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Abstract

There has been a great deal of hype about cloud computing. Cloud computing
promises infinite scalability and high availability at low cost. Currently, Amazon
Web Services is the most popular suite of cloud computing services, but other ven-
dors such as Adobe, Google, and Microsoft are also appearing on the market place.
The purpose of this paper is to demonstrate the opportunities and limitations of us-
ing cloud computing as an infrastructure for general-purpose Web-based database
applications. The paper studies alternative consistency protocols in order to build
database services on top cloud storage services. Furthermore, the paper studies al-
ternative client-server and indexing architectures. Both the performance (response
time) and cost trade-offs are studied.

1 Introduction
The Web has made it easy to provide and consume content of any form. Building a
Web page, starting a blog, and making both searchable for the public have become a
commodity. Arguably, the next wave is to make it easy to provide services on the Web.
Services such as Flickr, YouTube, SecondLife, or Myspace lead the way. The ultimate
goal, however, is to make it easy for everybody to provide such services — not just the
big guys. Unfortunately, this is not yet possible.

Clearly, there are non-technical issues that make it difficult to start a new service on
the Web. Having the right business idea and effective marketing are at least as difficult
on the Web as in the real world. There are, however, also technical difficulties. One
of the most crucial problems is the cost to operate a service on the Web, ideally with
24 × 7 availability and acceptable latency. To run a large-scale service like YouTube,
several data centers all around the world are needed. But, even running a small service
with a few friends involves a hosted server and a database which both need to be ad-
ministrated. Running a service becomes particularly challenging and expensive if the
service is successful: Success on the Web can kill! In order to overcome these issues,
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utility computing (aka cloud computing) has been proposed as a new way to operate
services on the Internet [27].

The goal of cloud computing is to provide the basic ingredients such as storage,
CPUs, and network bandwidth as a commodity by specialized utility providers at low
unit cost. Users of these utility services do not need to worry about scalability be-
cause the storage provided is virtually infinite. In addition, utility computing provides
full availability; that is, users can read and write data at any time without ever being
blocked; the response times are (virtually) constant and do not depend on the number of
concurrent users, the size of the database, or any other system parameter. Furthermore,
users do not need to worry about backups. If components fail, it is the responsibility
of the utility provider to replace them and make the data available using replicas in the
meantime. Another important reason to build new services based on utility computing
is that service providers only pay for what they get; i.e., pay by use. No investments are
needed upfront and the cost grows linearly and predictably with the usage. Depending
on the business model, it is even possible for the service provider to pass the cost for
storage, computing, and networking to the end customers because the utility provider
meters the usage.

The most prominent utility service today is AWS (Amazon Web Services) with
its simple storage service, S3, and elastic computing cloud, EC2, as the most popular
representatives. Adobe Share and Microsoft’s SQL Server Data Services (SSDS) are
additional examples for such commercial utility services. Furthermore, Google has
recently provided a suite of services towards the same goal including MegaStore and
Google AppEngine. Today, AWS and in particular S3 are most successful for multi-
media objects. Smugmug (www.smugmug.com), for instance, is implemented on top
of S3 [8]. Furthermore, S3 is popular as a backup device. For instance, there already
exist products to backup data from a MySQL database to S3 [26]. As Google’s Ap-
pEngine demonstrates, utility computing is quickly evolving as a candidate platform
in order to develop general-purpose Web-based applications. The goal of this paper is
to explore alternative options and architectures in order to leverage utility computing
services for such applications.

The first contribution of this paper is to define an (abstract) API for utility services.
This API can be implemented effectively using AWS and other utility service offer-
ings. As all these offerings vary significantly today and there do not seem to be any
standardization activities, such a reference API is important as a basis for all further
developments in this area.

The second contribution of this paper is the development of alternative protocols in
order to ensure the consistency of data stored using utility services such as S3. Cur-
rently, S3 only provides a low level of consistency, referred to as eventual consistency
and has no support to coordinate and synchronize parallel access to the same data. As a
result, this paper presents a number of protocols in order to orchestrate concurrent up-
dates to S3. To this end, this paper adapts the protocols presented in [7] to our reference
API for utility services. Furthermore, this paper presents and evaluates two additional
protocols, locking and snapshot isolation, and their implementation on top of that ref-
erence API. This paper also contains some sketches in order to discuss the correctness
of the protocols.

The third contribution of this paper is to study alternative client-server architectures
in order to build Web-based applications on top of utility services. One big question
is whether the application logic should run on the client or should run on a server
provided by the utility services (e.g., EC2). The second question concerns the imple-
mentation and use of indexes; for instance, is it beneficial to push query processing
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into the cloud and use services such as SimpleDB or SSDS as opposed to implement-
ing indexing on the client-side. Obviously, the experimental results depend strongly
on the current prices and utility service offerings; nevertheless, there are fundamental
trade-offs which are not likely to change.

Finally, a fourth contribution of this paper is to discuss alternative ways to imple-
ment the reference API for utility services based on AWS. Ideally, a utility service
provide would directly implement the API, but as mentioned above, such standardiza-
tion is not likely to happen in the foreseeable future.

Again, we would like to emphasis that we are aware that the results presented in
this paper capture merely a snapshot (October 2008) of the current state-of-the-art in
utility computing. Given the success of AWS and the recent offerings by Google, it
is likely that there the utility computing market and its offerings will evolve quickly.
Nevertheless, we believe that the techniques and trade-offs discussed in this paper are
fundamental and are going to continue to stay relevant for a longer period of time; in
a similar way as the performance results of a paper written twenty years ago are still
relevant today even though the underlying hardware has changed significantly over the
last 20 years.

The remainder of this paper is organized as follows: Section 2.2 describes AWS
(i.e., S3, SQS, EC2 and SimpleDB) and defines an (abstract) API for utility services
which forms the basis for the remainder of the paper. Even though there are many
utility service offerings today, AWS is described in detail because AWS was used for
the experiments and because AWS has the most complete and mature suite of services.
Section 3 presents the proposed architecture to build Web-based database applications
on top of utility services. Sections 4 and 5 present the protocols to implement reads and
writes on top of S3 at different levels of consistency. Section 6 gives implementation
details of these protocols using AWS. Section 7 summarizes the results of experiments
conducted using the TPC-W benchmark. Section 8 discusses related work. Section 9
contains conclusions and suggests possible avenues for future work.

2 Cloud Computing
Cloud computing allows users to access technology-enabled services from the Internet
(”in the cloud”) without owning the technology infrastructure that supports them. The
range of services today varies from basic infrastructure services, e.g. providing storage
space, to rather specialized services for payment, identity authentication and others.
This section reiterates the advantages of using cloud services. Furthermore, this section
provides an overview of the services offered today by using Amazon Web Services as
an example. Finally, this section presents a generalized API that is used as a basis
for the remainder of this paper and in order to enable to efficiently build database
applications in the cloud.

2.1 Why Cloud Computing?
So far there is no standard definition of cloud or utility computing. Some people refer
to utility computing as pricing model and to cloud computing as an architecture. It is
even possible to encounter opposite definitions wherein utility computing is seen as the
infrastructure service and cloud computing refers to the commercialization of those.
This paper uses both terms interchangeably in order to refer both to the pricing model
and the technical infrastructure.
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There are many types of cloud services. At the core, cloud computing provides
hardware resources which can be rented and consumed in a fine-grained manner; i.e.,
CPU cycles and storage space. The business model is pay-per-use. That is, users need
not make an investment upfront and pay for the hardware resources they consume. On
top of these basic services, cloud computing providers offer other, higher-level services
such as authentification services, queues, or payment services. Again, no investment
for software licenses need to be made by the user; instead the usage of the services is
metered and billed accordingly.

The success of cloud computing is based on an economy of scale. The cloud com-
puting provider can offer services to millions of users at a lower price than users can
accomodate these services themselves. In addition to the price, the quality of the ser-
vice is a major incentive to use cloud services. Specifically, the cloud provider is re-
sponsible for guaranteeing high availability and reliability. Users expect almost 100%
availibity and (virtually) constant response time independent of the number of concur-
rent users. Furthermore, users of cloud storage services do not need to worry about
backups. If components fail, it is the responsibility of the provider to replace them and
make the data available using replicas in the meantime. Furthermore, users of cloud
services do not need to worry about scalability because the offer is virtually infinite.
The IT cost grows linearly with the business, rather than in a step-wise function as for
traditional computing in which businesses need to buy hardware in the granularity of
machines (rather than CPU cycles). In summary, the goal of cloud computing is to
provide more for less.

While the advantages of cloud computing are compelling, there are also important
disadvantages. Although some services are quite powerful, they might not directly sat-
isfy the requirements for a certain task. A specific concern for operators of Web-based
database applications is that storage providers usually give only relaxed consistency
guarantees. Although this is sufficient for certain scenarios, it does not suit every ap-
plication. If an application requires higher guarantees, it must be build these on top, as
part of the application or by using other services. Second, infrastructure hosted in the
cloud is often slower because of network latency. E.g. storage services are orders of
magnitudes slower than locally attached disks. Furthermore, similar services might not
be homogeneously priced and even for the same service prices may be discontinuous
in usage due to mass discounts. Both issues, latency and prices, introduce a complete
new set of trade-offs which have to be made for building applications inside the cloud.
The purpose of this paper is study these trade-offs.

2.2 AWS
More and more providers appear on the cloud computing market place (reference cloud
overview). The most prominent provider today is Amazon with its Amazon Web Ser-
vices (AWS). Amazon not only offers the most complete stack of services, but makes
it especially easy to integrate different services. Therefore, this section describes AWS
in more detail as the most prominent representative for the wide range of today’s offer-
ings. The focus of this short survey is on infrastructure services (e.g., storage and CPU
cycles) because those form the foundation for building Web-based applications. More
specialized services like Amazon’s payment service are beyond the scope of this work.
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2.2.1 Storage Service

Amazon’s storage service is named S3 standing for Simple Storage System. Concep-
tually, it is an infinite store for objects of variable size (minimum 1 Byte, maximum
5 GB). An object is a byte container which is identified by a URI. Clients can read
and update S3 objects remotely using a SOAP- or REST-based interface, e.g., get(uri)
returns an object and put(uri, bytestream) writes a new version of the object. A spe-
cial getIfModifiedSince(uri, timestamp) method allows retrieving the new version of
an object only if the object has changed since the specified timestamp. Furthermore,
user-defined metadata (maximum 4 KB) can be associated to an object and can be read
and updated independent of the rest of the object.

In S3, each object is associated to a bucket. That is, when a user creates a new
object, the user specifies into which bucket the new object should be placed. S3 pro-
vides several ways to scan through objects of a bucket. For instance, a user can retrieve
all objects of a bucket or only those objects whose URIs match a specified prefix.
Furthermore, the bucket can be the unit of security: Users can grant read and write
authorization to other users for entire buckets. Alternatively, access privileges can be
given on individual objects.

S3 is not for free. It costs USD 0.15 to store 1 GB of data for one month if the
data is stored in the USA. Storing 1 GB in a data-center in Europe costs USD 0.18.
In comparison, a 160 GB disk drive from Seagate costs USD 70 today. Assuming a
two-year life time of a disk drive, the cost is about USD 0.02 per GB and month (power
consumption is not included). Given that disk drives are never operated at 100 percent
capacity and considering mirroring, the storage cost of S3 is in the same ballpark as
that for regular disk drives. Therefore, using S3 as a backup device is a no-brainer.
Users, however, need to be more careful to use S3 for live data because every read and
write access to S3 comes with an additional cost of USD 0.01 (0.012 for Europe) per
10,000 get requests, USD 0.01 (0.012 for Europe) per 1,000 put requests, and USD
0.10 to USD 0.17 per GB of network bandwidth consumed (the exact rate depends on
the total monthly volume of a user). For this reason, services like smugmug use S3
as a persistent store, yet operate their own servers in order to cache the data and avoid
interacting with S3 as much as possible [8].

Another reason to make aggressive use of caching is latency. Table 1 shows the
response time of get requests and the overall bandwidth of get requests, depending on
the page size (defined below). These experiments were executed using a Mac (2.16
GHz Intel Core Duo with 2 GB of RAM) connected to the Internet and S3 via a fast
Internet connection. (The results of a more comprehensive performance study of S3 are
reported in [17].) The results in Table 1 support the need for aggressive caching of S3
data; reading data from S3 takes at least 100 msecs (Column 2 of Table 1) which is two
to three orders of magnitudes longer than reading data from a local disk. Writing data
to S3 (not shown in Table 1) takes not much more time as reading data. While latency is
an issue, S3 is clearly superior to ordinary disk drives in terms of throughput: Virtually,
an infinite number of clients can use S3 concurrently and the response times shown in
Table 1 are practically independent of the number of concurrent clients.

