
M (1), . . . ,M (m) over a pair of schemasS, S′, and a
pair of l-aggregatorf and g-aggregatorF , we say that
f and F commute onM (1), . . . ,M (m) if and only if,
for every mappingσ betweenS and S′, we have:

〈f, F 〉 (σ) = 〈F, f〉 (σ) (5)

Likewise, if f and F commute on all possible sets
of similarity matrices, then we say thatf and F are
strongly commutative.

For instance, the aggregatorsf andF as in Eq. 4 are
strongly commutative. To illustrate commutativity in the
absence of strong commutativity, consider a pair of ag-
gregators corresponding tominandproduct, respectively.
While these two aggregators are clearly not strongly
commutative, they do commute, for instance, on any set
of boolean similarity matrices.

Algorithm MD
1) GivenA1, . . . , Am, (schematically) construct a new schema

matcherA∗ with (a) similarity matrix M∗ such that, for
1 ≤ i ≤ n, 1 ≤ j ≤ n′, M∗

i,j = F (M
(1)
i,j , · · · , M

(m)
i,j ), and

(b) l-aggregatorf(σ, M∗).
2) Using queriesq-top(1), . . . , q-top(K) to A∗, generate top-

K valid mappings with respect toA∗.

Fig. 2. The Matrix-Direct (MD) Algorithm.

The commutativity between thel- and g-aggregators
leads to an extremely efficient algorithm for schema
meta-matching. Specifically, in Figure 2 we present the
Matrix-Direct algorithm (orMD, for short), generalizing
the applicability of the composite method of COMA [8]
to any schema meta-matching problem in which (i) all
the judges use the samel-aggregator, and (ii) thel- and
g-aggregators commute on the given set of similarity
matrices. The correctness and time complexity of the
MD algorithm are stated by Theorem 2 below.

Theorem 2 Given a set of schema matchers
A1, . . . , Am, and a pair of local and global aggregators
〈f, F 〉, let M∗ be a matrix defined asM∗

i,j =

F (M
(1)
i,j , · · · ,M

(m)
i,j ), for all 1 ≤ i ≤ n, 1 ≤ j ≤ n′.

If f and F commute on the similarity matrices
M (1), . . . ,M (m), then the MD algorithm correctly
finds top-K valid mappings with respect to the
aggregated ranking in timeO(η2m + Φ), whereΦ is
the combined time complexity of iteratively executed
queriesq-top(1), . . . , q-top(K) over M∗.

IV. M ATRIX -DIRECT ALGORITHM WITH BOUNDING

Reading so far, it seems natural to conclude that the
schema meta-matching problems satisfying the condi-
tions of Theorem 2 should be processed usingMD while
all other problems should be processed usingTA (i.e.,
we are back to an instance optimal algorithm for general
quantitative rank aggregation). However, below we show
that, while the former conclusion is sound, the latter is
not necessarily so.

Definition 2 Consider a set of similarity matrices
M (1), . . . ,M (m) over a pair of schemasS, S′, and two
sets of l- and g-aggregators〈~f, F 〉 and 〈~f ′, F ′〉. We
say that〈~f ′, F ′〉 dominates〈~f, F 〉 on M (1), . . . ,M (m)

(denoted as〈~f ′, F ′〉 ≻ 〈~f, F 〉 ) if, for every mappingσ
from S to S′, we have:

〈~f ′, F ′〉(σ) ≥ 〈~f, F 〉(σ) (6)
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Likewise, if Eq. 6 holds for all possible sets of similarity
matrices, then we say that〈~f ′, F ′〉 strongly dominates
〈~f, F 〉.

Consider a schema meta-matching problem defined by
a set of similarity matricesM (1), . . . ,M (m) and a set
of l- andg-aggregators〈~f, F 〉 that do not commute on
M (1), . . . ,M (m). Suppose that there exists a pair of func-
tions 〈h,H〉 that (i) do commute onM (1), . . . ,M (m),
and (ii) dominate〈~f, F 〉 on these matrices. The next
Corollary 3, which follows immediately from the defi-
nition of the MD algorithm, gives us a simple property
of this algorithm that provides some intuition for the
subsequent steps of construction.

Corollary 3 Given a set of schema matchers
A1, . . . , Am, and a pair of local and global aggregators
〈h,H〉 commuting onM (1), . . . ,M (m), the top-K result
of theMD algorithm with respect to〈h,H〉 is a correct
top-K aggregation with respect to any set ofl- and
g-aggregators〈~f, F 〉, such that both〈h,H〉 ≻ 〈~f, F 〉
and 〈~f, F 〉 ≻ 〈h,H〉 hold onM (1), . . . ,M (m).

In general, nothing prevents Corollary 3 to be realized.
To illustrate that, consider the following set of four real-
valued functions:f(x) = x2, F (x) = x/2, h(x) =
x2/2,H(x) = x. While f and F do not commute on
reals (F (f(x)) = x2/2 andf(F (x)) = x2/4), the func-
tions h and H are strongly commutative (H(h(x)) =
h(H(x)) = x2/2), and we haveH(h(x)) = F (f(x)).
However, the practical realizability of Corollary 3 with
respect to schema meta-matching is less clear, as it is
not clear whether there exists a set of four functions that
will be interesting in practice for schema meta-matching.

Corollary 3, however, does provide us with some use-
ful intuition. Consider a schema meta-matching problem
defined by a set of similarity matricesM (1), . . . ,M (m)

and l- and g-aggregators〈~f, F 〉 that do not commute
on M (1), . . . ,M (m). Suppose that there exists a pair of
functions〈h,H〉 that do commute onM (1), . . . ,M (m),
and dominate〈~f, F 〉 on these matrices, yet is not domi-
nated by〈~f, F 〉. For instance, letF be a weighted sum
as in Eq. 4, andf be defined as:

f (i)(σ,M) =

{

∑n
j=1 Mj,σ(j),

∑n
j=1 Mj,σ(j) > ti

0, otherwise
,

(7)
where ti > 0 is some predefined constant threshold.
The intuition behind Eq. 7 is that judges that can
no longer provide mappings with sufficient similarity
measure (set as the thresholdti) “quit” by nullifying
all further mappings. Another example, reflecting one of

Algorithm MDB
1) GivenA1, . . . , Am, (schematically) construct a new schema

matcherA∗ with (a) similarity matrix M∗ such that, for
1 ≤ i ≤ n, 1 ≤ j ≤ n′, M∗

i,j = H(M
(1)
i,j , · · · , M

(m)
i,j ), and

(b) l-aggregatorh(σ, M∗).
2) Starting withi = 1, do incremental (on growingi) querying

of A∗ with q-top(i).
a) As a mapping σ is introduced, obtain the actual

weightsf (1)(σ, M (1)), · · · , f (m)(σ, M (m)) by querying
A1, . . . , Am with q-estim(σ), and compute the aggre-
gated weight〈~f, F 〉(σ). If this weight is one of theK
highest we have seen so far, then rememberσ.

b) Define the threshold valueτ
MDB

to beh(σ, M∗).a If K
mappings have been seen whose weight is at leastτ

MDB
,

then halt.
3) Let Y be a set containingK mappings with the highest

grades seen so far. The output is then the graded set
nh

σ, 〈~f, F 〉(σ)
i

| σ ∈ Y
o

.

aIt is worth noting that, due to commutativity ofh andH (either
strong or just with respect toM (1), . . . , M (m)), we haveτ

MDB
=

〈H,h〉(σ) = 〈h, H〉(σ).

