Comet: Batched Stream Processing in Data Intensive Distributed Computing

Bingsheng He" Mao Yang' Zhenyu Guo™ Rishan Chen*
Bing Su” Wei Lin" Lidong Zhou'
TMicrosoft Research Asia *Beijing University

ABSTRACT

Performance and resource optimization is an important
research problem in data intensive distributed comput-
ing. We present a new batched stream processing model
that captures query correlations to expose I/O and com-
putation redundancies for optimizations. The model is
inspired by our empirical study on a trace from a pro-
duction large-scale data processing cluster, which reveals
significant redundancies caused by strong temporal and
spatial correlations among queries.

We have developed Comet, a query processing
system that embraces the batched stream processing
model for optimizations. We have integrated Comet with
DryadLINQ. With its roots in query optimizations for
database systems, Comet enables a set of new heuristics
and opportunities tailored for distributed computing in
DryadLINQ. Optimizations in Comet are effective. The
evaluation of a micro-benchmark on a 40-machine clus-
ter shows a 42% reduction in total machine time and over
40% reduction in total I/O. Our simulation on a real trace
covering over 19 million machine hours shows an esti-
mated I/O saving of over 50%.

1 INTRODUCTION

Data intensive scalable computing (DISC) systems, such
as MapReduce/Sawzall [8, 20], Dryad/DryadLINQ [16,
28], Hadoop/Pig [14, 19] and SCOPE [6], have unan-
imously embraced the batch processing model, where
each query specifies computation on a large bulk of data.
These systems tend to consider queries individually. In
reality, we are facing the challenging system problem
of executing a large number of complicated queries on
a large amount of data every day across thousands of
servers. Performance and resource optimization of all
those queries is essential for effective utilization of busi-
ness investment of millions of dollars. In this paper, we
study the performance and resource optimization in a
DISC system.

We have examined a 3-month trace from a produc-
tion cluster dedicated to large-scale data processing. This
trace captures a workload consisting of 13 thousands
queries whose executions took a total of 19 million ma-
chine hours. Our study of the trace shows that the effi-
ciency of the system is far from ideal. For example, we
find that over 50% of the total I/O are caused by repetitive
scans on input data, and by repetitive computation among
different queries. Significant I/O redundancies cause sig-

nificant waste in the disk bandwidth, and also significant
waste in total machine time.

Further study of the trace uncovers that the redun-
dancy is due to correlations among queries. The work-
load exhibits temporal correlations, where it is common
to have a series of queries involving the same recurring
computation on the same data stream in different time
windows. The workload further exhibits spatial corre-
lations, where a data stream is often the target of multi-
ple queries involving different but somewhat overlapping
computation. The detailed statistics show that popularity
of data streams and their fields follows the power-law
distributions closely; similar distributions also show up
in the custom functions that are used in the queries. As
a result, the queries are heavily concentrated on a rela-
tively small number of data streams and fields, and tend
to use the same set of custom functions.

Correlations among queries in DISC system naturally
lead us to look for solutions and inspirations from exist-
ing cross-query or cross-job optimizations in databases
systems and (distributed) operating systems. Olston et
al. [18] and Popa [21] have recently proposed to ap-
ply the existing techniques in those fields for optimiza-
tions. For example, query result caching or perfect view
matching [2] is particularly effective in identifying com-
mon computations across queries and in allowing reuse
of computed results.

While leveraging proven concepts is clearly a step in
the right direction, applying them in the current comput-
ing environment itself is challenging due to the inher-
ent complexity and unpredictability in such systems [18].
For example, current query optimizations in DISC sys-
tems are usually rule- or heuristic-based, in contrast that
a query is often complicated and contains user-defined
functions (i.e., custom functions) with little or even un-
known cost characteristics; queries are executed when
received, with little consideration given to previous or
future executions. All those factors limit the effective-
ness of traditional optimization mechanisms. For exam-
ple, our simulation shows that query result caching or
perfect view matching [2] removes only 15% of the I/O
redundancy in the trace.

To unleash optimization opportunities of traditional
mechanisms, we introduce the Batched Stream Process-
ing model (or BSP in short) to characterize recurring
computation on incrementally appended data streams.
The recurring computation on the same data stream

forms a query series. A query series captures a sequence
of the same computation on different sets of segments of
the same stream: queries in the same query series are by
definition correlated. Query series makes the occurrence
of these queries predictable. Due to the power-law data
and computation popularity, queries in different query
series have a high probability in sharing the same I/O
to scan the input data and in sharing common computa-
tion. Those queries can be scheduled to run together as a
single combined query, thereby removing redundancies.