Column 3 of Table 1 shows the bandwidth a European client gets when reading
data from S3 (S3 servers located in the USA). It becomes clear that an acceptable
bandwidth can only be achieved if data are read in relatively large chunks of 100 KB
or more. Therefore, small objects should be clustered into pages and a whole page of
small objects should be the unit of transfer. The same technique to cluster records into
pages on disk is common practice in all state-of-the-art database systems [19] and we

5



Page Size [KB] Resp. Time [secs] Bandwidth [KB/secs]
10 0.14 71.4
100 0.45 222.2

1,000 2.87 348.4

Table 1: Resp. Time, Bandwidth of S3, Vary Page Size
External Client in Europe

adopt this technique for this study.
Amazon has not published details on the implementation of S3 and it does not

give any guarantees. Taking [13] as a reference for Amazon’s design principles (even
though [13] describes a different system), it seems that S3 replicates all data at several
data centers. Each replica can be read and updated at any time and updates are prop-
agated to replicas asynchronously. If a data center fails, the data can nevertheless be
read and updated using a replica at a different data center; reconciliation happens later
on a last update wins basis. This approach guarantees full read and write availability
which is a crucial property for most Web-based applications: No client is ever blocked
by system failures or other concurrent clients. Furthermore, this approach guarantees
persistence; that is, the result of an update can only be undone by another update. Ad-
ditional guarantees are not assumed in this paper. The purpose of this work is to show
how such additional consistency guarantees can be provided on top of S3. In order to
exploit S3’s (apparent) last update wins policy, all protocols make sure that there is suf-
ficient time between two updates to the same S3 object (i.e., several seconds, Section
4).

2.2.2 Servers

Amazon’s offering for renting computing hardware is named Elastic Computing Cloud,
short EC2. Technically, the client gets a virtual machine which is hosted on one of the
Amazon servers. Like S3, EC2 is not for free. The cost varies from USD 0.10 to 0.80
per hour depending on the configuration. For example, the cheapest machine costs
USD 0.10, the second cheapest machine costs USD 0.2 per hour, but this machine
comes with 5 times as high computing power as the cheapest machine. Independent of
the configuration, the fee must be paid for the time the machine is leased regardless of
how heavily the machine is used.

One interesting aspect of EC2 is that the network bandwidth from an EC2 machine
to other Amazon Services is free. Nevertheless, the “per request” charges are applicable
in any case. For example, if a user makes a request from an EC2 machine to S3, then
the user must pay USD 0.01 per 10,000 get requests. As a result, it seems advantageous
to have large block sizes for transfer between EC2 and S3.

EC2 is built on top of XEN an open source hypervisor [33]. It allows to operate a
variety of linux/unix images. To the best of our knowledge, EC2 does not support any
kind of virtual machine migrations from one EC2 machine to another EC2 machine. As
a result, it is difficult to implement fault-tolerance using EC2. If a machine goes down,
the state is lost unless it was stored somewhere else, e.g., on S3. From a performance
perspective, it is attractive to run applications on EC2 if the data is hosted on S3 because
the latency of the communication between EC2 and S3 is much faster than between an
external client and EC2. Table 2 shows the response times of EC2/S3 communication,
again varying the page size. Comparing Table 2 with 1, the performance difference
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Page Size [KB] Resp. Time [secs] Bandwidth [KB/secs]
10 0.035 333.3
100 0.046 2173.9

1,000 0.128 7812.5

Table 2: Resp. Time, Bandwidth of S3, Vary Page Size
EC2 Client

Operation Time [secs]
send 0.31

receive 0.16
delete 0.16

Table 3: Response Times of SQS

becomes apparent. Nevertheless, S3 is still much slower than a local disk, even when
used from an EC2 machine.

In addition to the reduction of latency, EC2 is also attractive to implement missing
infrastructure services such as a global transaction counter. The use of EC2 for this
purpose is discussed in more detail in Section 6.

2.2.3 Queues

Amazon also provides a queue service named Simple Queueing System short SQS.
SQS allows users to manage a (virtually) infinite number of queues with (virtually)
infinite capacity. Each queue is referenced by a URI and supports sending and receiv-
ing messages via a HTTP or REST-based interface. The maximum size of a message
is 8 KB. Any bytestream can be put into a message; there is no pre-defined schema.
Each message is identified by a unique id. Messages can only be deleted by a client if
the client received the message before. Another important property of SQS is, that it
supports the locking of a message for up to 2 hours. Amazon changed the prices for
SQS recently: The prices as of (2008-10-01) are USD 0.01 per 10,000 requests. Fur-
thermore, the network bandwidth costs at least USD 0.10 per GB of data transferred,
unless the requests originated from an EC2 machine. As for S3, the cost for the con-
sumed network bandwidth decreases, the more data is transferred. USD 0.10 per GB
is the minimum for heavy users.

Table 3 lists the round trip times of the most critical SQS operations used in this
study; i.e., the operations that impact the performance of a Web-based application built
using SQS. Each call to SQS either returns a result (e.g., receive returns messages)
or returns an acknowledgment (e.g., send, delete). The round trip time is defined as
the total (wallclock) time between initiating the request from the application and the
delivery of the result or ack, respectively. For these experiments, the message size was
fixed to 100 Bytes, but the sensitivity to the message size is low.

Again, Amazon has not published any details on the implementation of SQS. It
seems, however, that SQS was designed along the same lines as S3. The messages of
a queue are stored in a distributed and replicated way, possibly on many machines in
different data centers. Clients can initiate requests at any time; they are never blocked
by failures or other clients and will receive an answer (or ack) in constant time. For
instance, if one client has locked all messages of a queue as part of a receive call, then
another concurrent client which initiates another receive call will simply get an empty
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set of messages as a result. Since the queues are stored in a distributed way, SQS only
makes a best-effort when returning messages in a FIFO manner. That is, there is no
guarantee that SQS returns the first message of a queue as part of a receive call or that
SQS returns the messages in the right order. Although SQS is designed to be extremely
reliable, Amazon enforces deletions of messages after 4 days in the queue and retains
the right to delete unused queues.

2.2.4 Indexing Service

Amazon SimpleDB is a recent extension to AWS family of services. At the time of
writing this paper, SDB was still in beta and only available for a restricted set of users.
With SimpleDB, Amazon offers a service to run simple queries on structured data.
In SimpleDB, each item is associated to a domain which has associated attributes.
SimpleDB automatically indexes an item as it is added to a domain. Each item can
have up to 256 attribute values and each attribute value can range from 1 to 1,024
bytes. SimpleDB does not require pre-defined schemas so that any item with any kinds
of attributes can be inserted and indexed.

Unfortunately, SimpleDB has a number of limitations. First, SimpleDB does not
support any kind of bulkloading: every item must be inserted individually, which makes
bulkloading both slow and expensive. Second, SimpleDB only supports text values
(e.g., strings). If an application requires integers, dates, or floating point numbers,
those values must be encoded properly. Third, the size limit of 1,024 bytes per attribute
turns out to be too restrictive for many applications. Amazon recommends the use of
S3 for anything larger, but obviously those data types cannot be indexed in S3. Another
restriction is the expressiveness of the SimpleDB query language. The language allows
for simple comparisons, negation, range expressions and queries on multiple attributes,
but does not support joins or any other complex operation. Compared to a traditional
database system, SimpleDB only provides eventual consistency guarantees in the same
way as S3: That is, there are no guarantees when committed updates are propagated to
all copies of the data.

As all services of AWS, SimpleDB is not for free. Unlike S3 and EC2, the cost
is difficult to predict as it depends on the machine utilization of a request. Amazon
charges USD 0.14 per machine hour consumed, USD 1.5 per GB of structured data
stored per month, plus network bandwidth in the range of USD 0.10 to USD 0.17 per
GB for communication with external (non-EC2) clients, depending on the consumed
volume per month.

2.3 Reference Cloud API for Database Applications
This section describes an API that abstracts from the details of cloud services such as
those offered by AWS. All protocols and techniques developed in the remainder of this
paper for the development of Web-based database applications are based on calls to
this API. This API specifies not only the interfaces but also the guarantees the different
services should provide. Section 6 shows how this API can be implemented on top of
AWS.

2.3.1 Storage Services

The most important building block is a reliable store. The following is a list of methods
which can be easily implemented using today’s cloud services (e.g., AWS and Google),
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thereby abstracting away from vendor specifics. This list can be seen as a greatest
common divisor for all current cloud service providers and the minimum required in
order to build stateful applications:

• put(uri as string, payload as binary, metaData as key-value-pairs) as void: Stores
an item (or object) identified by the given URI. An item consists of the payload,
the meta-data, and a timestamp of the last update. If the URI already exists, the
item gets overwritten without warning; otherwise a new item is created.

• get(uri as string) as item: Retrieves the item (payload, meta-data, and times-
tamp) associated to the URI.

• get-metadata(uri as string) as key-value-pairs: Returns the meta-data of an item.

• getIfModifiedSince(uri as string, timestamp as time) as item: Returns the item
associated to the URI only if the timestamp of the item is greater than the times-
tamp passed as a parameter of the call.

• listItems(uriPrefix as string) as items: Lists all items whose URIs match the
given URI prefix.

• delete(uri as string) as void: Deletes an item.

For brevitity, we do not specify all error codes. Furthermore, we do not specify the
operations for granting and removing access rights because implementing security on
cloud services is beyond the scope of this paper.

In terms of consistency, we expect the cloud storage service to support eventual
consistency [30]. Again, eventual consistency seems to be the standard offered by most
cloud services today because it allows to scale out and provide 100 percent availability
at low cost.

2.3.2 Machine Reservation

Building customized services in the cloud requires to run personal code in the cloud.
The current trend is to provide either a hosting platform for a specific language like
Google’s AppEngine [18] or a facility to start a virtualized machine as done in Ama-
zons EC2. Hosting platforms are often restricted to a certain programming language
and normally hide details about the way how the code gets executed. Since virtualized
machine are more general we propose the API to allow to start and shutdown machines
as follows:

• start(machineImage as string) as machineDescription: Starts a given image and
returns the virtual machine information such as virtual machine id and ip address.

• stop(machineId as string) as void: Stops the virtual machine with the machineId

For brevity, methods for creating own images are not described.

2.3.3 Simple Queues

As shown in Section 4, queues are an important building block in order to create Web-
based database applications in the cloud. A queue should support the following opera-
tions (again, error codes are not specified for brevity):
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• createQueue(uri as string) as void: Creates a new queue with the given URI.

• deleteQueue(uri as string) as void: Deletes a queue.

• listQueues() as strings: Returns the URIs as string of all queues.

• sendMessage(uri as string, payload as binary) as integer: Sends a message with
the payload as the content to the queue and returns the MessageID. The Mes-
sageID is an integer (not necessarily ordered by time).

• receiveMessage(uri as string, N as integer) as message: Retrieves N messages
from the queue. If less than N messages are available, as many messages are
returned as possible. A message is returned with its MessageId and payload, of
course.

• deleteMessage(uri as string, messageId as integer) as void: Deletes a message
(identified by MessageId) from a queue (identified by its URI).

Queues should be reliable and never lose a message. (Unfortunately, SQS does not
fulfil this requirement because it deletes messages after four days. Workarounds are
described in Section 6.) Simple queues do not make any FIFO guarantees. That is,
a receiveMessage call may return the second message without the first message. Fur-
thermore, Simple Queues do not make any guarantees that all messages are available
at all times; that is, if there are N messages in the queue, then it is possible that are re-
ceiveMessage call asking for N messages returns less than N messages. All protocols
that are built on top of these Simple Queues must respect these flaws. As will become
clear in Sections 4 and 5, the performance of a protocol improves the better the queue
conforms to the FIFO principle and the more messages the queue returns as part of a
receiveMessage calls. Some protocols require stricter guarantees; those protocols must
be implemented on top of Advanced Queues.

2.3.4 Advanced Queues

Compared to Simple Queues, Advanced Queues provide stronger guarantees. Specif-
ically, Advanced Queues are able to provide all messages to a user at any moment.
As a consequence, requests to these queues are expected to be more expensive and
Advanced Queues may temporarily not available. An additional difference between
Advanced queues and Simple Queues is the availability of operators in the Advanced
queue which allow to filter messages. Furthermore, Advanced Queues provide a way
to attach a user-defined key (in addtion to the MessageID) to each message. This key
allows further filtering of messages. Again, the details of our implementation of Ad-
vanced Queues on top of AWS are given in Section 6. The API of Advanced Queues is
given in the following:

• createAdvancedQueue(uri as string) as void: Creates a new Advanced Queue
with the given URI.

• deleteAdvancedQueue(uri as string) as void: Deletes a queue.

• sendMessage(uri as string, payload as binary, key as integer) as integer: Sends a
message with the payload as the content to the queue and returns the MessageID.
The MessageID is an integer that is ordered according to the arrival time of
the message in the queue (messages received earlier have lower MessageID).
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Furthermore, Advanced Queues support the attachment of user-defined keys to
messages (represented as intergers) in order to carry out further filtering.

• receiveMessage(uri as string, N as integer, messageIdGreaterThan as integer)
as message: Returns the top N messages whose MessageID is higher than the
“messageIdGreaterThan.” If less than N such messages exist, the Advanced
Queue returns all matching messages. Unlike Simple Queues, the receiveMes-
sage method of Advanced Queues respects the FIFO principle.

• receiveMessage(uri as string, N as integer, keyGreaterThan as integer, keyLessThan
as integer): Retrieves the top N messages whose key matches the specified key
value range. In terms of FIFO and completeness guarantees, this version of
the receiveMessage operation behaves exactly like the receiveMessage operation
which filters on MessageID.

• receiveMessage(uri as string, N as integer, olderThan in seconds): Retrieves the
top N messages in the queue which are older than olderThan seconds.