Fig. 3. The Matrix-Direct with Bounding (MDB) algorithm.

the currently used settings in schema matching (e.g., [4],
[37]), is:

f (i)(σ,M) =
n

∑

j=1

(

Mj,σ(j) · δ
(

Mj,σ(j) > tj
))

(8)

where δ is the Kronecker discrete delta function. Ac-
cording to Eq. 8, individual pair-wise attribute map-
pings that do not pass a predefined, matcher-specific
threshold are nullified. In both cases, it is not hard to
verify that ~f and F do not commute (in all but trivial
cases of effectively redundant thresholds.) On the other
hand, functionsh and H standing for simple sum and
weighted sum (as in Eq. 4) are (strongly) commutative,
and we have〈~f, F 〉 ≺ 〈h,H〉 for both Eqs. 7 and 8.
For such cases we now present the Matrix-Direct-with-
Bounding algorithm (orMDB, for short). This algorithm
draws upon both theTA andMD algorithms, addressing
problems with non-commutative pairs of local and global
aggregation functions, while being more efficient than
theTA algorithm in at least some such problem instances.

The MDB algorithm is shown in Figure 3. Consider
a schema meta-matching problem with schema matchers
A1, . . . , Am, and aggregators〈~f, F 〉 that do not com-
mute on M (1), . . . ,M (m). As we already mentioned,
the basic idea behind theMDB algorithm is to use
a pair of functions〈h,H〉 (that both dominate〈~f, F 〉
and commute onM (1), . . . ,M (m)) as an upper bound
for the “inconvenient” 〈~f, F 〉 of our actual interest.
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Informally, theMDB algorithm behaves similarly to the
MD algorithm if the latter is given with the aggregators
〈h,H〉. However, instead of reporting immediately on
the generated mappingsσ, the MDB algorithm uses the
decreasing aggregated weights〈h,H〉(σ) to update the
value of a thresholdτ

MDB
. In turn, much as the way the

thresholdτ
T A

is used in theTA algorithm, the threshold
τ

MDB
is used to judge our progress with respect to the

weights〈~f, F 〉 that really matter. Theorem 4 shows that
the MDB algorithm is correct for any such upper bound
〈h,H〉.

Theorem 4 Consider a set of schema matchers
A1, . . . , Am, with 〈~f, F 〉 being their l- and g-
aggregators. Given a function pair〈h,H〉 that both
commute and dominate〈~f, F 〉 on M (1), . . . ,M (m), the
MDB algorithm correctly finds top-K valid mappings
with respect to〈~f, F 〉.

Returning to the question of performance, recall that
our intention in developing theMDB algorithm was to
provide an alternative to theTA algorithm for ensemble-
aggregation settings where the standardMD is not appli-
cable. Have we achieved our goal, or will theTA algo-
rithm always be more efficient anyway? We now show
that, for schema meta-matching,MDB can significantly
outperformTA.

Theorem 5 Given a schema meta-matching problem
instance, the time complexity of theTA algorithm on
this instance can be exponentially worse than that of the
MDB algorithm.

Theorem 5 shows that theTA algorithm does not dom-
inate theMDB algorithm, but it says nothing about the
opposite direction: Does theMDB algorithm dominate
the TA algorithm, or maybe the relative attractiveness
of these two algorithms (complexity-wise) depends on
the actual meta-matching instance at hand? The problem
with answering this question in a general manner is that
the running time of theMDB algorithm depends on the
choice of bounding functions. Therefore, dominance of
the MDB algorithm over theTA algorithm would mean
that, foreachmeta-matching problem instance andeach
K, theoptimalchoice of bounding functions〈h,H〉 will
make theMDB algorithm at least as efficient asTA. At
this stage, we have no evidence that this is actually the
case. In fact, so far it is not even clear that the above
notion of optimality has a clear mathematical semantics.
It is worth noting here that the actual tightness of〈h,H〉
with respect to〈~f, F 〉 is only one factor in determining
the efficiency of theMDB algorithm, and the optimality
as above should also relate to this or another notion of

order preserving: Intuitively, theMDB algorithm is most
efficient if the order induced by〈h,H〉 over alternative
schema matchings coincides with the order induced by
〈~f, F 〉, and 〈h,H〉 is sufficiently tight to allow the
discovered mappings to crossτ

MDB
quickly enough. On

the other extreme, theMDB algorithm is least efficient if
the order induced by〈h,H〉 is the inversion of the order
induced by〈~f, F 〉. Later we provide an algorithm that
makes use of the “good” mappings that were discovered
by theMDB algorithm even when〈h,H〉 fails to provide
a sufficiently tight threshold. As for order preserving, the
superiority of the algorithm should hold for all problem
instances and all choices ofK, and it is not clear how (if
at all) this notion can be defined in a problem-instance
independent manner.

In the absence of a general relation as above, the
question now is whether we can say something about
the attractiveness of theTA algorithm with respect to
theMDB algorithm that is equipped with a “reasonable”
pair of bounding aggregators. Theorem 6 below provides
an affirmative answer to this question, and shows thatTA
can significantly outperformMDB.

Theorem 6 Given a schema meta-matching problem
instance, the time complexity of theMDB algorithm on
this instance can be exponentially worse than this of the
TA algorithm.

V. THE CROSSTHRESHOLD ALGORITHM

The main conclusion to be drawn from Theorem 6 is
that theMDB algorithm should not replace but rather
complement theTA algorithm. Thus, it would be natural
to adopt a parallel execution ofTA and MDB, i.e.,
performing m + 1 parallel q-top querying of schema
matchers. This way, we involve both algorithms in com-
puting the top-K mappings, halting as soon as one of
these algorithms reaches the desired goal.

The question that suggests itself immediately is
whether we can improve the performance of this parallel
execution of theTA and MDB algorithms by either
monitoring their intermediate behavior, or lettingTA
and MDB share some information gathered from their
own individual computations. Our discussion of this
possibility leads to specification and analysis of a mixed
version of theTA and MDB algorithms, in whichTA
and MDB are executed in parallel, yet these parallel
executions are not independent, but communicating and
mutually enhancing.

A. Is an early winner a true winner?

A naı̈ve approach to accelerate parallel execution of
the TA andMDB algorithms corresponds to the hypoth-
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esis that by observing the performance of bothTA and
MDB in identifying the top-i mappings (wherei < K), a
decision can be taken to continue with only one of these
algorithms in identifying the remainingK− i mappings.
Observe that such an “early winner detection” will be
especially helpful in problems wherede facto MDB
outperformsTA, sinceTA’s execution ofm parallelq-top
querying is more costly than executingMDB.