We have built Comet, a system to allow users to sub-
mit query series and to enable a set of new global op-
timizations for DISC applications. In Comet, computa-
tion is triggered by arrivals of new bulk updates to the
streams. This is in contrast to current systems, where
queries are executed upon their arrivals. Comet aligns the
computation units from different query series into a sin-
gle jumbo query, to maximize sharing. By exploiting the
sharing within jumbo queries, Comet brings new rele-
vance to the traditional database optimization techniques,
especially those for continuous queries [26] and multiple
queries [25], to DISC systems. Comet enriches these tra-
ditional optimization techniques with its special attention
to the distributed nature of the DISC systems: for exam-
ple, Comet’s physical optimizations use co-location and
local data reduction for reducing the network traffic.

We have integrated Comet into the logical and physi-
cal optimizations in DryadLINQ [28]. We have modified
DryadLINQ implementation to enable Comet-specific
optimizations, including normalization and optimiza-
tions on a jumbo query. The flexibility in the LINQ lan-
guage is a frequent source of headaches for implemen-
tation: imperative custom functions in DryadLINQ pol-
lutes the otherwise declarative representation of queries.
As a result, some optimizations that are natural in
database systems need special care to achieve.

We used two complementary methods to evaluate the
effectiveness of Comet. Our empirical studies with a mi-
cro benchmark show a reduction of over 40% with the
optimizations in Comet. Our simulation results show a
reduction of over 50% with the optimizations in Comet.

The contributions of this paper are as follows: first,
we report interesting new findings from a real production
trace, which reveals performance and resource problems
in current DISC systems. Second, we propose the execu-
tion model for batched stream processing to unleash the
power of optimizations, addressing the existing perfor-
mance and resource problems. Finally, we implement a
prototype and a simulator to validate the feasibility and
effectiveness of our model and optimizations.

The rest of the paper is organized as follows. Sec-
tion 2 describes our empirical study on a real-world
workload from a deployed DISC cluster. We present the
Comet execution model in Section 3. Sections 4 docu-

ments the details of integrating Comet into DryadLINQ.
Section 5 presents the implementation details of the sim-
ulator, followed by the experimental results in Section 6.
We then review the related work in Section 7, with dis-
cussions in Section 8. Finally, we conclude in Section 9.

2 AN EMPIRICAL STUDY

We have obtained a 3-month query trace from a de-
ployed DISC system with over thousands of machines.
The queries are mainly data mining tasks on logs gener-
ated from a wide range of services within the company,
such as search query/click logs. The trace documents the
information related to executions of all query jobs in the
system. The information includes query itself, submis-
sion time, query plan, and performance statistics, such
as the amount of I/O of each step in the query plan.
The trace contains nearly 13,000 of successfully exe-
cuted queries, taking a total of 19 million machine hours.
These queries are on around 500 data streams stored in
a reliable append-only distributed file system similar to
the Google File System [12].

2.1 Redundancy

We have identified two kinds of redundant operations:
input data scans and common sub-query computation.

Redundant I/O for scanning the input files are com-
mon in the cluster. For all the query executions in the
trace, the total I/O of scanning the input files contributes
to about 68% of the total I/O. The total size of input files
is about 20% of the total 1/O. Thus, the redundant I/O
on scanning input files contributes to around 48% of the
total I/O, causing a significant waste in disk bandwidth.

Redundant computation on common sub-queries is
also significant. A step s in a query is defined to have
a match if there exists a step s’ of a previous query in the
sequence, where s and s have the same input and a com-
mon computation. Each step with a match is redundant
computation because the same computation has been per-
formed on the same data previously. In the trace, we find
that 14% of the steps have a match, which contributes to
around 16% of the total I/O. The I/O breakdown of re-
dundant computation shows that 8% of the total I/O is
from input steps, and the other 8% from the intermediate
steps.

The overall redundancies are significant, with 56%
of total I/O (48% on file input scan and 8% on interme-
diate steps). Since I/O continues to be a significant bot-
tleneck for the overall performance of data center appli-
cations [1], these significant I/O redundancies contribute
to a great amount of waste in total machine time. In the
evaluation, our experiment demonstrates that the I/O sav-
ing of 42% results in a 40% reduction in total machine
time.

2.2 Query Correlations

We found that queries are recurring and demonstrate
strong correlations, even though users can only manually
submit individual queries to the cluster.

Recurring queries. The queries in the trace exhibit
strong temporal correlations: 75% of the queries are re-
curring and form around one thousand query series, each
consisting of at least two queries. Inside these query se-
ries, over 67% run daily (usually with per-day input data
window, e.g., requiring the log from yesterday; approx-
imately 5% of the daily queries may involve more than
one day’s data); 15% are executed weekly mostly with a
per-week input data window.