• deleteMessage(uri as string, messageId as integer) as void: Deletes a message
(identified by MessageId) from a queue (identified by its URI).

• deleteMessages(uri as string, keyLessThan as integer, keyGreaterThan as inte-
ger) as void Deletes all messages whose key are in the specified range.

2.3.5 Locking Service

The locking service implements a centralized service to keep track of read- and write-
locks. A client (identified by a ClientID) is able to acquire a shared lock on a resource
specified by a URI. Furthermore, users can acquire exclusive locks. Following conven-
tional wisdom, several different clients can hold shared locks at the same time whereas
exclusive locks can only be held by a single client and exclusive locks preclude the
granting of shared locks. Locks are only granted for a certain timeframe. Expiring
locks after a specified timeout, ensures the liveliness of the system in case a client
which holds a lock crashes. As exclusive locks are rather often used, shared locks are
only required for the 2 Phase Locking protocol presented in Section5.5. Fortunately,
exclusive locks can be easily implemented on top of SQS as shown in Section 6, but
implementing it as a dedicated cloud service as part of the cloud infrastructure may be
more efficient than implementing it on top of basic cloud services.

The Locking Service API has the following operations:

• setTimeOut(prefix as string, timeout as integer) as void: Sets the timeout of
locks for resources identified by a certain URI prefix.

• acquireXLock(uri as string, ClientId as string) as boolean: Acquires an exclu-
sive lock. Returns true if the lock was granted and false, otherwise.

• acquireSLock(uri as string, ClientId as string) as boolean: Acquires a shared
lock. Returns true, if the lock was granted, false, otherwise.

• releaseLock(uri as string, ClientId as string) as boolean: Releases a lock.

In terms of reliability, it is possible that the locking service fails. It is also possible
that the locking service loses its state as part of such a failure. If a locking service
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recovers after such a failure it much refuse all acquireXLock and acquireSLock requests
for the maximum timeout period in order to guarantee that all clients who hold locks
can finish their work as long as they are holding the locks.

2.3.6 Advanced Counters

The advanced counter service is a special service designed for implementing the Gen-
eralized Snapshot Isolation protocol (Section 5). As its name implies, the Advanced
Counter Service implements counters which are incremented with every increment call.
Each counter is identified by a URI. A special feature of the Advanced Counter Service
is that it allows to validate counter values and that it allows to get the highest validated
counter value. If not explicitly validated, counter values are automatically validated
after a specified timeout period. As shown in Section 5.4, this validation feature is im-
portant in order to implement the commit protocol of snapshot isolation. In summary,
the API contains the following operations:

• setTimeOut(prefix as string, timeout as integer) as void: Sets the timeout of all
counters for a certain URI prefix.

• increment(uri as string) as integer: Increments the counter, identified by the uri
parametner, and returns the current value of the counter. If not counter with that
URI exists, a new counter is created and initialized to 0.

• validate(uri as string, value as integer) as void: Validates a counter value. If
not called explicitly, the counter value is validated automatically considering the
timeout interval after the increment call that created that counter value.

• getHighestValidatedValue(uri as string) as integer: Returns the highest vali-
dated counter value.

Like the Lock Service, all protocols must be designed respecting that the Advanced
Counter Service can fail at any time. When the Advanced Counter Service recovers, it
resets all counters to 0. However, after restart the Advanced Counter Service refuses all
requests (returns error) for the maximum timeout period of all counters. The maximum
timeout period of all counters must, thus, be stored persistently and recoverable (e.g.,
in services like S3).

3 Database Architecture Revisited
As mentioned in Section 2.2.1, cloud computing promises infinite scalability, availabil-
ity, and throughput. This section shows that many textbook techniques to implement
tables, pages, B-trees, and logging can be applied to implement a database on top of
the Cloud API of Section 2.3. The purpose of this section is to highlight the com-
monalities between a disk-based and cloud-based database system. The reader should
not be surprised by anything said in this section. Sections 4 and 5, then, highlight the
differences.

3.1 Client-Server Architecture
Figure 1 shows the proposed architecture of a database implemented on top of the
Cloud Storage API described in Section 2.3.1. This architecture has a great deal of

12



Cloud Storage API

Page Manager

Record Manager

Application

Client 1

Page Manager

Record Manager

Application

Client N

. . .

pages

Figure 1: Shared-disk Architecture

commonalities with a distributed shared-disk database system [29]. The unit of transfer
and buffering is a page. The difference is that pages are stored in the cloud persistently,
rather than on a disk that is directly controlled by the database system. In this archi-
tecture, pages are implemented as items in the Storage Service API of Section 2.3.1.
Consequently, pages are identified by a URI.

As in traditional database systems, a page contains a set of records or index en-
tries. Following the general DB terminology, we refer to records as a bytestream of
variable size whose size is constrained by the page size. Records can be relational
tuples or XML elements and documents. Blobs can be stored directly on the Storage
Service or using the techniques devised in [6]; all these techniques are applicable in a
straightforward way so that Blobs are not discussed further in this paper.

Within a client, there is a stack of components that support the application. This
work focuses on the two lowest layers; i.e., the record and page managers. All other
layers (e.g., the query processor) are not affected by the use of cloud services and are,
thus, considered to be part of the application. The page manager coordinates read and
write requests to the Storage Service and buffers pages in local main memory or disk.
The record manager provides a record-oriented interface, organizes records on pages,
and carries out free-space management for the creation of new records. Applications
interact with the record manager only, thereby using the interface described in the next
subsection.

Throughout this work, we use the term client to refer to software artifacts that
retrieve pages from and write pages back to the Cloud Storage Service. It is an inter-
esting question on whether parts of the client application stack should run on machines
provided by the cloud service provider (e.g., EC2 machines) and which parts of the
application stack should run on machines provided by end users (e.g., PCs, laptops,
mobile phones, etc.). Indeed, it is possible to implement Web-based database architec-
ture using this architecture without using any machines from the cloud service provider.
Section 7 explores the performance and cost trade-offs of different client-server con-
figurations in more detail.

A related question concerns the implementation of indexes: One option is to use
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SimpleDB (or related services) in order to implement indexing. An alternative is to
implement B-trees on top of the cloud services in the same way as traditional database
systems implement B-trees on top of disks. Again, the trade-offs are studied as part
of performance experiments presented in Section 7. In order to avoid confusion, this
section describes how B-tree indexes can be implemented on top of the Cloud Service
API; integrating services like SimpleDB (SDB) for indexing is straightforward and a
detailed description is, thus, omitted.

Independent of whether the client application stack runs on machines of users or
on, say, EC2 machines, the architecture of Figure 1 is designed to support thousands if
not millions of clients. As a result, all protocols must be designed in such a way that
any client can fail at any time, possibly without ever recovering. As a result, clients are
stateless. They may cache data from the cloud, but the worst thing that can happen if a
client fails is that all the work of that client is lost.

In the remainder of this section, the record manager, page manager, implementation
of (B-tree) indexes, and logging are described in more detail. Meta-data management
such as the management of a catalogue which registers all collections and indexes is
not discussed in this paper. It is straightforward to implement in this architecture in
the same way as the catalogue of a traditional (relational) database is stored in the
database itself. Furthermore, security is not described because it is beyond the scope
of this paper. Some notes on alternative security models are given in [7], but a more
comprehensive coverage of all security issues is an important avenue for future work.

3.2 Record Manager
The record manager manages records (e.g., relational tuples). Each record is associated
to a collection (see below). A record is composed of a key and payload data. The key
uniquely identifies the record within its collection. Both key and payload data are
bytestreams of arbitrary length; the only constraint is that the size of the whole record
must be smaller than the page size. (The implementation of Blobs is not addressed in
this paper, as mentioned in the previous section.)

Physically, each record is stored in exactly one page which in turn is stored as a
single item using the Cloud Store API. Logically, each record is part of a collection
(e.g., a table). In our implementation, a collection is identified by a URI. All pages
in the collection use the collection’s URI as a prefix. The record manager provides
functions to create new records, read records, update records, and scan collections.

Create(key, payload, uri): Creates a new record into the collection identified by
uri. There are many alternative ways to implement free-space management [24], and
they are all applicable in this context. In our implementation, free-space management
is carried out using a B-tree; this approach is sometimes also referred to as index-
organized table. That is, the new record is inserted into a leaf of a B-tree. The key
must be defined by the application and it must be unique.

If the key is not unique, then create returns an error (if the error can be detected
immediately) or ignores the request (if the error cannot be detected within the bound-
aries of the transaction, Section 4.3). In order to implement keys which are guaranteed
to be unique in a distributed system, we used uuids generated by the client’s hardware
in our implementation.

Read(key as uuid, uri as string): Reads the payload data of a record given the key
of the record and the URI of the collection.

Update(key as uuid, payload as binary, uri as string): Update the payload informa-
tion of a record. In this study, all keys are immutable. The only way to change a key of
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a record is to delete and re-create the record.
Delete(key as uuid, uri as string): Delete a record.
Scan(uri as string): Scan through all records of a collection. To support scans, the

record manager returns an iterator to the application.
In addition to the create, read, update, and scan methods, the API of the record

manager supports commit and abort methods. These two methods are implemented
by the page manager, described in the next section. Furthermore, the record manager
exposes an interface to probe indexes (e.g., range queries): Such requests are either
handled by services like SimpleDB (straightforward to implement) or by B-tree indexes
which are also implemented on top of the cloud infrastructure. The implementation of
such “client-side” B-tree indexes is described in Section 3.4.

3.3 Page Manager
The page manager implements a buffer pool directly on top of the Cloud Storage API. It
supports reading pages from the service, pinning the pages in the buffer pool, updating
the pages in the buffer pool, and marking the pages as updated. The page manager also
provides a way to create new pages. All this functionality is straightforward and can be
implemented just as in any other database system. Furthermore, the page manager im-
plements the commit and abort methods. We use the term transaction for a sequence of
read, update, and create requests between two commit or abort calls. It is assumed that
the write set of a transaction (i.e., the set of updated and newly created pages) fits into
the client’s main memory or secondary storage (e.g., flash or disk). If an application
commits, all the updates are propagated to the cloud via the put method of the Cloud
Storage Service (Section 2.3.1) and all the affected pages are marked as unmodified in
the buffer pool. How this propagation works is described in Section 4. If the applica-
tion aborts a transaction, all pages marked modified or new are simply discarded from
the buffer pool, without any interaction with the cloud service. We use the term trans-
action liberally in this work: Not all the protocols presented in this paper give ACID
guarantees in the DB sense. The assumption that the write set of a transaction must
fit in the client’s buffer pool can be relaxed by allocating additional overflow pages for
this purpose using the Cloud Storage Service; discussing such protocols, however, is
beyond the scope of this paper and rarely needed in practice.

The page manager keeps copies of pages from the Cloud Storage Service in the
buffer pool across transactions. That is, no pages are evicted from the buffer pool as
part of a commit. An abort only evicts modified and new pages. Pages are refreshed in
the buffer pool using a time to live (TTL) protocol: If an unmodified page is requested
from the buffer pool after its time to live has expired, the page manager issues a get-if-
modified-since request to the Cloud Storage API in order to get an up-to-date version,
if necessary (Section 2.3.1).

3.4 B-tree Indexes
Again, as mentioned several times earlier, there are two fundamentally different ways
to implement indexes. First, cloud services for indexing such as SimpleDB can be
leveraged. Second, indexes can be implemented on top of the page manager. This
section describes the second approach using B-trees as an example. The first approach
is straightforward. The trade-offs of the two approaches are studied in Section 7.

B-trees can be implemented on top of the page manager in a fairly straightforward
manner. Again, the idea is to adopt existing textbook database technology as much
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as possible. The root and intermediate nodes of the B-tree are stored as pages on the
storage service (via the page manager) and contain (key, uri) pairs: uri refers to the
appropriate page at the next lower level. The leaf pages of a primary index contain
entries of the form (key, payload); that is, these pages store the records of the collection
in the index-organized table (Section 3.2). The leaf pages of a secondary index contain
entries of the form (search key, record key). That is, probing a secondary index involves
navigating through the secondary index in order to retrieve the keys of the matching
records and then navigating through the primary index in order to retrieve the records
with the payload data.

As mentioned in Section 3.1, holding locks must be avoided as much as possible
in a scalable distributed architecture. Therefore, we propose to use B-link trees [22]
and their use in a distributed system as proposed by [23] in order to allow concurrent
reads and writes (in particular splits), rather than the more mainstream lock-coupling
protocol [3]. That is, each node of the B-tree contains a pointer (i.e., URI) to its right
sibling at the same level. At the leaf level, this chaining can naturally be exploited in
order to implement scans through the whole collection or through large key ranges.

A B-tree is identified by the URI of its root page. A collection is identified by the
URI of the root of its primary index. Both URIs are stored persistently as meta-data
in the system’s catalogue on the cloud service. (Section 3.1). Since the URI of an
index is a reference to the root page of the B-tree, it is important that the root page is
always referenced by the same URI. Implementing this requirement involves a slightly
modified, yet straightforward, way to split the root node. Another deviation to the
standard B-tree protocol is that the root node of a B-tree can be empty; it is not deleted
even if the B-tree contains no entries.