Unfortunately, such a selection strategy provides us
with no guarantee that the performance will not worsen
after abandoning the “so-far looser” algorithm. More
interestingly, our experiments show that this absence
of guarantee is not of theoretical interest only. For
instance, Figure 4 compares the performance of the
TA and MDB algorithms on two schemata from the
hotel reservation domain. The x- and y-axes in Figure 4
correspond to the requested number of the top mappings
K, and the (plotted on a logarithmic scale) number of
iterations performed by the algorithms, respectively. On
this problem instance, theMDB algorithm manages to
get the top-4 mappings faster than theTA algorithm.
However, from K = 6 on, TA outperforms MDB.
This example demonstrates that in practice as well, the
relative performance of theTA andMDB algorithms for
any i < K cannot serve as a perfect indicator for their
future behavior. (We discuss our experiments in more
details in Section VI.)

Fig. 4. Crossing performance of theTA andMDB algorithms on a
certain problem instance from our experiments.

B. Can theTA and MDB algorithms help each other?

While we have shown that neither theTA algorithm
nor the MDB algorithm can be safely abandoned, a
natural next step would be to allow these two algorithms
to share a pool of top-K candidates. This way, both al-
gorithms will contribute to each other new candidates as
they come along, possibly replacing other, less attractive
candidates (discovered by either of the two algorithms.)
Moreover, such a pool sharing suggests aggregating
the thresholds used in theTA and MDB algorithms,

Algorithm CrossThreshold
1) GivenA1, . . . , Am, (schematically) construct a new schema

matcherA∗ with (a) similarity matrix M∗ such that, for
1 ≤ i ≤ n, 1 ≤ j ≤ n′, M∗

i,j = H(M
(1)
i,j , · · · , M

(m)
i,j ), and

(b) l-aggregatorh(σ, M∗).
2) Starting withi = 1, do incremental (on growingi) parallel

querying ofA1, . . . , Am, A∗ with q-top(i).
a) As a mapping σ is introduced by one of

these m + 1 matchers, obtain the remaining
f (1)(σ, M (1)), · · · , f (m)(σ, M (m)) by querying
the other matchers (excludingA∗) with q-estim(σ),
and compute the aggregated weight〈~f, F 〉(σ). If this
weight is one of theK highest we have seen so far, then
rememberσ.

b) Let σ1, . . . , σm, σ∗ be the mappings returned by the
last q-top queries byA1, . . . , Am, A∗, respectively. De-
fine the threshold valueτ = min {τ

T A
, τ

MDB
}, where

τ
TA

= F
“

f (1)(σ1, M
(1)), · · · , f (m)(σm, M (m))

”

and
τ

MDB
= h(σ∗, M

∗). If K mappings have been seen
whose weight is at leastτ , then halt.

3) Let Y be a set containingK mappings with the highest
grades seen so far. The output is then the graded set
nh

σ, 〈~f, F 〉(σ)
i

| σ ∈ Y
o

.

Fig. 5. TheCrossThreshold algorithm.

achieving a new threshold that is more effective than the
original two. This way, the schema mappings selected
by theTA algorithm as candidates for the top-K set can
be “approved” by means of the information obtained by
the MDB algorithm, and vice versa.

Figure 5 formalizes the resulting algorithm which we
refer to asCrossThreshold. The joint thresholdτ used
in this algorithm is set tomin {τ

T A
, τ

MDB
}, and The-

orem 7 shows the correctness of theCrossThreshold
algorithm with such a threshold. Note that this choice of
τ for theCrossThreshold algorithm is optimal, because
any other τ ′ > τ cannot be more effective thanτ ,
while settingτ to any value lower thanmin {τ

T A
, τ

MDB
}

cannot guarantee the soundness of the procedure.

Theorem 7 Let A1, . . . , Am be a set of schema match-
ers with 〈~f, F 〉 being theirl- and g-aggregators. Given
a function pair〈h,H〉 that both commute and dominate
〈~f, F 〉 on M (1), . . . ,M (m), the CrossThreshold algo-
rithm correctly finds top-K valid mappings with respect
to 〈~f, F 〉.

While Theorem 7 shows the correctness of the
CrossThreshold algorithm, the reader may rightfully
wonder whether it can provide any computational
speedup compared to the basic independent parallel
execution of theTA and MDB algorithms. Below we
provide an affirmative answer to this question.
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Considering the generation of top-K mappings for
a general schema meta-matching problem, letI be the
minimal number of iterations required for this purpose
by the CrossThreshold algorithm, andI

T A
, I

MDB
be

the corresponding minimal number of iterations required
by independently running theTA andMDB algorithms,
respectively. If usingCrossThreshold provides any
computational speedup on this problem instance, then
we should have

I < min {I
T A

, I
MDB

} (9)

To obtain some intuition on when (if at all) Eq. 9 may
hold, letτ [x], τ

TA
[x], andτ

MDB
[x] be the values obtained

after x iterations by τ , τ
TA

, and τ
MDB

, respectively.
By definition of theCrossThreshold algorithm and its
reported top-K list Y , we have

∀σ ∈ Y : 〈~f, F 〉(σ) ≥ τ [I] = min {τ
TA

[I], τ
MDB

[I]},
(10)

and, without loss of generality, assume thatτ
T A

[I] 6=
τ

MDB
[I].

First, suppose that the value ofτ [I] is contributed by
the TA algorithm, i.e., τ [I] = τ

TA
[I], and thus Eq. 10

can be reformulated as

∀σ ∈ Y : 〈~f, F 〉(σ) ≥ τ
TA

[I] (11)

On the other hand, Eq. 9 in particular implies that
there exists at least one mappingσ ∈ Y that has
not been seen byTA. Thus, afterI iterations, such a
mappingσ is exclusivelyprovided to the shared pool of
candidates by theMDB algorithm, yet theTA algorithm
can successfully verify membership ofσ in the top-K
list. The situation withτ [I] = τ

MDB
[I] is symmetric;

in this case, there exists at least one mappingσ ∈ Y
that is exclusively discovered by theTA algorithm, and
yet its membership in the top-K list can be successfully
verified by theMDB algorithm.

We now formalize this intuition to characterize
schema meta-matching problem instances on which the
CrossThreshold algorithm can provide a computational
speedup over its basic, “asynchronous” counterpart.
Starting with Eqs. 9-10, we provide two lemmas that
significantly reduce the spectrum of scenarios in which
such a speedup is theoretically possible. Specifically,
Lemmas 8 and 9 below restrict the global aggregator
value of mappings that are identified by one algorithm
and verified with the appropriate threshold of the other
algorithm to beequal to the joint thresholdτ .