Data driven execution. In the cluster we study, updates
are appended to streams either daily or when updates
reach a predefined size threshold. Our study shows recur-
ring queries tend to access recent updates in data streams,
indicating the data-driven nature of recurring queries.
Figure 1 shows the distribution of queries in query se-
ries categorized by the difference between their submis-
sion time and arrival time of the last segment they pro-
cess. Around 70% of the queries fall into a window of
no more than one week, and 80% no more than half a
month. This shows that most query series tend to access
the latest update in the target streams, and a strong indi-
cation that executions of the queries in a query series are
driven by stream updates. Besides, we found that there
is a gap between the data available time and the query
submission time. For example, some queries with a one-
day input data window are processing data that has been
there for over one week. This kind of delayed submis-
sion is probably partly due to the lack of the query-series
submission interface.

One micro view of three sample query series is shown
in Figure 2, which shows the submission dates and the
input data windows. While the submission dates are gen-
erally well aligned with the data windows, an exception
is highlighted using Circle A. The submissions of some
daily queries for the data in those three days are delayed
due to a weekend.

Correlations among queries cause redundancy. In
Figure 2, the input windows of the queries from query
series 1 and 3 are overlapping, this results in redundant
I/O scans. Examples are highlighted in Circle B. Redun-
dancies show up not only across different query series,
but also within a query series. In Figure 2, since queries
in query series 3 have common computation on the over-
lapping input windows, there is often redundant compu-
tation among them, as highlighted in Circle C.

Stable stream characteristics. We studied the temporal
stability of data streams to check the feasibility of guid-
ing the optimization of a query based on profiling of the
previous executions, especially from those in the same

[

o
©

5 06

racti
e o
N b

Accumulated Query
F

o

0 20 40 60 80 100
Difference between submission time and the
arrival time of the last input segment (day)

Figure 1: Accumulated query fraction.

20

kS 3 ; 3
< H H - H
g 15 1 i 1 |
: —_ =R
c ! ! !
= s = Query series 1
o | ! —— !
c ! ! ! !
10 ‘ Q— ; ‘ |
2 = Queryseries2 ~
K4l . ' — :
£ ©- : : .
S - i B : Query serlesi3
RLI P : | '
1 5 10 15 20"

Data window on the same stream (Day in a month)

Figure 2: Sample query series on the same stream. Query
series 1 and 3 consist of daily queries, with input window
sizes of one and two days, respectively. Query series 2
consists of weekly queries with an input window size of
seven days.

query series. We found segments of the same data stream
tend to exhibit stable statistical properties.

We found the sizes of newly appended updates are
stable across different days. Take the sizes of the updates
to the hottest stream as an example: their coefficient of
variation (cv = fﬁ%) is less than 7%.

The value distribution on each column is also stable.
For example, we observed that the number of distinct val-
ues for the four most frequently used columns in the daily
update is stable. The variance in the number of distinct
values is small, with cv less than 12%.

We also examined the selectivities of the top three
filters and the top three join conditions; the statistics are
shown in Table 1. The selectivity of a filter/join is defined
to be the ratio of the output size and the input size of the
operation. As we can see in the table, most of the filters
and the joins have stable selectivities.

Data and computation popularity. We found the

Table 1: Selectivities of the top three filters and join con-
ditions

Filter 1 | Filter 2 Filter 3 Joinl | Join2 | Join3
mean 0.17 0.26 8.0E-03 | 0.027 | 0.064 | 5E-05
stdev 0.01 0.01 1.6E-03 | 0.005 | 0.008 | 1E-05

cv 9% 3% 20% 17% 12% 19%

popularity of both data and query constructs conforms
to power-law distributions, which reveals the underlying
reason for significant redundancies.

Figures 3 (a,b) show the access frequencies of the
data streams and their fields (or columns) during the
period (normalized by the maximum frequency of the
stream or field), respectively. Their distributions follow
power-law distributions closely: 80% of the access are
on 9.3% of the total number of data streams, and 80% of
the access are on 13.9% of the total number of columns.
Among the streams, we find that the frequently accessed
data streams are the raw data streams shared by many
users, and the infrequently accessed ones are usually for
private uses only.

Similar to the power-law distribution on data popu-
larity, we found two basic user-defined query constructs,
i.e., selection conditions (filters) and custom functions,
also follow power-law distributions closely. For example,
the frequently used custom functions are mostly from the
standard library provided in the system, and the infre-
quently used ones are mainly user-specific custom func-
tions for specific processing.

In summary, we identify the clear recurring pattern in
the workload, even though users can only submit individ-
ual queries manually. The processing is often driven by
new updates, rather than driven by query arrivals. This
motivates us to develop a new execution model for opti-
mizations.