3.5 Logging
The protocols described in Sections 4 and 5 make extensive use of redo log records. In
all these protocols, it is assumed that the log records are idempotent; that is, applying
a log record twice or more often has the same effect as applying the log record only
once. Again, there is no need to reinvent the wheel and textbook log records as well as
logging techniques are appropriate [19]. If not stated otherwise, we used the following
(simple) redo log records in our implementation:

• (insert, key, payload): An insert log record describes the creation of a new
record; such a log record is always associated to a collection (more precisely
to the primary index which organizes the collection) or to a secondary index. If
such an insert log record is associated to a collection, then the key represents
the key value of the new record and the payload contains the other data of the
record. If the insert log record is associated to a secondary index, then the key is
the value of the search key of that secondary index (possibly composite) and the
payload is the primary key value of the referenced record.

• (delete, key): A delete log record is also associated either to a collection (i.e.,
primary index) or to a secondary index.

• (update, key, afterimage): An update log record must be associated to a data
page; i.e., a leaf node of a primary index of a collection. An update log record
contains the new state (i.e., after image) of the referenced record. Diffing, logical
logging, or other optimized logging techniques are not studied in this work for
simplicity; they can be applied to cloud databases in the same way as to any
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other database system. Entries in a secondary index are updated by deleting and
re-inserting these entries.

By nature, all these log records are idempotent: In all three cases, it can be deduced
from the database whether the updates described by the log record have already been
applied. With such simple update log records, however, it is possible that the same
update is applied twice if another update overwrote the first update before the second
update. This property can result in indeterminisms as shown in Section 4.3. In order
to avoid these indeterminisms, more sophisticated logging can be used such as the log
records used in Section 5.2.

If an operation involves updates to a record and updates to one or several secondary
indexes, then separate log records are created by the record manager to log the updates
in the collection and at the secondary indexes. Again, implementing this functionality
in the record manager is straightforward and not different to any textbook database
system.

Most protocols studied in this work involve redo logging only. Only the protocol
sketched in Section 5.4 requires undo logging. Undo logging is also straightforward
to implement by keeping the before image in addition to the after image in update log
records, and by keeping the last version of the record in delete log records.

4 Basic Commit Protocols
The previous section showed that a database implemented on top of cloud computing
services can have a great deal of commonalities with a traditional textbook database
system implemented on top of disks. This section addresses one particular issue which
arises when concurrent clients commit updates to records stored on the same page. If
no care is taken, then the updates of one client are overwritten by the other client, even
if the two clients update different records. The reason is that the unit of transfer be-
tween clients and the Cloud Storage Service in the architecture of Figure 1 is a page,
rather than an individual record. This issue does not arise in a (shared-disk) database
system because the database system coordinates updates to the disk(s); however, this
coordination limits the scalability (number of nodes/clients) of a shared-disk database.
This issue does not arise in the way that cloud storage services are used conventionally
because today those are mostly used to store large objects (e.g., multi-media objects) so
that the unit of transfer can be the object; for small records, clustering several records
into pages is mandatory in order to get acceptable performance (Section 2.2.1). Ob-
viously, if two concurrent clients update the same record, then the last updater wins.
Protocols to synchronize concurrent update transactions are sketched in Sections 5.4
and 5.5.

The protocols devised in this section are applicable to all architectural variants de-
scribed in Section 3; i.e., independent of which parts of the client application stack are
executed on end users’ machines (e.g., laptops) and which parts are executed on cloud
machines (e.g., EC2 machines). Again, the term client is used in order to abstract from
these different architectures. The protocols are also applicable to the two different ways
of implementing indexes (SimpleDB vs. client-side B-trees); again, this section refers
to the implementation of “client-side B-trees” because it is the more complicated vari-
ant and in order to avoid confusion. The protocols designed in this section preserve the
main features of cloud computing: clients can fail anytime, clients can read and write
data at constant time, clients are never blocked by concurrent clients, and distributed
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Web-based applications can be built on top of the cloud, without the need to build or
administrate any additional infrastructure. Again, the price to pay for these features is
reduced consistency: In theory, it might take an undetermined amount of time before
the updates of one client become visible at other clients. In practice, the time can be
controlled, thereby increasing the cost (in $) of running an application for increased
consistency (i.e., a reduced propagation time).

4.1 Overview
Figure 2 demonstrates the basic idea of how clients commit updates. The protocol is
carried out in two steps:

• In the first step, the client generates log records for all the updates that are com-
mitted as part of the transaction and sends them to the queues.

• In the second step, the log records are applied to the pages using our Store API.
We call this step checkpointing.1

This protocol is extremely simple, but it serves the purpose. Assuming that the queue
service is virtually always available and that sending messages to the queues never
blocks, the first step can be carried out in constant time (assuming a constant or bounded
number of messages which must be sent per commit). The second step, checkpointing,
involves synchronization (Section 4.3), but this step can be carried out asynchronously
and outside of the execution of a client application. That is, end users are never blocked
by the checkpointing process. As a result, virtually 100 percent read, write, and commit
availability is achieved, independent of the activity of concurrent clients and failures of
other clients.

The protocol of Figure 2 is also resilient to failures. If a client crashes during
commit, then the client resends all log records when it restarts. In this case, it is possible

1We use the word checkpointing for this activity because it applies updates from one storage media
(queues) to the persistent storage. There are, however, important differences to traditional DBMS check-
pointing. Most importantly, checkpointing is carried out in order to reduce the recovery time after failure in
traditional DBMSes. Here, checkpointing is carried out in order to make updates visible.
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that the client sends some log records twice and as a result these log records may
be applied twice. However, applying log records twice is not a problem because the
log records are idempotent (Section 3.5). If a client crashes during commit, it is also
possible that the client never comes back or loses uncommitted log records. In this case,
some log records of the commit have been applied (before the failure) and some log
records of the commit will never be applied, thereby violating atomicity. Indeed, the
basic commit protocol of Figure 2 does not guarantee atomicity. Atomicity, however,
can be implemented on top of this protocol as shown in Section 5.1.

In summary, the protocol of Figure 2 preserves all the features of cloud computing.
Unfortunately, it does not help with regard to consistency. That is, the time before
an update of one client becomes visible to other clients is unbounded in theory. The
only guarantee that can be given is that eventually all updates will become visible
to everybody and that all updates are durable. This property is known as eventual
consistency [30]. In practice, the freshness of data seen by clients can be controlled by
setting the checkpoint interval (Section 4.5) and the TTL value at each client’s cache
(Section 3.1). Setting the checkpoint interval and TTL values to lower values will
increase the freshness of data, but it will also increase the ($) cost per transaction (see
experiments in [7]). Another way to increase the freshness of data (at increased cost)
is to allow clients to receive log records directly from the queue, before they have been
applied to the persistent storage as part of a checkpoint.

The remainder of this section describes the details of the basic commit protocol of
Figure 2; i.e., committing log records to queues (Step 1) and checkpointing (Step 2).

4.2 PU Queues
Figure 2 shows that clients propagate their log records to so-called PU queues (i.e.,
Pending Update queues). These PU queues are implemented as Simple Queues using
the API defined in Section 2.3.3. In theory, it would be sufficient to have a single PU
queue for the whole system. However, it is better to have several PU queues because
that allows multiple clients to carry out checkpoints concurrently: As shown in Sec-
tion 4.3, a PU queue can only be checkpointed by a single client at the same time.
Specifically, we propose to establish PU queues for the following structures:

• Each B-tree (primary and secondary) has one PU queue associated to it. The PU
queue of a B-tree is created when the B-tree is created and its URI is derived
from the URI of the B-tree (i.e., the URI of the root node of the B-tree). All
insert and delete log records are submitted to the PU queues of B-trees.

• One PU queue is associated to each leaf node of a primary B-tree of a collection.
We refer to these leaf nodes as data pages because they contain all the records
of a collection. Only update log records are submitted to the PU queues of data
pages. The URIs of these PU queues are derived from the corresponding URIs
of the data pages.

If services like SimpleDB are used in order to index the data, then the first category
of PU Queues for B-trees are not needed. Records can directly be inserted into and
deleted from such SimpleDB indexes. The second kind of PU Queues for data pages
are still needed in such an architectural variant.

The pseudo code of the commit routine is given in Algorithm 1. In that algorithm,
R.Log refers to the log record generated to capture all updates on Record R. C.Uri
refers to the URI of the collection to which a Record R belongs to; this URI coincides
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with the URI of the root page of the collections primary index. P.Uri is the URI of the
page in which a record resides. R.key is the key value of Record R.

Algorithm 1 Commit Protocol
1: for all modified records R do
2: C ← collection of R
3: if R has no assigned page (i.e., R is a new record) then
4: sendMessage(C.Uri, R.Log);
5: else
6: P ← page of R
7: sendMessage(P .Uri, R.Log);
8: end if
9: for all C.SecondaryIndexes S do

10: if R has a modified value for S then
11: sendMessage(S.Uri, pair(R.Key, V ));
12: end if
13: end for
14: end for

4.3 Checkpoint Protocol for Data Pages
Checkpoints can be carried out at any time and by any node (or client) of the system. A
checkpoint strategy determines when and by whom a checkpoint is carried out (Section
4.5). This section describes how a checkpoint of update log records is executed on data
pages; i.e., leaf nodes of the primary index of a collection. The next section describes
how checkpoints of insert and delete log records are carried out for B-trees. (If services
like SimpleDB are used for indexing, then checkpointing for index inserts and deletes
is not necessary because the inserts and deletes can be applied directly.)

The input of a checkpoint is a PU queue. The most important challenge when
carrying out a checkpoint is to make sure that nobody else is concurrently carrying out
a checkpoint on the same PU queue. For instance, if two clients carry out a checkpoint
concurrently using the same PU queue, some updates (i.e., log records) might be lost
because it is unlikely that both clients will read the exactly same set of log records
from the PU queue (Section 2.3.3). In order to synchronize checkpoints, the Cloud
Lock Service (Section 2.3.5) is used. When a client (or any other authority) attempts
to do a checkpoint on a PU queue, it tries first to acquire an exclusive lock for the PU
queue URI. If that lock request is granted, then the client knows that nobody else is
concurrently applying a checkpoint on that PU queue and proceeds to carry out the
checkpoint. If it is not granted, then the client assumes that a concurrent client is
carrying out a checkpoint and simply terminates the routine (no action required for this
client).

Per definition, the exclusive lock is only granted for a specific time-frame. During
this time period the client must have completed the checkpoint; if the client is not fin-
ished within that timeout period, the client aborts checkpoint processing and propagates
no changes. Setting the timeout for holding the exclusive lock during checkpointing
a data page is critical. Setting the value too low might result in starvation because
no checkpoint will ever be completed if the PU queue has exceeded a certain length.
Furthermore, the timeout must be set long enough to give the Cloud Storage Service
enough time to propagate all updates to a data page to all replicas of that data page.
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On the other hand, a short timeout enables frequent checkpoints and, thus, fresher data.
For the experiments reported in Section 7, a timeout of 30 seconds was used.

Algorithm 2 Checkpoint Protocol
Require: page P , PropPeriod , X ← maximum number of log records per check-

point
1: if acquireWriteLock(P .Uri) then
2: StartT ime← CurrentTime()
3: V ← get-if-modified-since(P .Uri, P .Timestamp)
4: if V 6= Null then
5: P ← V
6: end if
7: M ← receiveMessge(P .Uri, X)
8: for all messages m in M do
9: apply m to P

10: end for
11: if CurrentTime() - StartT ime < LockT imeOut− PropPeriod then
12: put(P .Uri, P .Data)
13: for all messages m in M do
14: deleteMessage(P .Uri, m.Id)
15: end for
16: end if
17: end if

The complete checkpoint algorithm is given in Algorithm 2. The algorithm first
gets an exclusive lock (Line 1) and then re-reads the data page, if necessary (Lines
2-6). In order to find out whether the current version of the data page in the client’s
cache is fresh, each data page contains the timestamp of the last checkpoint as part
of its page header. After that, X update log records are read from the PU Queue
(Line 7). X is a parameter of this algorithm and depends on the timeout period set
for holding the exclusive lock (the longer, the more log records can be applied) and
the checkpoint interval (Section 4.5, the longer, the more log records are available).
In our implementation, X was set to 256. After reading the log records from the PU
Queue, the log records are applied to the local copy of the page in the client’s cache
(Lines 8-10) and the modified page is written back to the Cloud Storage Service (Line
12). Writing back the page to the Cloud Storage Service involves propagating the
new version of the data page to all replicas of the data page inside the cloud. This
propagation must happen within the time out period of the exclusive lock in order
to avoid inconsistencies created by concurrent checkpointing clients. Unfortunately,
Cloud Storage providers do not give any guarantees how long this propagation takes,
but, for instance, Amazon claims that five seconds is a safe value for S3 (one second
is the norm). Accordingly, Line 11 considers a PropPeriod parameter which is set to
five seconds in all experiments reported in Section 7. There are other ways to avoid
inconsistencies with concurrent checkpointing clients; these protocols involve the use
of Advanced Counters or Advanced Queues; going into the details is beyond the scope
of this paper. Finally, at the end of Algorithm 2, the log records are deleted from the
PU Queue (Lines 13-15).