Extending the notation introduced in Section V-B, let
Y = Y

T A
∪ Y

MDB
be a (possibly not disjoint) cover of

Y , whereY
T A

and Y
MDB

contain the top-K mappings

provided to theCrossThreshold algorithm by theq-top
queries toA1, . . . , Am andA∗, respectively.

Lemma 8 If I < I
T A

andτ [I] = τ
T A

[I], thenY \Y
T A

6=
∅, and for eachσ ∈ Y \ Y

TA
, we have:

〈~f, F 〉(σ) = τ
T A

[I] (12)

Lemma 9 If I < I
MDB

and τ [I] = τ
MDB

[I], thenY \
Y

MDB
6= ∅, and for eachσ ∈ Y \ Y

MDB
, we have:

〈~f, F 〉(σ) = τ
MDB

[I] (13)

At first view it seems that the restrictions posed by
Lemmas 8 and 9 are too strict for theCrossThreshold
algorithm to provide a significant computational speedup
(if any). However, below we show that even in such
boundary situations, the speedup is not only possible,
but also potentially significant.

Theorem 10 There exist schema meta-matching prob-
lem instances for which the time complexity of both the
TA andMDB algorithms is exponentially worse than that
of theCrossThreshold algorithm.

VI. EMPIRICAL EVALUATION

We have implemented the generic versions of the four
algorithms TA, MD, MDB, and CrossThreshold.7 In
this implementation, each algorithm can be plugged-in
with a concrete schema model (e.g., relational), a set of
(standard or user-defined) schema matchers, and a pair
of l- andg-aggregators.

As a testbed, we have gathered 24 Web forms from
6 different domains, namely dating and matchmaking,
job hunting, Web mail, hotel reservation, news, and
cosmetics. We first extracted the schemata of these
Web forms using the OntoBuilder ontology extractor.
Then, we generated the similarity matrices for all pairs
of domain-compatible Web forms using four different
schema matchers calledTerm, Value, Composition,
and Precedence [23]. The valid schema mappings
have been defined to be all the mappings obeying1-1
cardinality constraint.

In our experiments, we have evaluated theTA,
MDB, and CrossThreshold algorithms on five pairs
of these matchers, namely{Term, Value}, {Term,
Precedence}, {Term, Composition}, {Value,
Precedence}, and{Value, Composition}. Like-
wise, all these 15 schema meta-matching settings have
been evaluated on nine pairs ofl- and g-aggregators

7Requires Java 2 JDK 1.4 (or higher), and is
available as part of the OntoBuilder distribution from
http://ie.technion.ac.il/OntoBuilder.
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(a) (b)

Fig. 6. TheTA and MDB algorithms with schema matchers{Term, Precedence} and 〈f, F 〉 = 〈avg(0.25), avg〉, evaluated on two
different pairs of schemata.

〈f, F 〉, namely 〈avg,min〉 and 〈avg(t), avg〉, where
avg(t) stands for the average version of Eq. 7, and
t ∈ {0.025, 0.05, 0.1, 0.15, 0.2, 0.25, 0.5, 0.75}. To elim-
inate possible influence of having differentl-aggregators
for different schema matchers on the conclusiveness of
the evaluation, in all these 135 experiment configura-
tions the matchers have been set to use the samel-
aggregator. Likewise, in all these configurations we have
used 〈avg, avg〉 as the dominating pair of bounding
aggregators〈h,H〉, and generated up toK = 20 top
mappings.

To summarize, we have experimented with 12 pairs of
schemata, 5 groups of schema matcher pairs, and 9 pairs
of l- andg-aggregators, to a total of 540 comparative ex-
periments between theTA, MDB, andCrossThreshold
algorithms. Below we discuss the results of our empirical
evaluation ofTA, MDB, andCrossThreshold. Note that
empirical evaluation of theMD algorithm is redundant,
as the running time ofMD on a given problem instance
can be derived analytically from Theorem 2.

A. Evaluating theTA and MDB algorithms

Recall that Theorems 5 and 6 show that theTA and
MDB algorithms do not dominate each other. These
formal results, however, say little about the practical
relationship between the two algorithms. Interestingly,
our experiments on real-world schemata support the
formal conclusion of Theorems 5 and 6 that there is no
clear winner between theTA andMDB algorithms.

To start with a concrete example, in Figure 6 we
present the performance of theTA andMDB algorithms
on two different pairs of schemata, while employing
the same pair of matchers{Term, Precedence},
and thesame pair of l- and g-aggregators〈f, F 〉 =
〈avg(0.25), avg〉 (bounded by〈h,H〉 = 〈avg, avg〉.) The
x- and y-axes in these graphs correspond respectively
to the requested number of the top mappingsK, and

the number of iterations performed by the algorithms
(plotted on a logarithmic scale). It is easy to see that the
MDB algorithm significantly outperforms theTA algo-
rithm on the problem instance depicted in Figure 6(a),
while the TA algorithm significantly outperforms the
MDB algorithm on the problem instance depicted in Fig-
ure 6(b). Thus, Figure 6 clearly shows that performance
incomparability between theTA and MDB algorithms
is not restricted to some extreme pathological problem
instances. Moreover, this example illustrates that these
two algorithms are incomparable even if there is no
difference between their settings neither in the choice
of schema matchers, nor in the choice ofl- and g-
aggregators.

TA ≥ MDB MDB ≥ TA TA=MDB no winner

〈avg(0.025), avg〉 8% 57% 27% 8%
〈avg(0.05), avg〉 17% 53% 22% 8%
〈avg(0.10), avg〉 28% 40% 18% 13%
〈avg(0.15), avg〉 42% 33% 15% 10%
〈avg(0.20), avg〉 47% 23% 12% 18%
〈avg(0.25), avg〉 65% 20% 3% 12%
〈avg(0.50), avg〉 78% 15% 0% 7%
〈avg(0.75), avg〉 97% 2% 0% 2%

〈avg, min〉 95% 2% 0% 3%

TABLE I

RELATIVE PERFORMANCE OF THEMDB AND TA ALGORITHMS.

Table I summarizes the relative performance of the
MDB and TA algorithms on various pairs of schemata
and various choices of schema matcher groups. The rows
in Table I correspond to the different choices of thel-
and g-aggregators, while its four columns capture the
percentage of experiments in which (i)TA performed
at least as well asMDB for all 1 ≤ K ≤ 20 and
outperformedMDB for at least one suchK, (ii) MDB
performed at least as well asTA for all 1 ≤ K ≤ 20 and
outperformedTA for at least one suchK, (iii) TA and
MDB performed exactly the same, and (iv) none of these
two algorithms dominated the other forall 1 ≤ K ≤ 20.
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This table further illustrates that the performance of
the MDB andTA algorithms is generally incomparable.
Likewise, as it was expected, Table I shows that the
performance of theMDB algorithm correlates with the
relative informativeness of our bounding aggregators
〈avg, avg〉 with respect to the actuall- andg-aggregators
in use. Specifically, the lower the threshold is, the better
the MDB algorithm performs.