3 COMET DESIGN

Inspired by the trace study, we propose the BSP (Batched
Stream Processing) model that explicitly captures key
correlations among queries. This simple model enables
vast opportunities in cross-query optimizations. We fur-
ther develop Comet embracing the BSP model and with
an execution model taking advantage of those optimiza-
tion opportunities.

3.1 Batched Stream Processing

In the BSP model, we model data not as a static file,
but as a stream that is periodically updated. A stream
is append-only and partitioned on multiple machines. A
segment is the data from a single bulk update, e.g., the
daily generated log. Different segments are differentiated
with their timestamps indicating their arrival times.

We further define the notion of query series to refer to
recurrent computations on a stream, with each performed
on one or more stream segments. A segment is the small-
est data unit that can be accessed by a query series. A
query series captures a sequence of the same computa-
tion on different sets of segments of the same stream and
explicitly exposes the correlations among queries in the
query series in terms of both data and computation.

This seemingly simple notion of query series brings
predictability into the system, and makes cross-query op-
timizations tractable.

First of all, query series makes construction of a re-
liable cost model a possibility by leveraging the knowl-
edge of data and computation from executions of the pre-
vious queries in the same query series. As we have al-
ready seen in the trace, the characteristics of a stream
(e.g., data distribution) and custom constructs tend not to
change when the stream grows over time.

Second, due to the power-law data and computation
popularity, queries in different query series are likely to
share the same I/O to scan the input data and to share
common intermediate steps. Those queries can be sched-
uled to run together as a single combined query in order
to remove redundancies.

Third, a query might be decomposed into a series of
smaller queries, each on a subset of input stream seg-
ments, followed by a final step of aggregating the results
of the smaller queries to obtain the final result. Query
decomposition enables computation be triggered by up-
dates, since the study on the trace indicates query ex-
ecutions align well to new segment arrivals. Moreover,
query decomposition can help uncover more opportuni-
ties for sharing. For example, if the decomposition makes
all queries on the same stream process the data on aligned
daily windows, there would clearly be more opportuni-
ties for sharing among queries.

3.2 Execution Model

Comet allows users to submit a query series by specify-
ing the period and the number of recurrences of the com-
putation. The computation of query series is triggered by
updates, as the updates occur periodically. We use the
following terms to capture the computation units in the
execution:

e S-query. An S-query is a single query occurrence of
a query series; it can access one or more segments
on one or more streams.

e SS-query. Intuitively, an SS-query is a sub-
computation of an S-query that can be executed
when a new segment arrives. We associate with each
SS-query a timestamp indicating its planned execu-
tion time. It is usually equal to the maximum times-
tamp of the segments it accesses: the arrival of that
segment with the maximum timestamp triggers the
execution of the SS-query. An S-query can be de-
composed into one or more SS-queries in the nor-
malization process (Section 4.3).

o Jumbo-query. A jumbo-query is a set of SS-queries
with the same timestamp; that is, a jumbo query in-
cludes all SS-queries that can be executed together,

Streams (ordered by frequency)

1000

y=7.4056x14%9
R?=0.9812

oNormalized frequency

(a) Access frequency of distinct streams

Columns (ordered by frequency)

100 1000

y= 1.9916x‘°-$\
R?=0.965

o Normalized frequency
¢ o
-

(b) Access frequency of distinct columns

Figure 3: Power-law distributions on data popularity in the DISC system.

thereby leveraging any common I/O and computa-
tion among these SS-queries.

Figure 4 shows how query series are processed in
Comet. When a query series is submitted, Comet nor-
malizes it into a sequence of SS-queries and com-
bines them with their corresponding jumbo-queries (Sec-
tion 4.3). This allows Comet to align the query series
based on the segments they involve. Thereafter, as with
current DISC systems like DryadLINQ, Comet carries
out query optimization, with an emphasis on optimizing
normalized jumbo-queries (Section 4). Unlike the flow
in DryadLINQ, the generated execution plans are not ex-
ecuted immediately; instead, arrivals of new segments
start the execution of their corresponding jumbo-queries.

Comet collects statistics about data stream charac-
teristics and operators for cost estimation. Unlike rule-
based optimizations in current DISC systems, the cost
estimation assesses the tradeoffs involved in various op-
timization choices and chooses the one with the lowest
cost (Section 4.2). The statistics are stored in a catalog,
replicated on a set of machines for reliability.