In Line 9 of Algorithm 2, it is possible that the data page must be split because the
records grew. For brevity, this paper does not describe all the details of splitting pages.
In the implementation with index-organized tables, splitting data pages is the same as
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splitting index nodes and carried out along the lines of [23] so that clients which read
a page are not blocked while the page is split. If SimpleDB is used to index the pages,
then a similar protocol can be used, thereby linking the data pages. In Line 12, the
put method to the Cloud Storage Service is considered to be atomic. The exclusive
lock obtained in Line 1 need not be released explicitly because it becomes available
automatically after the timeout period.

This protocol to propagate updates from a PU queue to the Cloud Storage Service is
safe because the client can fail at any point in time without causing any damage. If the
client fails before Line 12, then no damage is made because neither the PU Queue nor
the data page have changed. If the client fails after Line 12 and before the deletion of
all log records from the PU Queue, then it is possible that some log records are applied
twice. Again, no damage is caused in this case because the log records are idempotent
(Section 3.5). In this case, indeterminisms can appear if the PU queue contains several
update log records that affect the same key. As part of a subsequent checkpoint, these
log records may be applied in a different order so that two different versions of the
page may become visible to clients, even though no other updates were initiated in
the meantime. These indeterminisms can be avoided by using the extended logging
mechanism for monotonic writes described in Section 5.2 as opposed to the simple log
records described in Section 3.5.

4.4 Checkpoint Protocol for Client-side B-trees
As mentioned in Section 4.2, checkpointing is only needed for client-side (B-tree) in-
dexes. No checkpointing is required if indexing is implemented using services like
SimpleDB. For client-side B-tree indexes, there is one PU queue associated to each
B-tree: This PU queue contains insert and delete log records for that B-tree. Primary
and secondary indexes are checkpointed in the same way; only the leaf nodes of a pri-
mary index (i.e., data pages) are treated specially. Checkpointing a client-side B-tree
is more complicated than checkpointing a data page because several (B-tree) pages are
involved in a checkpoint and because splitting and deleting pages are frequent. Never-
theless, the basic ideas are the same and can be summarized in the following protocol
sketch:

1. Obtain the token from the LOCK queue (same as Step 1, Section 4.3).

2. Receive log records from the PU queue (Step 2, Section 4.3).

3. Sort the log records by key.

4. Take the first (unprocessed) log record and navigate through the B-tree to the leaf
node which is affected by this log record. Reread that leaf node from S3 using
S3’s get-if-modified method.

5. Apply all log records that are relevant to that leaf node.

6. If the timeout of the token received in Step 1 has not expired (with some padding
for the put), put the new version of the node to S3; otherwise terminate (same as
Step 5, Section 4.3).

7. If the timeout has not expired, delete the log records which were applied in Step
5, from the PU queue.

8. If not all log records have been processed yet, goto Step 4. Otherwise, terminate.
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As part of Step 5, nodes might become empty or be split. Again, we cannot describe
all the details in this paper due to space constraints and refer the interested reader
to the technical report. As mentioned in Section 3.4, our implementation adopts the
techniques of [23] to make sure that concurrent readers are not blocked by splits and
deletions carried out by a checkpoint.

4.5 Checkpoint Strategies
The purpose of the previous two sections was to show how checkpoints are imple-
mented. The protocols were designed in such a way that anybody can apply a check-
point at any time. This section discusses alternative checkpoint strategies. A check-
point strategy determines when and by whom a checkpoint is carried out. Along both
dimensions, there are several alternatives.

A checkpoint on a Page (or Index) X can be carried out by the following authorities:

• Reader: A reader of X .

• Writer: A client who just committed updates to X .

• Watchdog: A process which periodically checks PU queues.

• Owner: X is assigned to a specific client which periodically checks the PU queue
of X .

In this work, we propose to have checkpoints carried out by readers and writers while
they work on the page (or index) anyway. Establishing watchdogs to periodically check
PU queues is a waste of resources and requires an additional infrastructure to run the
watchdogs. Likewise, assigning owners to PU queues involves wasting resources be-
cause the owners must poll the state of their PU queues. Furthermore, owners may be
offline for an undetermined amount of time in which case the updates might never be
propagated from the PU queue to S3. The advantage of using watchdogs and assign-
ing owners to PU queues is that the protocols of Sections 4.3 and 4.4 are simplified
(no LOCK queues are needed) because no synchronization between potentially con-
current clients is required. Nevertheless, we believe that the disadvantages outweigh
this advantage.

The discussion of whether checkpoints should be carried out by readers or writ-
ers is more subtle and depends on the second question of when checkpoints should
be carried out. In this work, we propose to use writers in general and readers only
in exceptional cases (see below). A writer initiates a checkpoint using the following
condition:

• Each data page records the timestamp of the last checkpoint in its header. For
B-trees, the timestamp is recorded in the metadata (Section 2.2.1) associated to
the root page of the B-tree. For B-trees, the S3 maintained metadata, rather than
the root page, is used to store this information because checkpointing a B-tree
typically does not involve modifying the root and rewriting the whole root in
this event would be wasteful. The timestamp is taken from the machine that
carries out the checkpoint. It is not important to have synchronized clocks at all
machines; out-of-sync clocks will result in more or less frequent checkpoints,
but they will not affect the correctness of the protocol (i.e., eventual consistency
at full availability).
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• When a client commits a log record to a data page or B-tree, the client computes
the difference between its current wallclock time and the timestamp recorded for
the last checkpoint in the data page / B-tree. If the absolute value of this dif-
ference is bigger than a certain threshold (checkpoint interval), then the writer
carries out a checkpoint asynchronously (not blocking any other activity at the
client). The absolute value of the difference is used because out-of-sync clocks
might return outrageous timestamps that lie in the future; in this case, the differ-
ence is negative.

The checkpoint interval is an application-dependent configuration parameter; the lower
it is set, the faster updates become visible, yet the higher the cost (in USD) in order
to carry out many checkpoints. The trade-offs of this parameter were studied in [7].
Obviously, the checkpoint interval must be set to a significantly larger value than the
timeout on the LOCK queue for checkpoint processing used in the protocols of Sec-
tions 4.3 and 4.4. For a typical Web-based application, the checkpoint interval should
be set to, say, 10-15 seconds whereas timeouts on LOCK queues should be set to 1-2
seconds. Clearly, none of the protocols devised in this work are appropriate to execute
transactions on hot-spot objects which are updated thousands of times per second.

Unfortunately, the writer-only strategy has a flaw. It is possible that a page which
is updated once and then never again is never checkpointed. As a result, the update
never becomes visible. In order to remedy this situation, it is important that readers
also initiate checkpoints if they see a page whose last checkpoint was a long time ago:
A reader initiates a checkpoint randomly with a probability proportional to 1/x if x is
the time period since the last checkpoint; x must be larger than the checkpoint interval.
(The longer the page has not been checkpointed after the checkpoint interval expired,
the less likely a checkpoint is needed in this approach.) Initiating a checkpoint does
no block the reader; again, all checkpointers are carried out asynchronously outside of
any transaction. Of course, it is still possible that an update from a PU queue is never
checkpointed in the event that the data page or index is neither read nor updated; we
need not worry about this case, however, because the page or index is garbage in this
case.

The proposed checkpointing strategy makes decisions for each data page and each
index individually. There are no concerted checkpointing decisions. This design sim-
plifies the implementation, but it can be the source for additional inconsistencies. If a
new record is inserted, for instance, it is possible that the new record becomes visible in
a secondary index on S3 before it becomes visible in the primary index. Likewise, the
query select count(*) from collection can return different results, depending on the in-
dex used to process this query. How to avoid such phantoms and achieve serializability
is discussed in Sections 5.4 and 5.5 ; unfortunately, serializability cannot be achieved
without sacrificing scalability and full availability of the system.

5 Transactional Properties
The previous section showed how durability can be implemented on top of a Cloud
Storage Service. No update is ever lost, updates are guaranteed to become visible to
other clients (eventual consistency [30]), and the state of records and indexes persist
until they are overwritten by other transactions. This section describes how additional
transactional properties can be implemented. Again, the goal is to provide these ad-
ditional properties at as low as possible additional cost (monetary and latency), and
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without sacrificing the basic principles of cloud computing: scalability, availability,
and no need to operate an additional infrastructure. This section revisits the Atomicity
and Monotonicity protocols of [7] and shows how they can be implemented using the
services of Section 2.3. Additionally, this section presents two new protocols, lock-
ing and snapshot isolation, which were not presented in [7]. Both of these protocols
implement high levels of consistency (in fact, locking implements strong consistency).
The trade-offs of all protocols are studied with help of the performance experiments
presented in Section 7. All protocols described in this section are layered on top of the
basic protocol described in the previous section.

5.1 Atomicity
Atomicity implies that all or none of the updates of a transaction become visible.
Atomicity is not guaranteed using the Basic Commit Protocol depicted in Figure 2.
If a client fails while processing a commit of a transaction, it is possible that the client
already submitted some updates to the corresponding PU queues whereas other updates
of the transaction are lost due to the failure.

Fortunately, atomicity can be implemented using additional ATOMIC Queues. An
ATOMIC Queue is associated to each client and implemented using the Simple Queue
Service (Section 2.3.3). In fact, it is possible that a client maintains several such queues
in order to execute several transactions concurrently. For ease of presentation, however,
we assume that each client has a single ATOMIC queue and that a client executes
transactions one after the other. (Of course, several operations can be executed by a
client as part of the same transaction.)

The commit protocol that ensures atomicity with help of ATOMIC Queues is shown
in Algorithm 3. The idea is simple. First, all log records are sent to the ATOMIC
Queue, thereby remembering the message ids of all messages sent to the ATOMIC
Queue in the LogMessageIDs set (lines 1-3). For efficiency, it is possible that the client
packs several log records into a single message to the ATOMIC Queue, thereby ex-
ploiting the maximum message size of the Cloud Simple Queue Service; to facilitate
presentation, this trick is not shown in Algorithm 3. Once the client has written all log
records of the transaction to its ATOMIC Queue, the client sends a special commitLog
record to the ATOMIC Queue (line 5). At this point, the transaction is successfully
committed and recoverable. Then, the client executes the basic commit protocol of
Algorithm 3 (line 6); that is, the client sends the log records to the corresponding PU
Queues so that they can be propagated to the data and index pages in subsequent check-
points. If the basic commit protocol was carried out successfully, the client removes all
messages from its ATOMIC Queue, hereby using the LogMessageIDs set (lines 7-9).

When a client fails, the client executes the recovery protocol of Algorithm 4 when
it restarts. First, the client reads all log messages from its ATOMIC Queue (lines 1-
6). Since Simple Queues are used and these queues do not give any completeness
guarantees, probing the ATOMIC Queue is carried out several times until the client is
guaranteed to have received all messages from its ATOMIC Queue. (If an Advanced
Queue is used, this iterative probing process is simplified.) Once the client has read
all log records from its ATOMIC Queue, the client checks whether its last transaction
was a winner; i.e., whether a commitLog record was written before the crash (Line 7
of Algorithm 4). If it was a winner, then the client simply re-applies all the log records
according to the basic commit protocol and deletes all log records from its ATOMIC
Queue (Lines 10-12). For loser transactions, the client simply deletes all log records
from its ATOMIC Queue.
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Algorithm 3 Atomicity - Commit
Require: AtomicQueueUri← Atomic Queue URI for the Client

1: LogMessageIds← ∅
2: for all modified records R do
3: LogMessageIds.add(sendMessage(AtomicQueueUri, R.Log))
4: end for
5: LogMessageIds.add(sendMessage(AtomicQueueUri, CommitLog));
6: execute basic commit protocol (Algorithm 1)
7: for all i in LogMessageIds do
8: deleteMessage(AtomicQueueUri, i)
9: end for

Algorithm 4 Atomicitiy - Recovery
Require: AtomicQueueUri← Atomic Queue URI for the Client

1: LogMessages← ∅
2: M ← receiveMessge(AtomicQueueUri,∞)
3: while M.size() 6= 0 do
4: LogMessages.add(M )
5: M ← receiveMessge(AtomicQueueUri,∞)
6: end while
7: if CommitLog ∈ LogMesssages then
8: execute basic commit protocol (Algorithm 1)
9: end if

10: for all l in LogMessages do
11: deleteMessage(AtomicQueueUri, l.MessageId)
12: end for
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Of course, clients can fail after restart and while scanning the ATOMIC Queue.
Such failures cause no damage. It is possible that log records are propagated to PU
queues twice or even more often, but that is not an issue because the application of log
records is idempotent. If a client fails permanently, then a different client (or some other
service) must periodically execute the recovery protocol of Algorithm 4 for inactive
ATOMIC Queues. If the commitLog record is deleted last in Lines 10-12 of Algorithm
4, then several recovery processes on the same ATOMIC Queue can be carried out
concurrently (and fail at any moment) without causing any damage. More details for
concurrent recovery may be found in Section 5.3.

5.2 Consistency Levels
Tanenbaum and van Steen describe different levels of consistency in their book [30].
The highest level of consistency is strict consistency. Strict consistency mandates that
”every read on a data item x returns a value corresponding to the result of the most
recent write on x” [30]. Strict consistency can only be achieved by synchronizing the
operations of concurrent clients; isolation protocols are discussed in the next sections
(Sections 5.4 and Sections 5.5). The weaker levels of consistency such as monotonic
reads and read your writes are trivial to implement with an Advanced Queue Service
as described in Section 2.3.4. Therefore, we forgo to discuss the algorithms in more
detail. The implementation of weaker consistency levels without relying on Advanced
Queues have already been outlined in [7] and are also not further discussed.