B. Evaluating theCrossThreshold algorithm

Next we compare the empirical performance of the
CrossThreshold algorithm with the independent in-
parallel execution of theTA and MDB algorithms. Re-
calling that theCrossThreshold algorithm is always
at least as effective as its basic counterpart, and that
Theorem 10 implies the theoretical feasibility of Eq. 9,
our intention here is to check whether the computational
gain from using theCrossThreshold algorithm can also
be observed in practice.

Let Imin = min {I
T A

, I
MDB

} denote the number
of iterations required to solve a given schema meta-
matching problem using the basic in-parallel execution
of the TA andMDB algorithms. Figure 7 illustrates the
relative performance of theCrossThreshold algorithm
with respect to in-parallel execution by plotting the ratio
Imin/I averaged over all twelve tested pairs of schemata
and five tested pairs of schema matchers. Since we
always haveI ≤ Imin, the (averaged) ratioImin/I is
always bounded from below by1. Each vertex on this
surface corresponds to an average ratio for a certain
number of required mappingsK (x-axis), and a certain
choice ofl- andg-aggregator functions (y-axis).

Figure 7 clearly shows that using theCrossThresh-
old algorithm is beneficial not only in theory, but
also in practice. Averaging over all 540 experimental
sessions, theCrossThreshold algorithm was≈ 16%
faster than its basic counterpart. For the aggregator
pairs 〈avg(t), avg〉, the relative benefit of using the
CrossThreshold communication between theTA and
MDB algorithms was roughly proportional to the cutoff
value t. The intuition behind this relationship is that, as
t gets closer to0, the values that the bounding functions
〈avg, avg〉 provide to the mappings are closer to those
provided by the actual aggregators〈avg(t), avg〉, and
thus theMDB algorithm is getting closer to the “perfect”
algorithmMD.

Now, consider the pair of local and global aggregators
〈avg,min〉. Recall that in our experiments with this
pair of aggregators theTA algorithm outperformed the
MDB algorithm in 95% of the experiments for any
1 ≤ K ≤ 20 (see the last row in Table I). If so, then one

Fig. 7. The CrossThreshold algorithm versus independent in-
parallel execution of theTA andMDB algorithms.

would expect the performance of theCrossThreshold
algorithm on these problems to be similar to that of
the TA algorithm, as it seems that theMDB algorithm
will have nothing to contribute to the process. However,
Figure 7 shows exactly the opposite; not only does the
CrossThreshold algorithm outperformed theTA algo-
rithm on this problem set, but the marginal contribution
of using it was the largest among all the pairs ofl- and
g-aggregators considered.

This phenomenon corresponds to a certain interesting
form of “mutual assistance” between theTA and MDB
algorithms inCrossThreshold, possibility of which we
have exploited in our proof of Theorem 10. Recall our
discussion that the efficiency of theMDB algorithm is
affected bytwoseparate factors. First, top mappings with
respect to〈~f, F 〉 might be pushed down when using
〈h,H〉. However, even if this is not the case and the
MDB algorithm immediately finds the true top mappings,
the algorithm may not be able to verify them due to
the thresholdτ

MDB
, which is too high. Now, consider

MDB embedded in theCrossThreshold algorithm and
a schema matching problem instance corresponding to
the latter situation. Despite the fact that theMDB al-
gorithm fails to report the top-K mappings, it can still
successfully provide the rightcandidates. In turn, these
candidates can be approved by the (lower) threshold
τ

TA
, while the TA algorithm may fail to generate good

candidates by itself. In such situations the marginal
contribution of using theCrossThreshold algorithm is
expected to be the highest, and this was exactly the
typical situation in our experiments on problem instances
with 〈f, F 〉 = 〈avg,min〉.

To summarize, our experiments demonstrate the prac-
tical advantages of using theCrossThreshold algorithm
over the basic in-parallel execution of theTA andMDB
algorithms. Hence, theCrossThreshold algorithm pro-
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vides a more appealing solution for situations in which
one is uncertain about the relative attractiveness of the
TA andMDB algorithms in a domain of discourse.

VII. C ONCLUSIONS ANDFUTURE WORK

We introduced schema meta-matching, a novel compu-
tational framework for robust automatic schema match-
ing that generalizes and extends previous proposals for
exploiting an ensemble of schema matchers. We pre-
sented several algorithms for schema meta-matching,
varying from adaptation of a standard technique for
quantitative rank aggregation in the area of database
middleware, to novel techniques developed especially
for the problem of schema matching. We provided a
formal computational analysis of all algorithms, and
characterized their relative applicability. In particular, our
formal analysis allowed us to devise a pair of strictly
superior algorithmsMD andCrossThreshold, where the
choice between the two depends on whether thel- andg-
aggregators commute on the schema matching problem
at hand, an easy-to-check property. Likewise, we evalu-
ated all the algorithms empirically on a set of real-life
schemata gathered from Web forms, and a set of state-of-
the-art schema matchers. Our experiments demonstrate
the benefit of using theCrossThreshold algorithm over
using theTA or MDB algorithms independently or in
parallel.

Our work opens several venues for future research,
two of which are discussed below. First, observe that
in the TA algorithm (and thus, in theCrossThreshold
algorithm), the parallel querying of different matchers
with the q-top queries is kept uniform, that is, each
iteration of the TA algorithm progresses onall the
matchers. In general-purpose aggregation of quantitative
rankings [17] this strategy is indeed expected to be as
good as any other strategy. However, having additional
knowledge about the data can provide us with (at least
heuristically) better strategies, and currently we are ex-
ploring this direction to further improve the performance
of theCrossThreshold algorithm. Second, as discussed
in Section IV, it is clear that the complexity of our
MDB algorithm depends crucially on the quality of
the chosen pair of dominating aggregators. Therefore,
we are looking into refining our notion of dominance
by incorporating topological measures of ordering and
tightness.
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APPENDIX

Theorem 1 The time complexity of schema meta-
matching usingTA is Ω((η

2 )!).