Like current DISC systems, Comet also allows users
to submit ad hoc queries. Since ad hoc queries are exe-
cuted on demand, Comet executes them with fewer opti-
mizations, without normalization or combining them into
the jumbo query. However, Comet does use the statistics
in the catalog for optimizing ad hoc queries if they in-
volve the same data streams and the same custom func-
tions as those in query series. Comet further reuses its
query optimization techniques to (i) find matching sub-
queries with results already in the system and (ii) rewrite
a query to reuse available results.

4 INTEGRATION INTO DRYADLINQ

We have integrated Comet into a recently released ver-
sion of DryadLINQ. We use three sample queries to
describe our integration (Figure 5), all operating on
the same daily updated log stream (lines 2, 9, 16,
and 21). The queries use a common custom function
Extractor (lines 2, 9, 16, and 21) to retrieve rows.

query series

Normalization

Cost Model

}----»(_ Execution)

Jumbo Query

Optimization

[Execution Plan

Figure 4: Comet execution flow for query series.

DryadLINQ supports the following set of operators:
Projection (Select), Selection (Where), Grouping
(GroupBy), Aggregation (e.g., Count), Join (Join).
The bold letters are the abbreviations of the operators for
references in later figures.

4.1 Overview

DryadLINQ processes a query in the following four ba-
sic phases.!

(1) Translate a query into its logical plan. DryadLINQ
applies logical optimizations, including early filtering
and removal of redundant operators.

(2) Transform the logical plan to a physical plan with
physical operators.

(3) Encapsulate the physical plan to a Dryad execution
graph.

(4) Generate C# code for each vertex in the Dryad exe-
cution graph. Each vertex in the Dryad execution graph
has several physical operator nodes, with optimizations
including pipelining and removing unnecessary nodes.
The vertices are deployed to different machines for dis-
tributed executions.

Figure 6 shows the logical plans for the sample
queries. In DryadLINQ, physical optimizations in Phase
(2) take into account the underlying distributed system
configurations and data properties. Figure 6 (d) shows the
corresponding physical plan for the second query. Dur-
ing the transformation, DryadLINQ applies local reduc-

'DryadLINQ also enables dynamic optimizations. We leave it out
because it is not particularly relevant here.

// Ql: daily custom grouping on (A,B,C)
gl = env.Extractor ("log?today")
.Select (x => new {x.A, x.B, x.C})
.Where (x => x.A != "gb")
.GroupBy (x => x) //grouping on (A,B,C)
.Select (x => new {x.Key, c = x.Agg()});

® 9w AW —

// Q2: weekly histogram aggregation grouping on (A, B)
9 g2 = env.Extractor ("log?today-6...today")

10 .Select (x => new {x.A, x.B})

11 .Where(x => x.A != "gb")

12 .GroupBy (x => x) //grouping on (A,B)

13 .Select (x => new {x.Key, a = x.Count()});

14
15 // Q3: daily join on today and yesterday’s segments
16 g3a = env.Extractor ("log?today")

17 .Select (x => new {x.A, x.B, x.D})

18 .Where(x => x.A != "ru")

19 .GroupBy (x => x.D) //grouping on D

20 .Select (x => new {x.Key, m = x.Max(y => y.B)});
21 g3b = env.Extractor ("log?today-1")

22 .Select (x => new {x.A, x.B, x.D})

23 .Where(x => x.A != "ru")

24 .GroupBy (x => x.D) //grouping on D

25 .Select (x => new {x.Key, m = x.Max(y => y.B)});

26 g3 = g3a.Join(g3b, x => x.m, y => y.m, (a, b) => a);

Figure 5: Three sample queries Q1, 02, and Q3 in
DryadLINQ. They resemble in the structure to the most
popular query series in the trace.

| Log[0] |[Logl-6..01] [Logl-1] | [Log[0] |

(P(AB.C) (PAB)) (P(ABD) (PABD)
S(="gb") S(="gb) S(="rw) (S(="ru")
G@ABCY (GAB)Y) CGDE) H CGMD))

(A(Agg)) (A(Count)) (A(Max)) (A(Max))

out out
out
(@) (b) (c)

Figure 6: Logical plans for 01, 02, and 03 ((a),(b),
and (c)), and the physical plan for Q2 (d).

tion optimization: a local grouping (LG (A, B)) followed
by a local aggregation (LA (Count)) on each machine.
Then, a distributed partition phase (D (A, B)) shuffles
the locally grouped data at the cluster level for a global
grouping (G (A, B)) and aggregation (A (Count)).

We integrate Comet into DryadLINQ, enabling the
execution model and its optimizations in DryadLINQ.
Comet-enabled DryadLINQ allows users to submit query
series as well as ad hoc queries.