5.3 Atomicity for Strong Consistency
In Section 5.1 we presented how atomicity can be achieved. This protocol guarantees
that either all or none of the updates become visible as long as the client recovers at
some point. Unfortunately, this protocol gives no guarantees on how long such a re-
covery will last and therefore also how long a inconsistent state can exist. For building
protocols with stronger consistency guarantees we need to minimize the inconsistency
timeframe. One solutions to this problem is to allow clients to recover for failures from
other clients. Another problem encountered in a highly distributed system with thou-
sands of clients is, that in the worst case a single client is able to block the whole system
(Sections 5.4 and 5.5 will demonstrate this issue in more detail). Transaction timeouts
are one solution to this problem and are applied here. As the higher consistency levels
require Advanced Queues anyway, the atomicity protocol presented here also makes
use of Advanced Queue features.

The revisited code for Atomocity is shown in Algorithm 5 and Algorithm 6. The
main differences are:

• The protocol only requires two ATOMIC Queues for all clients: the ATOMIC
COMMIT Queue and the ATOMIC Queue. PU messages are send to the ATOMIC
Queue whereas commit messages are send to ATOMIC COMMIT Queue. We
separated those queues just for simplicity and performance.

• The commit message is only send if the transaction is faster as the transaction
timeout. Therefore, long-running transactions are aborted.

• All messages carry the ClientID as additional key.

The revised recovery algorithm is presented in Algorithm 6. In order to enable
clients to recover for failures from other clients, clients are required to check on commit
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Algorithm 5 Advanced Atomicitiy - Commit
Require: AtomicQueueUri, AtomicCommitQueueUri, ClientId,

TransactionStartT ime, TransactionT imeout
1: LogMessageIds← ∅
2: for all modified records R do
3: LogMessageIds.add(sendMessage(AtomicQueueUri, R.Log, ClientId))
4: end for
5: if CurrentTime() −TransactionStartT ime < TransactionT imeout then
6: C ← sendMessage(AtomicCommitQueueUri, CommitLog, ClientId);
7: execute basic commit protocol (Algorithm 1)
8: for all i in LogMessageIds do
9: deleteMessage(AtomicQueueUri, i)

10: end for
11: deleteMessage(AtomicCommitQueueUri, C)
12: end if

messages from others. If we find an old message, meaning older than a timeframe
called AtomicTimeout, it is assumed that recovery is required (line 1). To specify what
old in this context means is crucial. Considering too young messages as old might result
in false positives, on the other hand setting a too high value for the AtomicTimeout
value might hold the database in an inconsistent state for too long. We found that 5s is
a good value. If a client determines it has to do recovery, it tries to receive the recovery
lock. If the client is able to get the lock (line 3), the client is allowed to perform
the recovery steps (line 4-11). If not, the transaction is aborted as the database is in
recovery (line 15). To allow just one client to recover is the easiest way of recovery
but also might result in longer unavailability times of the system. If those outages are
unacceptable or/and clients are assumed to crash more often, solutions include parallel
recovery from several clients up to partitioning the ATOMIC Queues to consistency
entities. For simplicity, we do not further discuss those strategies. The actual recovery
is similar to the recovery mechanism described before. The only difference is, that we
need to make sure, only to recover for a certain commit message. To do this kind of
group by we use the feature of the Advanced Queues, to filter the messages according
to the user-defined key (line 6).

Again, crashes during the recovery do not harm, as the logs are idempotent. Also,
if the lock-timeout for the recovery expires or a transaction simply takes longer for the
atomic commit, it does no damage for the same reason.

5.4 Generalized Snapshot Isolation
The idea of snapshot isolation is to serialize transactions in the order of the time they
started [5]. When a transaction reads a record, it initiates a time travel and retrieves the
version of the object as of the moment when the transaction started. For this purpose, all
log records must support undo-locking (Section 3.5) and log records must be archived
even beyond checkpointing. Generalized snapshot isolation relaxes snapshot isolation
in the sense that it is not required to use the latest snapshot [14]. This allows higher
concurrency in the system as several transactions are able to validate at the same time
and in the case of read-only transactions a snapshot is more likely to be handled by the
cache.

We therefore propose a protocol applying generalized snapshot isolation (GSI).
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Algorithm 6 Advanced Atomicitiy - Recovery
Require: AtomicQueueUri, AtomicCommitQueueUri, AtomicT imeout

1: M ← receiveMessge(AtomicCommitQueueUri, AtomicT imeout)
2: if M .size() > 0 then
3: if acquireXLock(AtomicCommitQueueUri, ClientId) then
4: for all m in M do
5: LogMessages ← receiveMessage(AtomicQueueUri, ∞, m.Key-1,

m.Key+1)
6: execute basic commit protocol for LogMessages (Algorithm 1)
7: for all l in LogMessages do
8: deleteMessage(AtomicQueueUri, L.MessageId))
9: end for

10: deleteMessage(AtomicCommitQueueUri, m.MessageId))
11: end for
12: releaseXLock(AtomicQueueUri, ClientId)
13: else
14: abort() //Database in recovery
15: end if
16: end if

GSI requires that every transaction is started by a call to BeginTransaction, presented
in Algorithm 7. BeginTransaction checks first if recovery is required, to ensure that a
consistent state exists. Afterwards, the protocol retrieves a valid SnapshotId from the
Advanced Counter service. This ID represents the snapshot the transaction is working
on.

Algorithm 7 GSI - BeginTransaction
Require: DomainUri

1: execute advanced atomic recovery protocol
2: SnapshotId← getHighestValidatedValue(DomainUri)

To ensure that every read/write is performed on the correct snapshot it is also re-
quired to apply or rollback logs from the PU queues. Algorithm 8 shows the necessary
modifications to the BufferManager for Pages. If the BufferManager receives a get re-
quest for a Page, it also requires the SnapshotId. Depending on the fetched Page being
older or younger than the SnapshotId, log records are rolled back or normally applied.
To enhance efficiency and reliability, we again assume Advanced Queues, where the
client sets the message key to the SnapshotId during the commit. The interested reader
might have noticed, that this also requires a slight modification of the Atomicity proto-
col: Log messages sent to the ATOMIC Queue require to hold on to the SnapshotId as
well. This is required in the case of a recovery.

The commit shown in Algorithm 9 forms the last step of the GSI. It consists of two
steps, the validation phase and the actual commit phase. The validation phase ensures
that we do not have two conflicting writes for our snapshot whereas the commit phase
is the actual commit. To validate a transaction correctly it is required that no other
transaction validates the same record at the same time. The protocol ensures this by ac-
quiring a lock for every record in the writeset (line 4-9). If it is not possible to acquire a
lock for one of the records, the transaction aborts. Deadlocks are avoided by sorting the
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Algorithm 8 GSI BufferManager - Get Page
Require: SnapshotId, PageUri

1: P ← fetch(PageUri)
2: if SnapshotId < P .SnaptshotId then
3: M ← receiveMessage(P .Uri,∞, SnapshotId, P .SnaptshotId + 1)
4: rollback M from P
5: else if SnapshotId > P .SnaptshotId then
6: M ← receiveMessage(P .Uri,∞, P .SnaptshotId, SnapshotId + 1)
7: apply M to P
8: end if
9: P .SnaptshotId← SnapshotId

records according to the page Uri and RecordId. Once all locks are acquired, the pro-
tocol checks the PU queues for conflicting updates. Therefore, a CommitId is received
by incrementing the Advanced Counter. Then, every PU queue which might contain
conflicting updates is checked by retrieving all messages from the the used SnapshotId
up to the CommitId. If one of the received log records conflicts with one of the records
in the writeset the transaction aborts. Otherwise, the validation phase was successful
and the actual commit phase starts. The commit is similar to the one of the Advanced
Atomicity protocol - as only difference, the CommitId is set as the message key. Once
the atomic commit finishes, some cleanup is performed; that is, locks are released and
the CommitId gets validated to become a new valid Snapshot (lines 19 - 23). The
TransactionTimeout starts with the commit and not with the BeginTransaction. This is
an optimization applied to allow for long-running read requests.

Finally, to fully enable GSI the counter and lock timeout have to be chosen care-
fully. If they are too small, it is still possible that a client works on an inconsistent
snapshot. To guarantee consistency in the sense of snapshot isolation, the timeouts
should be set to a value bigger than 2 * TransactionTimeout + AtomicityTimeout +
NetworkLatency. As this might be quite a long period, higher concurrency in snapshot
isolation is achieved by explicitly releasing locks and validating the counter.

For the purpose of snapshot isolation, log records can be garbage-collected from
the archive of log records if all the transactions using the snapshot id of the log record
or a younger id have either committed or aborted. Keeping track of those transactions
can be achieved by using an additional counter. Alternatively, garbage collection can be
done by enforcing the read and write time to be part of the transaction time. Log records
older than the TransactionTimeout can then be automatically garbage-collected.

Furthermore, our algorithms are extended to reuse an existing snapshot if it is de-
terminable that a transaction is read-only. Doing so allows answering read-transaction
from the cache and therefore reducing transaction time and cost.

5.5 2-Phase-Locking
Next to snapshot isolation we also implemented 2-Phase-Locking (2PL) which allows
serializability. Our 2PL protocol is rather traditional: It uses the lock-service to acquire
read- and write-locks and to propagate read- to write-locks. For simplicity, we abort
transactions if they are not able to receive a lock. This is only possible because we
do fine-grained locking on record-level and do not expect a lot of conflicts. For other
scenarios, waiting might be required together with deadlock detection on the locking
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Algorithm 9 GSI - Commit
Require: DomainUri, SnapshotId, ClientId, WriteSet

1: TransactionStartT ime← CurrentTime()
2: //Validation Phase
3: sort WriteSet according to the PageUri and RecordId
4: P ← ∅
5: for all records r in WriteSet do
6: P .add(r.Page)
7: RecordUri← concat(P .Uri, R.Id)
8: if NOT acquireXLock(RecordUri, ClientId) then
9: abort()

10: end if
11: end for
12: CommitId← increment(DomainUri)
13: for all pages p in P do
14: M ← receiveMessage(p.Uri,∞, SnapshotId, CommitId)
15: if M contains a log for a item in WriteSet then
16: abort()
17: end if
18: end for
19: //Commit Phase
20: execute advanced atomic commit protocol
21: validate(DomainUri, CommitId)
22: for all record r in WriteSet do
23: RecordUri← concat(P .Uri, R.Id)
24: releaseXLock(RecordUri, ClientId)
25: end for
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service. Atomicity for the 2PL works in the same lines as the GSI except that the
TransactionTimeout starts with the begin of the transaction and not with the commit.
So also read-only transactions underly a timeout, which can be an important drawback
for certain scenarios. As the protocol design closely follows the text-book description,
we do not discuss it in further detail.

6 Implementation on Amazon Web Services
This section describes the implementation of the API of Section 2.4 using services
available from Amazon. Although we restrict it to Amazon, other providers usually
offer similar features and allow for adopting the discussed methods.

6.1 Storage Service
The API for the reliable storage service was already designed in the lines of storage
services from Google (BigTable), Amazon (S3) and others. It just requires a persistent
store with eventual consistency properties for storing large objects. The mapping of
the API to Amazon S3 is straightforward (compare Section 2.2.1) and not discussed
in detail. However, note that Amazon makes use of a concept called Bucket. Buckets
can be seen as big folders for a collection of objects identified by the Uri. We do not
require buckets and assume the bucket name is some fixed value.

6.2 Machine Reservation
The Machine Reservation API consists of just two methods, start and stop of a virtu-
alized machine. Consequently, Amazon Elastic Compute Cloud (EC2) is a direct fit
to implement the API and additionally offers much more functionality. Furthermore,
EC2 also enables us to experiment with alternative cloud service implementations and
to build services which are not offered directly in the cloud. This not only saves a
lot of money as transfer cost between Amazon machines is for free, but also makes
intermediate service requests faster due to reduced network latency.

6.3 Simple Queues
Simple Queues do not make any FIFO guarantees and do not guarantee that all mes-
sages are available at all times. One way to implement Simple Queues is using Amazon
SQS although SQS is not reliable because it deletes messages after 4 days. If we as-
sume that for any page a checkpoint happens in less than 4 days, SQS is suitable for
implementing Simple Queues. Unfortunately, another overhead was introduced with
the SQS version from 2008-01-01; that is, it is not possible to delete messages directly
with the message id. Instead, it is required to receive the message before deleting it.
Especially for the atomicity this change of SQS made the protocol to cause more over-
head and consequently to be more expensive. Alternatively, Simple Queues can be
implemented by S3 itself. Every message is written to S3 using the page URI, a times-
tamp and ClientId to guarantee a unique message id. By doing a prefix scan per page
URI, all messages can be retrieved. S3 guarantees reliability and has ”no” restriction
on the message size, which allows big chunks (especially useful for atomicity). It is
therefore also a good candidate for implementing Simple Queues. Last but not least,
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Simple Queues can be achieved by the same mechanism as the Advanced Queues, see
next section.