Proof: The proof of this lower bound is by con-
struction of a certain set of similarity matrices for which
the TA algorithm finds the best mapping only after
O((η

2 )!).
Consider two algorithms,A1 and A2, and a pair of

schemataS andS′, each consisting ofn attributes, where
n = 2k, k ∈ N (and thus,η = n). Likewise, let the
l-aggregatorsf (1) = f (2) both be the regularproduct
(denoted byf ), ΣΓ be the set of all1-1 mappings from
Σ, and theg-aggregatorF be the utilitarian aggregator
min. Given S andS′, the similarity matricesM (1) and
M (2), induced byA1 andA2, respectively are as follows:

M
(1)
i,j =

8

>

<

>

:

x, (i ≤ n/2) ∧ (j ≤ n/2) ∧ (i 6= j)

x − ǫ, i = j

0, otherwise

M
(2)
i,j =

8

>

<

>

:

x, i > n/2 ∧ j > n/2 ∧ i 6= j

x − ǫ, i = j

0, otherwise

for arbitrary positive values ofx andǫ, whereǫ ≪ x,
and x − ǫ > 0. Below we illustrate these matrices for
n = 4:

M (1) =

0

B

B

@

x − ǫ x 0 0
x x − ǫ 0 0
0 0 x − ǫ 0
0 0 0 x − ǫ

1

C

C

A

M (2) =

0

B

B

@

x − ǫ 0 0 0
0 x − ǫ 0 0
0 0 x − ǫ x
0 0 x x − ǫ

1

C

C

A

First, considerM (1). Each valid mapping between
the first n/2 attributes ofS and the firstn/2 attributes
of S′ (see the top left quadrant ofM (1)) results in a
non-zero value off restricted to these attributes. There
are (n

2 )! such mappings. Any other mapping of any
of these attributes will nullify the value off . On the
other hand, the lastn/2 attributes of S have to be
mapped to then/2 last attributes ofS′, and there is
only one such mapping leading to a non-zero value
of f , namely the main diagonal of the bottom right
quadrant ofM (1). Therefore, we have constructively
shown thatM (1) induces exactly(n

2 )! mappingsσ such
that f(σ,M (1)) > 0. Denote this set of mappings by
Σ+

1 ⊂ ΣΓ. By a similar construction, the same holds
for M (2), i.e., |Σ+

2 | = (n
2 )!. Now consider the setsΣ+

1

and Σ+
2 , and letσI denote the indentity mapping,i.e.,

the mapping captured by the main diagonals ofM (1)

andM (2). Evidently, for l ∈ {1, 2}, we haveσI ∈ Σ+
l ,

and, for eachσI 6= σ ∈ Σ+
l , we havef(σ,M (l)) >

f(σI ,M
(l)). Therefore,σI will be discovered by theTA

algorithm after exactly(n
2 )! q-top queries to each ofA(1)

andA(2). On the other hand, we haveΣ+
1 ∩Σ+

2 = {σI},
and thus, for each mappingσ ∈ Σ, we have:

〈f, F 〉 (σ) = min

(

n
Y

i=1

M
(1)

i,σ(i)
,

n
Y

i=1

M
(2)

i,σ(i)

)

=

(

n(x − ǫ), σ = σI

0, otherwise

This means that, under the considered aggregatorsf
andF , the top-1 mapping betweenS andS′ has to be
σI . However, it will take theTA algorithm(n

2 )! iterations
to discoverσI .

Theorem 2 Given a set of schema matchers
A1, . . . , Am, and a pair of local and global aggregators
〈f, F 〉, let M∗ be a matrix defined asM∗

i,j =

F (M
(1)
i,j , · · · ,M

(m)
i,j ), for all 1 ≤ i ≤ n, 1 ≤ j ≤ n′.

If f and F commute on the similarity matrices
M (1), . . . ,M (m), then the MD algorithm correctly
finds top-K valid mappings with respect to the
aggregated ranking in timeO(η2m + Φ), whereΦ is
the combined time complexity of iteratively executed
queriesq-top(1), . . . , q-top(K) over M∗.

Proof: The correctness is immediate from the
construction of theMD algorithm and Definition 1. AsF
is assumed to be computable in time linear in the number
of F ’s parameters, generatingM∗ takes timeO(η2m).
Thus, the overall complexity of theMD algorithm is
O(η2m + Φ). For instance, for aggregators as in Eq. 4
and Γ enforcing 1-1 cardinality constraint, the time
complexity of theMD algorithm isO(η4K + η2m).

Theorem 4 Consider a set of schema matchers
A1, . . . , Am, with 〈~f, F 〉 being their l- and g-
aggregators. Given a function pair〈h,H〉 that both
commute and dominate〈~f, F 〉 on M (1), . . . ,M (m), the
MDB algorithm correctly finds top-K valid mappings
with respect to〈~f, F 〉.

Proof: Let Y be as in step 3 of theMDB algorithm.
We need only show that every mappingσ ∈ Y has
at least as high weight according to〈~f, F 〉 as every
mappingσ′ 6∈ Y . By definition of Y , this is the case
for each mappingσ′ 6∈ Y that has been seen byMDB.
Thus, assume thatσ′ was not seen. By the definition
of τ

MDB
as in step 2b of theMDB algorithm and the



16

incrementality of queryingA∗ with q-top, for each such
unseenσ′ and for eachσ ∈ Y we have:

〈~f, F 〉(σ) ≥ τ ≥ 〈h,H〉(σ′) ≥ 〈~f, F 〉(σ′)

where τ is the value ofτ
MDB

at termination ofMDB.
The second inequality holds sinceσ′ has not been seen
and therefore〈h,H〉(σ′) cannot receive a value higher
than τ . Thus, we have proven thatY contains top-K
mappings with respect to〈~f, F 〉.

Theorem 5 Given a schema meta-matching problem
instance, the time complexity of theTA algorithm on
this instance can be exponentially worse than that of the
MDB algorithm.

Proof: The proof is by example of the correspond-
ing problem instance. Specifically, we consider the class
of schema meta-matching problems used in the proof
of Theorem 1, and show that, for a certain subclass of
these problems, theMDB algorithm can identify the best
mapping after only two iterations.

Consider the schema meta-matching problem exactly
as in the proof of Theorem 1, and assume further thatx ∈
(0, 1]. We already showed that on this problem instance
theTA algorithm performsΩ((n

2 )!) iterations forK = 1.
Recall that the aggregatorsf andF in this example stand
for product and min, respectively. Hence,f and F do
not commute on this problem similarity matrices, and
thus theMD algorithm cannot be used for this problem
instance. Now, consider a pair of functions〈h,H〉, where
both h andH stand for a simpleaverage. Observe that,
since the entries of both matricesM (1) andM (2) lie in
the interval[0, 1], we have〈f, F 〉 ≺ 〈h,H〉. Likewise,
sinceh andH are (trivially) strongly commutative, we
can solve this problem instance using theMDB algorithm
with 〈h,H〉. The matrixM∗, constructed by theMDB
algorithm from the matricesM (1) and M (2) using H,
is defined as below on the left, where on the right it is
illustrated forn = 4:

M∗
i,j =

8

>

>

>

<

>

>

>

:

x/2, (i ≤ n/2) ∧ (j ≤ n/2) ∧ (i 6= j)

x/2, (i > n/2) ∧ (j > n/2) ∧ (i 6= j)

x − ǫ, i = j

0, otherwise

M∗ =

0

B

B

@

x − ǫ x/2 0 0
x/2 x − ǫ 0 0
0 0 x − ǫ x/2
0 0 x/2 x − ǫ

1

C

C

A

Since x − ǫ > x/2 for any ǫ < x/2, the mapping
processed in thefirst iteration of theMDB algorithm
will be the mappingσI , corresponding to the main
diagonal of M∗, with 〈f, F 〉(σI) = (x − ǫ)n. Also,

at the second iteration the MDB algorithm we have
τ

MD
= (x − ǫ)n−1 · (x/2). The MDB algorithm would

halt at the second iteration ifτ
MD

≤ 〈f, F 〉(σI), which
holds for example forx = 0.98 andǫ = 0.01. Likewise,
in the proof of Theorem 1 we have already shown thatσI

is the best mapping with respect to〈f, F 〉. Hence, the
time complexity of theTA algorithm on this problem
instance withK = 1 is exponentially worse than this of
the MDB algorithm (with properly chosen upper bound
〈h,H〉).