The integration involves (i) adding two new phases
between Phases (1) and (2) for normalization and for
query matching/merging to optimize jumbo queries, (ii)
adding new query rewriting rules to Phase (2) for fur-
ther logical optimizations, (iii) incorporating new phys-
ical optimizations in Phase (3), and (iv) introducing a
cost-model based optimization framework.

We add the step of consulting the cost model and the

catalog into Phase (3), especially when the benefit and
cost of some optimizations are dependent on the prop-
erties of queries and their input data streams. To allow
an iterative optimization process, rather than following
the pipelined process in DryadLINQ, we add a control
loop between Phases (2) and (3), so that Comet can en-
able further optimizations after estimating the cost of the
physical plans in Phase (3). Note that DryadLINQ uses
run-time dynamic optimizations; for example, to figure
out the number of partitions for the next stage. The cost
estimation in Comet significantly reduces the needs for
such optimizations.

In the following subsections, we present further de-
tails on the cost model and Comet optimizations in
DryadLINQ.

4.2 Cost Model

We have implemented a simple and effective cost model
for DryadLINQ. Since a precise cost model is in general
hard to attain, especially for DISC systems [18], the in-
tegration of Comet alleviates the problem in two aspects.
First, with Comet, DryadLINQ can take advantages of
temporal correlations in the BSP model for better pre-
dictability; in particular, data properties on different seg-
ments of a data stream tend to stay the same; key prop-
erties of both data and computation are often available
because the same computation has often occurred on the
same data stream before. Comet collects statistics dur-
ing query executions (e.g., the input and output sizes for
each operator, as well as the cost of custom functions),
and stores such information in the catalog for cost anal-
ysis.

Second, the integrated cost model focuses on the esti-
mation of the total disk I/O and network I/O. Those tend
to be relatively easy to estimate in DryadLLINQ: for each
stage, Comet can take the input size of a query and use
the input/output ratio at each stage from a previous run of
the same execution to estimate the amount of I/O. More
importantly, we observe that I/O is the main factor that
drives optimization decisions in DryadLINQ. Also, due
to lack of index structures in our input data and the few
number of joins, we can avoid the complications in the
cost models for traditional databases [24]. Our experi-
ments have validated the accuracy of the cost model, and
its effectiveness in guiding optimization choices (Sec-
tion 6).

4.3 Normalization

Comet adds a query normalization phase in DryadLINQ,
prior to its logical optimization. The normalization phase
converts a given DryadLINQ S-query into a sequence of
SS-queries, each triggered when a segment of an input
stream becomes available. This process essentially turns
an S-query into an incremental computation (see [22]).

[Log[-6.0]] [Logl-6]] [Log[-1]] [Logl0]] [Log[-6]] [Logl-1] [Log[0]]
e e ol el ol i o
(S(="gb™) (§(1="gb") (S('="gb"D(S(=="gb"D (S('="gb"D (S(I="gb" D (S(I="gb")
(A(Count)) (A(Count)) (A(Count)) (A(Count)) A(Count)) (A(Count)) (A(Count))
. o

A’'(Count)

out

(a) (b) (©

Figure 7: S-query normalization on Query Q2.(a) original
logical plan for Q2, (b) after decomposition, (c) after adding
materialized views.

In the worst case, the normalization will put the entire
S-query as a single SS-query.

Figure 7 depicts the normalization process for an S-
query of the second sample query series. As the S-query
involves one week’s data (Figure 7 (a)), we split the in-
put node into seven nodes, each indicating one daily seg-
ment (Figure 7 (b)). Comet then explores the paths start-
ing from those nodes, examines each operator at each
level from the top down, and splits the operator when it
is appropriate based on decomposability of that operator.

Decomposability of an operator indicates whether it
is feasible to split its computation. Most of the opera-
tors, such as projections and selections, are easily de-
composed. Some require an extra phase at the end to pro-
duce correct results; for example, an extra merge node
A’ (Count) is added for generating the final weekly
histogram from the daily ones (Figure 7 (c)). There are
also others, such as aggregations with some customized
functions, which cannot be decomposed because we can-
not easily understand how to make the decomposed plan
produce the same output as the original one.

As with DryadLINQ, Comet must infer the type of
parameters in the newly constructed expression tree. Be-
cause LINQ uses strongly typed lambda expressions, this
inference process could be tedious if the new expression
tree is different from the original one. For example, when
decomposing Query Q2, the first seven has the same
structure as the original query and therefore its expres-
sion tree is easy to construct. The final one that merges
the results from the first seven has a different structure.