6.4 Advanced Queues
Advanced queues are most suited to be implemented on top of EC2. The range of pos-
sible implementations is huge. A simple implementation is to build simple in-memory
queue system and hold several replicas on different EC2 instances. This gives some
reliability although it is not perfect. More advanced versions involve replication over
data-center boundaries, flushing data to S3, using Paxos protocols [21] [10] or multi-
phase protocols [25]. Advanced Queues can also be achieved by combining SQS with
some counter services and fail-over strategies. However, building reliable queues is
research for itself and we restrict our implementation to simple in-memory, replicated
queues.

6.5 Locking Service
AWS does not directly provide a locking service. Instead, it refers to SQS to synchro-
nize processes. Indeed, SQS can be used as a locking service, as it allows to retrieve
a message exclusively. Thus locks can be implemented on top of SQS by holding one
queue per lock with exactly one message. The timeout of the message is set to the
timeout of the lock. If a client is able to receive the lock message, the client was able
to receive the lock. Unfortunately, Amazon states that it deletes messages older than
4 days and even queues that have not been used for 30 consecutive days, thus, it is re-
quired to renew lock messages within 4 days. This is especially problematic as creating
such a message is a critical task. A crash during deletion/creation can either result in
an empty queue or in a queue with two lock messages. We therefore propose to use a
locking service on EC2. Implementations for such a locking service are wide-ranging:
The easiest way is to have a simple fail-over lock service. Thus one server holds the
state for all locks. If the server fails it gets replaced by another server with a clean
empty state. However, this server has to reject lock requests, until all the lock timeouts
since the failure have expired. Hence, all locks would have been automatically returned
anyway. The lock manager service does not guarantee 100 percent availability, but it
guarantees failure resilience. Other possibilities include more complex synchroniza-
tion mechanisms like the ones implemented in Chubby [9] or ZooKeeper [1]. Again,
we implement the simplest solution and build our services on top of EC2 using the
described fail-over protocol. Developing our own locking service on EC2 gives the
additional advantage of easily implementing shared, exclusive locks and the propaga-
tion from shared to exclusive without using an additional protocol. However, it seems
quite likely that such a locking service will be offered by many cloud providers in the
near future. Literature already states that Google, Yahoo already use such a service
internally.

6.6 Advanced Counters
As for the locking service, using EC2 is the best way to implement advanced coun-
ters. If a server which hosts one (or several) counter(s) fails, then new counter(s) must
be established on a new server; To always ensure increasing counter values, counters
work with epoch numbers. This implies that if the counter fails, the epoch number
is increased. Every counter value is prefixed with this epoch number. If a machine
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instance fails, a new machine replaces the service with a clean state, but with a higher
epoch number. In other words, the counter service is not reliable and when it fails it
loses its state. Again, like for the lock service, the fail-over time has to be longer than
the counter-validation time. This ensures for GSI that requesting the highest validated
value does not reveal an inconsistent state.

7 Performance Experiments and Results

7.1 Software and Hardware Used
We implemented the cloud API of Section 2.3 on AWS (S3 and EC2) as discussed in the
previous section. Furthermore, we implemented the protocols presented in Sections 4
and 5 on top of this cloud API and the alternative client-server architecture variants
described in Section 3. This section presents the results of experiments conducted with
this implementation and the TPC-W benchmark.

More specifically, we implemented the following consistency protocols:

• Naı̈ve: As in [7], this approach is used as a baseline. With this protocol, a client
writes all dirty pages back to S3 at commit time, without using queues. This
protocol is subject to lost updates because two records located on the same page
may be updated by two concurrent clients. As a result, this protocol does not
even fulfill eventual consistency. It is used as a baseline because it corresponds
to the way that cloud services like S3 are used today.

• Basic: The basic protocol depicted in Figure 2. As stated in Section 4, this
protocol only supports eventual consistency.

• Atomicity: The atomicity protocol of Section 5.1 in addition to the Monotonicity
protocols which are specified in detail in [7] on top of the Basic protocol.

• Locking: The Locking protocol as described in Section 5.5. This protocol im-
plements strong consistency.

• Snapshot Isolation: The Snapshot Isolation protocol as described in Section 5.4.
This protocol fulfills the Snapshot Isolation level as defined in [4].

As discussed in Section 3, there are several alternative client-server architectures
and ways to implement indexing on top of cloud services like AWS. In this study, the
following configurations were used:

• EU-BTree: The whole client application stack of Figure 1 is executed on “end
user” machines; i.e., outside of the cloud. For the purpose of these experiments,
Linux boxes with two AMD 2.2 GHz processors located in Europe were used as
such “end user” machines. In this configuration, client-side “B-tree” indexes are
used in order to effect indexing; that is B-tree index pages are shipped between
the EU machines and S3, as specified in Section 4.

• EU-SDB: The client application stack is executed on “end user” machines. In-
dexing is effected using SimpleDB (Section 2.2.4).

• EC2-BTree: The client application stack is installed on EC2 servers. On the
“end user” side, only TPC-W requests are initiated. Indexing is done using a
“client-side” B-tree; that is, EC2 servers ship B-tree index pages from and to S3.
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• EU-SDB: The client application stack is installed on EC2 servers. Indexing is
carried out using SimpleDB.

All five consistency protocols studied (Naı̈ve, Basic, Atomicity, Locking, and Snap-
shot Isolation) support the same interface at the record manager as described in Sec-
tion 3.2. Furthermore, all four client-server and indexing configurations support the
same interfaces. As a result, the benchmark application code is identical for all vari-
ants.

In all experiments reported, (TPC-W benchmark) requests were initiated from a
single machine running a single process (and thread) located in Europe. Again, this
machine which simulated an “end user” machine was a Linux box with two AMD
processors and 6 GB RAM. Depending on the configuration (EU vs. EC2), this server
communicated directly with basic cloud services such as S3 or communicated with an
EC2 server which had the benchmark application installed and communicated in turn
with basic cloud services. In the scalability experiments, we used ten EC2 servers and
the ”end user” machine was used to issue up to 20 concurrent streams of requests.

If not stated otherwise, we used the following parameter settings for the three tuning
parameters. The page size was set to 109 KB. The TTL was set to 100 secs. The
checkpoint interval was set to 45 secs.

In all experiments here, response time refers to the end-to-end wall clock time from
the moment a request was initated at the end user’s machine until the request was fully
processed and the answer was consumed by the end user’s machine. Cost refers to
the charges of Amazon for using EC2 and S3. Requests to advanced services such as
Advanced Queues, counters, and locks were priced at USD 0.01 per 1000 requests.

7.2 TPC-W Benchmark
To study the trade-offs of the alternative consistency protocols and architecture vari-
ants, we use the TPC-W benchmark [31]. The TPC-W benchmark models an online
bookstore and a mix of different so-called Web Interactions (WI). Each Web Interaction
corresponds to a click of an online user; e.g., searching for products, browsing in the
product catalog, or shopping cart transactions. Overall, the TPC-W benchmark is read-
heavy, but it involves a significant number of updating Web Interactions, too. In all
experiments, we measured the average response time in secs for each Web Interaction
and the average cost in milli-dollars per Web Interaction. We choose those measures
and not the WIPS measures of the TPC-W benchmark in order to allow comparisons
between the latency and cost trade-offs of the alternative consistency protocols and
architecture variants.

Throughout this section, we do not present error bars and the variance of response
times and cost. Since the TPC-W benchmark contains a mix of operations with varying
profile, such error bars would merely represent the artefacts of this mix. Instead, we
present separate results for read WI (e.g., searching and browsing) and update WI
(e.g., shopping cart transactions) whenever necessary. As shown in [7], in general
the variance of response times and cost for the same type of TPC-W operation is not
high using cloud computing and we made the same observation in this performance
study.
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Figure 3: Avg. Response Time (secs), EU-BTree and EU-SDB

7.3 Response Time Experiments
7.3.1 EU-BTree and EU-SDB

Figure 3 shows the average response times per Web Interaction (WI) of the TPC-W
benchmark for the EU-BTree and EU-SDB configurations. As shown in [7], the vari-
ance of response times (and cost, reported in later experiments) is not high; of course,
there are differences between read WIs (e.g., browsing) and update WIs (e.g., shop-
ping cart transactions), but within each category of Web Interactions the variance is
low. This observation could be confirmed throughout the experiments reported in this
paper so that the error bars are not shown.

Comparing the alternative protocols, the results are not surprising. For read-only
Web Interactions (e.g., browsing in the TPC-W benchmark), all protocols behave in ex-
actly the same way. The differences are due to updating Web Interactions (e.g., putting
an item into a shopping cart). In order to highlight these differences better, Figure 4
shows the average response time for the update Web Interactions only. It becomes clear
that Naı̈ve which is used as a baseline, has the worst performance because it writes all
updated pages directly to S3 for update actions (e.g., putting items into the shopping
cart), which is expensive. The Basic and Atomic protocols have similar response times
because they have similar commit routines. In fact, Atomic has a lower response time
because it is faster to send log records to the ATOMIC queue using batching than to
send each individual log record to the various PU Queues (Section 5.1). Furthermore,
in the Atomic protocol of Algorithm 3, sending the log records to the PU Queues (Lines
6-9) is done in an asynchronous way so that that is not part of the response time as seen
by the end user. (It does add to the cost, as shown in Section 7.4.) The Locking and the
Snapshot Isolation protocols take obviously longer than Basic and Atomic: Somewhat
surprisingly, the performance of these two protocols is almost the same, with Locking
being a bit faster.

Comparing the client-side B-Tree and the SDB configuration in Figure 3, it can
be seen that for most protocols (all, except Naı̈ve), the ”BTree” configuration is about
twice as fast as the ”SDB” configuration. Here, the differences can be explained due to
caching as part of the read WIs. B-Tree pages can effectively be cached so that many
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Figure 4: Avg Write Response Time (secs), EU-BTree and EU-SDB, Update WIs Only

index probes can be executed by the client without any interaction with S3. On the other
hand, probing a SimpleDB index always involves communication with the Amazon’s
SimpleDB service because SimpleDB information cannot be cached as effectively. As
shown in Figure 4, the caching effect is only advantageous for probing: Updates are
as expensive with the client-side B-tree as with SimpleDB because it takes roughly as
much time to send the update log records for B-trees to the corresponding queues as it
is to directly update the SimpleDB index. An exception is Naı̈ve for which it is much
more expensive to write whole index pages back to S3 (in addition to whole data pages)
than to update the SimpleDB index directly.

7.3.2 EC2-BTreee and EC2-SDB

Figure 5 shows the average response time per WI for the alternative consistency proto-
cols on the EC2-BTree and EC2-SDB configurations. Again, since all the consistency
protocols behave in the same way for read interactions, Figure 6 shows the average
response times, considering update interactions only.

Comparing the different consistency protocols, the same trends can be observed
for the EC2 configurations as for the EU configurations and for the same reasons:
Naı̈ve has the worst performance, Basic and Atomic have the best performance, and
Locking and Snapshot are somewhere in between. In the EC2 configuration, however,
the differences between the Basic, Atomic, Locking, and Snapshot protocols are much
smaller than for the EU configurations because response times are dominated by the
communication between the end user’s machine and the EC2 server: Compared to
that, the Amazon-internal communication between an EC2 server and S3 is fast so that
the additional communication required for the Locking and Snapshot protocols does
not hurt performance in a significant way. The only exception is Naı̈ve which causes
significant latency even in the EC2 to S3 communication because it ships whole pages,
rather than log records only.

Comaparing the BTree and SDB configurations in Figure 5, it can be seen that
again BTree is faster than SDB (except for Naı̈ve), but that the differences are smaller.
The reason is that both EC2 to SimpleDB and EC2 to S3 communication is fast as
compared to EC2 to end user machine communication so that the performance impact
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of BTree vs. SDB is relatively small in this experiment.
Comparing Figures 3 and 5, it can be seen that significantly better response times

can be achieved in the EC2 configurations than in the EU configurations. Again, this
result is not surprising and can be explained easily. Since the EC2 machines are much
closer to the data, the EC2 configurations achieve lower response times in the same
way as stored procedures are more efficient than regular client-server interactions in a
traditional DB application scenario. In other words, running the client application stack
of Figure 1 on EC2 machines is a form of query shipping (i.e., moving the application
logic to the data).

7.4 Cost of Consistency Protocols
7.4.1 EU-BTree and EU-SDB

Figure 7 shows the average cost per WI for the alternative protocols in the EU con-
figurations. The findings can be summarized in a fairly straight-forward way: The
cheapest protocols are Naı̈ve and Basic because they pay no or little fees for carry-
ing out synchronization or coordinating commits using cloud services such as Simple
Queues, Advanced Queues, Counters, or Locks. The other protocols are significantly
more expensive because of their extensive interaction with cloud services in order to
achieve higher levels of consistency. Furthermore, in terms of cost, there is almost no
difference between the BTree and SDB configurations.