Theorem 6 Given a schema meta-matching problem
instance, the time complexity of theMDB algorithm on
this instance can be exponentially worse than this of the
TA algorithm.

Proof: This proof is by example of a corresponding
class of schema meta-matching problems: On any in-
stance of this problem class, theTA algorithm identifies
the best mapping on the first iteration, yet it will be the
last mapping discovered by theMDB algorithm.

Consider two algorithms,A1 and A2, and a pair of
schemataS and S′, each consisting ofn attributes.
Likewise, let thel-aggregatorf be theproductoperator,
g-aggregatorF be the min operator, andΣΓ be the
set of all 1-1 mappings fromΣ. Given S and S′, the
similarity matricesM (1) andM (2), induced byA1 and
A2, respectively are as follows:

M
(1)
i,j =

(

ǫ, i = j

0, otherwise

M
(2)
i,j =

(

1 − 3ǫ, i = j

1, otherwise

for an arbitrary1/3 > ǫ > 0. Below we illustrate such
matrices forn = 4:

M (1) =









ǫ 0 0 0
0 ǫ 0 0
0 0 ǫ 0
0 0 0 ǫ









M (2) =









1 − 3ǫ 1 1 1
1 1 − 3ǫ 1 1
1 1 1 − 3ǫ 1
1 1 1 1 − 3ǫ









Considering the execution of theTA algorithm on
M (1) andM (2) as defined above, first notice that the only
mappingσ, for which we havef(σ,M (1)) > 0, is the
mappingσI (i.e., the identity permutation). Therefore,
σI will be discovered by theTA algorithm on thefirst
iteration, withτTA = 〈f, F 〉(σI). Second, notice that all
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the entries ofM (1) and M (2) lie in the interval [0, 1].
Thus, for all σI 6= σ ∈ ΣΓ, we have〈f, F 〉(σ) = 0.
Finally, sincef(σI ,M

(2)) > 0, we have〈f, F 〉(σ) > 0,
and thusσI is the best mapping with respect to〈f, F 〉.

It is not hard to see that the aggregatorsf andF do
not commute on ourM (1) andM (2). Consider a pair of
functions〈h,H〉, where bothh andH stand for a simple
average. Since the entries of both matricesM (1) and
M (2) lie in the interval[0, 1], we have〈f, F 〉 ≺ 〈h,H〉.
Likewise, sinceh andH are (trivially) strongly commu-
tative, we can solve this problem instance using theMDB
algorithm with 〈h,H〉. The matrixM∗, constructed by
MDB from the matricesM (1) and M (2) using H, is
defined as below on the left, where on the right it is
illustrated forn = 4:

M∗
i,j =

(

1
2
− ǫ, i = j

1
2
, otherwise

M∗ =

0

B

B

@

1
2
− ǫ 1

2
1
2

1
2

1
2

1
2
− ǫ 1

2
1
2

1
2

1
2

1
2
− ǫ 1

2
1
2

1
2

1
2

1
2
− ǫ

1

C

C

A

For each mappingσ ∈ ΣΓ, let kσ be the number of
attributesi ∈ S, such thatσ(i) = i (i.e., the number of
the attribute mappings inσ that lie on the main diagonal
of M∗). For eachσ ∈ ΣΓ, we havekσ ∈ {1, 2, . . . , n −
3, n − 2, n}, and:

h(σ,M∗) =











1
2 , kσ = 0,
1
2 − kǫ

n
, 0 < kσ ≤ n − 2,

1
2 − ǫ, kσ = n

Therefore, for eachσI 6= σ ∈ Σ, we have〈h,H〉(σ) >
〈h,H〉(σI ), and thus (the best mapping!)σI will be the
last mapping discovered by theMDB algorithm.

Theorem 7 Let A1, . . . , Am be a set of schema match-
ers with 〈~f, F 〉 being theirl- and g-aggregators. Given
a function pair〈h,H〉 that both commute and dominate
〈~f, F 〉 on M (1), . . . ,M (m), the CrossThreshold algo-
rithm correctly finds top-K valid mappings with respect
to 〈~f, F 〉.

Proof: Let Y be the set of mappings as in step 3
of the CrossThreshold algorithm. We need only show
that every mappingσ ∈ Y has a weight at least as
high, according to〈~f, F 〉, as every mappingσ′ 6∈ Y .
By definition of Y , this is the case for each mapping
σ′ 6∈ Y that has been seen by theCrossThreshold
algorithm. Assume thatσ′ was not seen, and letτ ′, τ ′

TA
,

andτ ′
MDB

be the value ofτ , τ
TA

, andτ
MDB

, respectively,
at the termination ofCrossThreshold. If τ ′

MDB
> τ ′

TA
,

by monotonicity ofF , we haveτ ′ = τ ′
TA

≥ 〈~f, F 〉(σ′)
for every σ′ 6∈ Y . Otherwise, if τ ′

MDB
≤ τ ′

TA
, from

the incrementality of queryingAi with q-top, we have
τ ′ ≥ 〈h,H〉(σ′) ≥ 〈~f, F 〉(σ′) for everyσ′ 6∈ Y . But by
definition ofY , for everyσ ∈ Y we have〈~f, F 〉(σ) ≥ τ ′.
Therefore, for everyσ′ 6∈ Y , we have〈~f, F 〉(σ) ≥ τ ′ ≥
〈~f, F 〉(σ′), as desired.

Lemma 8 If I < I
T A

andτ [I] = τ
T A

[I], thenY \Y
T A

6=
∅, and for eachσ ∈ Y \ Y

TA
, we have:

〈~f, F 〉(σ) = τ
T A

[I] (14)

Proof: The assumption of the lemma thatI < I
T A

implies that there exists at least one mappingσ ∈ Y that
would have been discovered by (independently running)
TA only at some iterationI ′ > I, and thus we haveY \
Y

TA
6= ∅. Now, considering mappingsσ ∈ Y \Y

TA
, recall

that τ
TA

[I] = F (f (1)(σ1,M
(1)), . . . , f (m)(σm,M (m))),

whereσ1, . . . , σm are mappings provided byA1, . . . , Am

at the iterationI, respectively. From the lemma assump-
tion (τ [I] = τ

T A
[I]) and Eq. 10, we have

τ
TA

[I] = F (f (1)(σ1,M
(1)), . . . , f (m)(σm,M (m)))

≤ 〈~f, F 〉(σ)

= F (f (1)(σ,M (1)), . . . , f (m)(σ,M (m)))
(15)

for all σ ∈ Y . On the other hand, by the definition of the
q-top queries we havef (i)(σi,M

(i)) ≥ f (i)(σ,M (i)) for
each mappingσi as in Eq. 15. Thus, by the monotonicity
of F we have

F (f (1)(σ1,M
(1)), . . . , f (m)(σm,M (m))) ≥

F (f (1)(σ,M (1)), . . . , f (m)(σ,M (m))),
(16)

and together, Eq. 15 and Eq. 16 imply Eq. 14.