We arrive at Figure 7 (b) after the operators are de-
composed. Comet further splits this plan into several in-
dependent SS-queries: it adds an output node to each of
the last decomposed operator A (Count) in the previ-
ous 6 days. The inserted output node is considered as a
materialized view [2], and the sub-graph that ends at this
output node is considered an SS-query. The rest of the
plan is then another SS-query to be executed on the fi-
nal day. The SS-query not only takes the final segment as
the input, but also uses materialized views from previous
SS-queries.

After getting all SS-queries from all query series,
Comet aligns them and constructs a jumbo-query for
all the SS-qeuries with the same timestamp, as shown
in Figure 8 (a), for further optimizations. Through nor-
malization, redundancies across queries are exposed to
the later logical and physical optimizations of Comet-
enabled DryadLINQ.

4.4 Logical Optimization

Comet enables new logical optimizations including
shared computation and reused views for DryadLINQ
to remove redundancies in the logical representation of
jumbo queries. These techniques are rooted in logical
query optimizations in relational databases [23, 29].
Shared computation. While current DryadLINQ can
identify shared computation on common expressions
across SS-queries inside a jumbo-query, its rule-based
optimization process limits sharing opportunities. To
enable more sharing opportunities, Comet employs
operator reordering. For example, as shown in Fig-
ure 8 (b), Comet changes the order of P (A, B, C) and
S(!="gb"),aswellas P (A,B) and S(!="gb") in
Figure 8 (a), so that we can combine the selection opera-
tors because their filter conditions are exactly the same.

Operator reordering generates multiple possible

plans, and the cost model evaluates which one is better
based on the statistics about selectivities stored in the cat-
alog. Considering two branches that have two different
selection operators followed by two grouping operators
with the same grouping keys. We can swap the selec-
tion operators and the grouping operators, so as to do the
grouping operation only once. However, if the two selec-
tions can reduce the input data size dramatically, this op-
timization actually hurts the overall performance. Note
that current DryadLINQ chooses the later case accord-
ing to its rule. As our evaluation shows that the rule is
not always true: a wrong decision may lead to up to 30%
penalty in I/O.
Reused view across jumbo-queries. Redundant compu-
tation can also occur across jumbo queries. This happens
when two jumbo queries operate on overlapping input
segments. For instance, the output of A (Max) in Fig-
ure 8 (a) can be reused in the execution of the next jumbo
query when a new segment arrives. Comet stores the out-
puts as materialized views.

Comet further specifies the co-location feature for
partitioned views. Co-location is an important consid-
eration because it could reduce network traffic signifi-
cantly. While co-location of intermediate results within
a jumbo-query is well taken care of by the compiler [16,
18], co-location of the results across jumbo queries how-
ever needs special care.

One example of partitioned views with co-location is
shown in Figure 8 (a), where a later join operator J (D)

(P(ABC)) (PAB)) (P(ABD))

(s(="gb")) S(="gb’) (S(="ru"))

local grouping

[
L
I
|
|
|
Lo
local aggregation i
|

- = - = - =

| (TeaB)) 1| (LoD

D! (OAB)) 1, (DO)

DG 5(/38_) D!

j
distributed partition |(DAB,C)) | L ¢ D(AB)) 1! D)) :(:D:(A,"B,:
final grouping :(_ G_(A,*B,?:)_)_; :_< _G(e,§)3: :(G(A;B,C
final aggregation 1(A(Agg)_ _): I (A(Count)) ! 1C

AlAgg))'1 (ACount)) i
—% —Z T

out1 ‘ B out1

out2

(c) original physical plan

(d) shared scan

(e2) shared partitioning step 2

Figure 8: Logical and physical optimizations of Comet.

takes the view view [-1] from yesterday and the aggre-
gation result today (A (Max)), both of them partitioned
with the same D field. Comet partitions view [-1] and
A (Max) in the same way and co-locates the correspond-
ing partitions, so that the join can be done locally on
each partition. Another example is shown in Figure 7 (c),
where the final SS-query might have to merge the results
from all the previous SS-queries. The trace study shows
that around 8% of the queries whose inputs last for more
than one day can gain benefits from co-location.

4.5 Physical Optimization

Comet enables new physical optimizations for efficient
data sharing in DryadLINQ. Sharing opportunities at the
physical level manifest themselves as branches in a logi-
cal plan after logical optimizations (e.g., Figure 8 (b).)
There are two types of branches, one enables shared
scan [1] and the other shared partitioning. The differ-
ences lie in whether the branching point corresponds to
local data transfers or network data transfers.

Shared scan. An example of shared scan is shown in
Figure 8 (b): S(!="gb") and S (!="ru") share the
same input node Log [0]. Current DryadLINQ tends to
separates the nodes into different vertices whenever it en-
counters branching. That is, current DryadLINQ puts the
two nodes into different vertices (see Figure 8 (c)), which
results in two scans on the same input segment (to v (1)
and v (2)).