One of the most important findings of this work is that response time and cost are
not necessarily correlated when running a Web-based database application in the cloud.
Comparing Figure 7 with Figure 3, this observation becomes clear. The Atomic proto-
col does very well in the response time experiments because most of its work (flushing
ATOMIC Queues to PU Queues and checkpointing) are carried out asynchronously so
that the extra work has no impact on the response times of Web Interactions as expe-
rienced by users. Nevertheless, this work must be paid for (independently of whether
it is executed asynchronously or synchronously). Likewise, the BTree configurations
did better than the SDB configurations in the response time experiments because of
caching. While caching was important to improve performance, caching has only little
effect in order to reduce cost in these experiments. The reason is that network trans-
fer (as saved with the help of caching) is very cheap in the Amazon pricing model
as compared to the per request cost in order to, e.g., enqueue or dequeue a message.
Obviously, the pricing model can change in the future, but the important observation
is that it is in general not possible to predict cost in $ from other performance metrics
such as response time or throughput.

For brevity, the break-down between read and write transactions is not shown. In
terms of overall cost, write transactions clearly dominate, again, because of the high
fees for requests to cloud servers such as queues, counters, and locks in order to or-
chestrate the updates. Again, this observation is in contrast to the findings of Section
7.3: In the response time experiments, the overall response times were dominated by
read requests because the read requests were much more frequent.

7.4.2 EC2-BTree and EC2-SDB

Figure 8 shows the cost per WI in milli-dollars for the various consistency protocols
in the EC2 configurations. Comparing the consistency protocols and comparing the
client-side B-tree implementation with indexing using SimpleDB, the same observa-
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Figure 8: Cost per WI (milli$), EC2-BTree and EC2-SDB

tions can be made as for the results shown in Figure 7. The most interesting observa-
tions can be made by comparing Figure 8 with Figure 7. The expectation would be that
pushing the client application stack on to EC2 servers would increase the cost because
EC2 server must be paid whereas the end users’ machines are free resources. Surpris-
ingly, this does not seem to be the case as the cost are almost identical. In fact, in these
experiments, the EC2 configurations are even a bit cheaper in some cases.

The first reason for the price competitiveness for the EC2 configurations was that
the cost to rent CPU cycles on EC2 servers is relatively small compared to the cost per
request in order to interact with other cloud services (S3, queues, counters, and locking
services). As a result, using the free end user machines does not have such a cost
impact. The reason why EC2 is even cheaper than EU is an artefact of our particular
experiments: As mentioned in Section 4, checkpoints are carried out periodically given
a specified checkpoint interval. In all our experiments, the checkpoint interval was set
to 45 seconds. Since EC2 runs more TPC-W transactions per second than EU (Section
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7.3), EC2 runs more TPC-W transactions per checkpoint. Since checkpoints are a
significant cost factor, EC2 gets a significant advantage from this artefact. It would
have been fair to have different checkpoint interval parameter settings for the EC2 and
EU configurations, but we did not do that for the sake of uniformity.

7.5 Vary Load on EC2 Server
In all the previous experiments, there was only one concurrent client so that the EC2
server was only lightly loaded in the EC2 configurations. This section studies the
response times and cost characteristics of an EC2 server with increasing load (i.e.,
multi-programming level).

Figure 9 shows the average response time per WI of the TPC-W benchmark for a
varying number of concurrent clients. In this experiment, the number of concurrent
clients was varied from 1 to 100 because only one EC2 server was used. It hast to be
mentioned, that the experiment was carried out without a wait time between requests.
Obviously, the higher the multi-programming level (i.e., number of concurrent clients),
the higher the average response time. Overall, an EC2 server is easily able to sustain
about 20 concurrent TPC-W clients. After that, the response time degrades visibly.

Figure 10 shows the cost per WI for the alternative protocols, thereby varying the
number of clients. Here, only the cost induced for renting the EC2 server is reported:
The costs for other cloud services (e.g., queues) are factored out. As mentioned in
Section 7.4, the cost for other cloud services dominate the overall AWS bill so that
factoring these costs out of Figure 10 highlights the differences in cost induced by
varying the number of clients. Not surprisingly, Figure 10 shows that the cost per
WI decreases with an increasing number of concurrent clients. The reason is obvious
because the EC2 server must be paid for, independently on how heavily it is used
(Section 2.2.2). Again, at 20 concurrent TPC-W clients, the EC2 server is saturated so
that at this point the best $ / WIPS results can be achieved.
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Figure 10: Cost per WI (milli$), EC2-SDB, Vary Number of TPC-W Clients

7.6 Tuning Parameters
Reconsidering the discussions of Sections 4 to 6, there are three important tuning pa-
rameters:

• Checkpoint Interval: Defines the interval when the PU messages from the queues
are written to the page. The lower the value is set, the faster updates become
visible.

• Page Size: Page size as in traditional database systems.

• TTL: Time to live is another parameter to control the freshness of the data. It
determines the time a page in the cache is valid.

The Checkpoint Interval parameter was already studied in [7]. The results of [7] are
directly applicable to the experimental environment used in this work. The Checkpoint
Interval is an effective way to trade cost with freshness of data. The remainder of this
section studies alternative settings for the other two parameters.

7.6.1 Page Size

Figure 11 shows the cost per WI for the alternative protocols in the EU-BTree con-
figuration with a varying pagesize. With an increasing pagesize, the cost decreases
slightly, but the effects are not significant. This observation could also be made for all
other configurations. The reason for this slight decrease is that less interactions with S3
are needed with an increasing page size. On the negative side, higher costs for network
bandwidth are incurred, but again, network bandwidth is cheap in AWS compared to
the per request costs.

Figure 12 shows the average response time with a varying pagesize, again in the
EU-BTree configuration. With an increasing page size, the response time drops, again
because a larger pagesize reduces the number of interactions with S3. For the EU-
BTree, the reduction in response time can be quite significant with an increasing page-
size; for the other configurations this effect is less pronounced. If the client application
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Figure 12: Avg. Response Time(secs), EU-BTree, Vary Page-Size

stack is hosted on an EC2 server, the effect is smaller because EC2-S3 communication
is fast. If SimpleDB is used as an index, the effect is less pronounced because Sim-
pleDB is probed in the granularity of individual entries so that the page size parameter
is only applicable to data pages which is less significant.

7.6.2 Time-to-live

In order to complete the sensitivity analysis on alternative parameter settings, Figures
13 and 14 show the cost and response times of the alternative protocols in the EU-
BTree configuration with a varying TTL parameter. The TTL parameter controls how
long a page can be cached in a client’s buffer pool before checking whether a new
version of the page is available on S3. Obviously, the higher the TTL parameter is set,
the more effective caching becomes, resulting in lower response times and lower cost.
On the negative side, a high TTL parameter setting may result in stale data. Figures 13
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and 14 show that for the TPC-W benchmark the TTL parameter is not critical - almost
all protocols have cost and response times almost independent of the TTL parameter
setting. We made the same observation for all the other configurations (i.e., EC2-BTree,
EC2-SDB, and EU-SDB).

7.7 Bulkloading Times
As mentioned in Section 2.2.4, SimpleDB does not offer a bulkloading facility. As
shown in Table 4, this deficit has a direct impact on the time and cost it took us to cre-
ate the indexes for the TPC-W experiments in this work. For SimpleDB, each object
(e.g., product) must be inserted individually, which is both tedious, resulting in a high
response time, and expensive, resulting in a high bill, just for bulkloading the data.
With a client-side B-tree implementation, index entries can be inserted in the granular-
ity of whole index pages which is more than one order of magnitude faster and cheaper
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Index Time [secs] Cost [Milli-Dollar]
EU-BTree 23.3 0.2
EU-SDB 672.7 7.8

Table 4: Cost (milli$) and Time (secs) to Bulkload 1000 Products

than the ”record by record” approach.

8 Related Work
In [7] the authors studied how to build a database on S3. Compared to the work here,
the architecture was specifically restricted to Amazon’s S3 and SQS. By defining a
generalized utility API and adopting and formalizing the protocols from [7] to this
API the results are more applicable to other providers as well. Furthermore, this paper
presents and evaluates two additional protocols, locking and snapshot isolation, and
their implementation on top of that reference API. In [7] the application logic was only
executed on the client. This paper extends the work and also includes a study about the
different client-server architectures, index-usages and their trade-offs. Additionally,
various implementation possibilities for the used services are sketched out.

This work was mainly inspired by the recent development of Amazon’s Dynamo
[13] and Google’s BigTable [11] towards ultra-scalable storage systems. Both sys-
tems provide just eventual consistency guarantees. Recently, work got published on
storage services providing stronger guarantees. This includes Yahoo PNUTS [12] and
Google’s MegaStore [16]. Both systems are able to work on certain snapshots of the
data and have some concurrency control mechanism for a restricted group of objects.
Unfortunately, both systems are not yet publically available (MegaStore is most likely
the service attached to Google’s AppEngine, but not exposed as a single service) and
therefore cannot be studied in detail here. Another restriction of those services is,
that the consistency is only guaranteed for a smaller set of objects. As this might be
sufficient for some applications, for others it might not. The protocols presented in
this work do not rely on such assumptions. Nevertheless, studying the possibilities to
directly guarantee different consistency levels inside the cloud storage is part of our
future work.

In the distributed systems and database literature, many alternative protocols to co-
ordinate reads and writes to (replicated) data stored in a distributed way have been de-
vised. The authoritative references in the DB literature are [5] and, more recently, [32].
For distributed systems, [30] is the standard textbook which describes the alternative
approaches and their trade-offs in terms of consistency and availability. This work is
based on [30] and applies distributed systems techniques to data management with util-
ity computing and more specifically S3. To our best knowledge, this is the first attempt
to do so for S3. The only other work on S3 databases that we are aware of makes S3
the storage module of a centralized MySQL database [2].

Utility computing has been studied since the nineties; e.g., the OceanStore project
at UC Berkeley. Probably, its biggest success has come in the Scientific community
where it is known as grid computing [15]. Grid computing was designed for very
specific purposes; mostly, to run a large number of analysis processes on Scientific
data. Amazon has brought the idea to the masses. Even S3, however, is only used for
specific purposes today: large multi-media objects and backups. The goal of this paper
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is to broaden the scope and the applicability of utility computing to general-purpose
Web-based applications.

Supporting scalability and churn (i.e., the possibility of failures of nodes at any
time) are core design principles of peer-to-peer systems [20]. Peer-to-peer systems also
enjoy similar consistency vs. availability trade-offs. We believe that building databases
on utility computing such as S3 is more attractive for many applications because it is
easier to control security , to control different levels of consistency (e.g., atomicity and
monotonic writes), and provide latency guarantees (e.g., an upper bound for all read
and write requests). As shown in Figure 1, S3 serves as a centralized component which
makes it possible to provide all these guarantees. Having a centralized component like
S3 is considered to be a “no-no” in the P2P community, but in fact, S3 is a distributed
(P2P) system itself and has none of the technical drawbacks of a centralized compo-
nent. In some sense, this work proposes to establish data management overlays on top
of S3 in a similar way as the P2P community proposes to create network overlays on
top of the Internet.

Postponing updates is also not a new idea and was for the first time studied in the
context of databases systems in [28]. The idea between log queues and differential
files is quite similar, although the authors do not deal with a completely distributed
environment.

9 Conclusion
Web-based applications need high scalability and availability at low and predictable
cost. No user must ever be blocked by other users accessing the same data or due to
hardware failures at the service provider. Instead, users expect constant and predictable
response times when interacting with a Web-based service. Utility computing (aka
cloud computing) has the potential to meet all these requirements. Cloud computing
was initially designed for specific workloads. This paper showed the opportunities and
limitations to apply cloud computing to general-purpose workloads, using AWS and in
particular S3 for storage as an example. The paper showed how the textbook architec-
ture to build database systems can be applied in order to build a cloud database system.
Furthermore, the paper presented several alternative consistency protocols which pre-
serve the design philosophy of cloud computing and trade cost for a higher level of
consistency. Finally, an important contribution of this paper was to study alternative
client-server and indexing architectures to effect applications and index look-ups.

The experimental results showed that cloud computing and in particular the current
offerings of providers such as Amazon are not attractive for high-performance transac-
tion processing if strong consistency is important; such application scenarios are still
best supported by conventional database systems. Furthermore, while indeed virtually
infinite scalability and throughputs can be achieved, the cost for performance (i.e., $
per WIPS in the TPC-W benchmark) is not competetive as traditional implementations
that are geared towards a certain workload. Cloud computing works best and is most
cost-effective if the workload is hard to predict and varies significantly because cloud
computing allows to provision hardware resource on demand in a fine-grained man-
ner. In traditional database architectures, the hardware resources must be provisioned
for the expected peak performance which is often orders of magnitudes higher than
the average performance requirements (and possibly even the real peak performance
requirements).

In summary, we believe that cloud computing is a viable candidate for many Web
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2.0 and interactive applications. With the current trends and increased competition on
the cloud computing provider market, we expect that cloud computing will become
more attractive in the future.

From our point of view, this work is just the beginning towards the long-term vi-
sion to implement full-fledged database systems on top of cloud computing services.
This work only scratched the surface. Clearly, there are many database-specific issues
that still need to be addressed. There are still a number of optimization techniques
conceivable in order to reduce the latency of applications (e.g., caching and schedul-
ing techniques). Furthermore, query processing techniques (e.g., join algorithms and
query optimization techniques) and new algorithms to, say, bulkload a database, create
indexes, and drop a whole collection need to be devised. For instance, there is no way
to carry out chained I/O in order to scan through several pages on S3; this observation
should impact the design of new database algorithms for S3. Furthermore, building the
right security infrastructure will be crucial for the success of an information system in
the cloud.
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