Lemma 9 If I < I
MDB

and τ [I] = τ
MDB

[I], thenY \
Y

MDB
6= ∅, and for eachσ ∈ Y \ Y

MDB
, we have:

〈~f, F 〉(σ) = τ
MDB

[I] (17)

Proof: Similar to the proof of Lemma 8, the
assumption thatI < I

MDB
implies that there exists

at least one mappingσ ∈ Y that would have been
discovered by (independently running)MDB only at
some iterationI ′ > I, and thus we haveY \ Y

MDB
6= ∅.

Considering such mappingsσ ∈ Y \ Y
MDB

, from the
assumption thatτ [I] = τ

MDB
[I], we have

τ
MDB

[I] = 〈h,H〉(σ′) ≤ 〈~f, F 〉(σ), (18)
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whereσ′ is the mapping discovered by theMDB algo-
rithm at the iterationI. Likewise, sinceσ ∈ Y \ Y

MDB
,

we have:

〈h,H〉(σ) ≤ 〈h,H〉(σ′) (19)

Finally, since〈h,H〉 dominates〈~f, F 〉, we have:

〈~f, F 〉(σ) ≤ 〈h,H〉(σ). (20)

Together, Eqs. 18-20 provide us with the lemma claim
that 〈~f, F 〉(σ) = τ

MDB
[I].

Theorem 10 There exist schema meta-matching prob-
lem instances for which the time complexity of both the
TA andMDB algorithms is exponentially worse than that
of theCrossThreshold algorithm.

Proof: The proof is by example of the correspond-
ing problem instance. Consider two algorithms,A1 and
A2, and a pair of schemataS and S′, each consisting
of n attributes. Likewise, let thel-aggregatorf be the
regularproduct, and theg-aggregatorF be the utilitarian
aggregatormin. GivenS andS′, the similarity matrices
M (1) andM (2), induced byA1 andA2, respectively are
as follows:

M
(1)
i,j =

(

x + 2ǫ, (i = j) ∨ (i + j < n + 1)

0, otherwise

M
(2)
i,j =

(

x, (i = j) ∨ (i + j > n + 1)

0, otherwise

such thatx > 0, ǫ > 0, and x + 2ǫ < 1. Below we
illustrate the matrices forn = 5:

M (1) =

0

B

B

B

@

x + 2ǫ x + 2ǫ x + 2ǫ x + 2ǫ 0
x + 2ǫ x + 2ǫ x + 2ǫ 0 0
x + 2ǫ x + 2ǫ x + 2ǫ 0 0
x + 2ǫ 0 0 x + 2ǫ 0

0 0 0 0 x + 2ǫ

1

C

C

C

A

M (2) =

0

B

B

B

@

x 0 0 0 0
0 x 0 0 x
0 0 x x x
0 0 x x x
0 x x x x

1

C

C

C

A

Likewise, consider a pair of bounding functions
〈h,H〉, where bothh and H stand foraverage. Since
the entries of both matricesM (1) and M (2) lie in the
interval [0, 1], we have〈f, F 〉 ≺ 〈h,H〉. The matrixM∗,
constructed by theMDB algorithm from the matrices
M (1) andM (2) usingH, is defined as below on the left,
where on the right it is illustrated forn = 5:

M∗
i,j =

8

>

>

>

<

>

>

>

:

x + ǫ i = j
x

2
+ ǫ, (i 6= j) ∧ (i + j < n + 1)

0, i + j = n + 1
x

2
, otherwise

M∗ =

0

B

B

B

@

x + ǫ x

2
+ ǫ x

2
+ ǫ x

2
+ ǫ 0

x

2
+ ǫ x + ǫ x

2
+ ǫ 0

x

2
x

2
+ ǫ x

2
+ ǫ x + ǫ x

2
x

2
x

2
+ ǫ 0

x

2
x + ǫ x

2
0

x

2
x

2
x

2
x + ǫ

1

C

C

C

A

First, consider the execution of theTA algorithm on
this problem instance. Letσ

I
stand for the mappings

captured by the primary diagonal. That is, for1 ≤ i ≤ n,
σ

I
(i) = i. It is not hard to see that

〈f, F 〉(σ
I
) = min {(x + 2ǫ)n, xn} = xn,

while, for each mappingσ 6= σ
I
, we have either

f
(

σ,M (1)
)

= 0 or f
(

σ,M (2)
)

= 0, and thus
〈f, F 〉(σ) = 0. Hence, the top-1 mapping for this
problem instance cannot be anything but{σ

I
}.

On the other hand,M (1) inducesΘ
(

(n
2 − 1)!

)

map-
pingsσ having

f
(

σ,M (1)
)

= (x + 2ǫ)n = f
(

σI ,M
(1)

)

,

andM (2) inducesΘ
(

(n
2 − 1)!

)

mappingsσ having

f
(

σ,M (2)
)

= xn = f
(

σI ,M
(2)

)

,

Therefore, the best mappingsσ
I

might be discovered by
the TA algorithm only afterΘ

(

(n
2 − 1)!

)

iterations.
In turn, consider the performance of theMDB algo-

rithm on this problem instance, and further assume that
xn < (x + ǫ)/n. From the description ofM∗, it is not
hard to see that the best mappingσ

I
will be discovered

by the MDB algorithm on the first iteration. However,
observe that the lowest value obtained byτ

MDB
on M∗

will be higher than(x + ǫ)/n. Since〈f, F 〉(σ
I
) = xn,

we conclude that theMDB algorithm couldverify that
the candidateσ

I
is indeed the best mappings only after

Θ (n!) iterations.
Now, consider the “cooperative” execution ofTA and

MDB in the scope of theCrossThreshold algorithm.
Following our discussion above, assume thatTA would
fail to discoverσ

I
for the first Θ

(

(n
2 − 1)!

)

iterations.
However, immediately after the first iteration we have
τ

TA
= xn. Recall thatσ

I
is discovered by theMDB

algorithm at the first iteration. It is easy to see that after
the first iteration of theCrossThreshold algorithm we
haveτ = τ

T A
, and thus we immediately conclude that:

〈f, F 〉(σ) = xn = τ
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Hence, the best mappingσ
I

is discovered by the
CrossThreshold algorithm immediately after the first
iteration, while bothI

T A
andI

MDB
for this top-1 problem

are exponential inn.