To enable efficient shared scan, Comet puts all

branching nodes in a Dryad vertex. Comet implements
a new physical operator TEE for combining, which con-
nects one input stream provider with multiple concurrent
consumers. For example, Comet applies the shared scan
optimization to put S (!="gb") and S(!="ru") in-
side one vertex (v (s) in Figure 8 (d)), so that they can
cooperate with each other to reduce the number of scans
on the input segment to only one.
Shared partitioning. An example of shared partitioning
can be found in Figure 8 (b): the output of S (!="gb")
is shuffled across machines twice by G (A, B, C) and
G (A, B). Note that the two grouping operators have
a common prefix (A,B). Comet partially shares the
two grouping operators by pushing down P (A, B, C)
and P (A, B) to eliminate redundant data shuffling (Fig-
ure 8 (el)). (Note that this is a logical rewrite triggered
at a later stage.) Then, it transforms this logical plan to a
physical one (Figure 8 (e2)), translates the shared group-
ing to a shared distributed partitioning (D (A, B) in ver-
tex v (p)), and further enables the shared scan optimiza-
tion by grouping the further operators for the two SS-
queries into one vertex (v (s)).

There are tensions between single-query optimiza-
tions and Comet optimizations, which exploit sharing
among queries. For example, DryadLINQ uses early ag-
gregations to reduce the I/O in later stages, but this could
eliminate certain opportunities for removing redundan-

cies across queries. More concretely, two different phys-
ical execution plans for the same jumbo query are shown
in Figure 8 (d) and Figure 8 (e2). The former applies the
early aggregation optimization (LA (Count)), which
can usually reduce data sizes for a later distributed parti-
tioning phase across the network incurred on individual
SS-queries. The latter applies the shared partitioning op-
timization to reduce the redundant data shuffling across
the SS-queries. Unlike DryadLINQ always choosing the
former plan, Comet relies on the cost model to predict
which one is better.

5 COMET SIMULATOR

We implement a trace-driven simulator that is capable of
estimating savings due to Comet optimizations. Taking
a trace from a real workload as input, the simulator first
categorizes queries into two kinds, i.e., ad hoc queries
and recurring queries, and then processes the queries ac-
cordingly.

As for query series, the simulator maintains global
logical and physical plans, representing all the jumbo
queries that have been processed. The simulator tries to
match the query plan of a jumbo query against the global
query plan and calculates the benefits of each optimiza-
tion technique. For example, if the query plan exactly
matches a path in the global execution plan, we add the
total I/O of the query plan to the savings from logical op-
timizations. In particular, the Comet simulator simulates
the following aspects in Comet.

— Simulating query normalization. The simulator nor-
malizes queries into SS-queries and evenly distributes
the total I/O costs of the original query to the SS-queries.
— Simulating logical optimizations. The simulator re-
moves redundancies in jumbo queries. The materializa-
tion cost of creating materialized views is counted. The
cost involves writing two extra copies of the data, repli-
cating the data twice in the distributed file system for re-
liability.

— Simulating physical optimizations. The simulator op-
timistically estimates the benefits of shared scan and
shared partitioning: the cost of only one input scan or
partitioning is counted.

The Comet simulator also supports simulating the ex-
ecution of ad hoc queries. Due to the unpredictability of
ad hoc queries, the simulator considers whether an ad
hoc query can reuse the views generated from the previ-
ous execution of query series.

Finally, the Comet simulator outputs the I/O cost of
the simulated workload. We have experimentally vali-
dated the accuracy of the simulation in Section 6.2.

6 EXPERIMENTS

We perform two sets of experiments to evaluate Comet.
The first set of experiments is on a real deployment of
Comet on a cluster of 40 machines using a micro bench-
mark. This micro benchmark is to reveal the micro-level
details of Comet integrated into DryadLINQ. The sec-
ond set of experiments applies the simulator on the en-
tire real-world trace reported in Section 2 to show the
global effectiveness of Comet, in comparison with two
existing multi-query optimization approaches [1, 18] in
DISC systems.

We mainly focus on system throughput, and use two
metrics in the micro benchmark: the fotal machine time
and the toral 1/0, where the total machine time is the ag-
gregated total amount of time (in seconds) spent on the
entire query on all the machines involved, and the to-
tal I/O is the number of bytes (in GB) in the disk and
network I/O during the execution. We have run each ex-
periment five times. Variances among different runs are
small, and we report the averages. As for cost estimation,
we use total I/O as the main metric in the simulation.

The optimal execution plans for jumbo queries are
automatically generated according to the cost model in
Comet. To evaluate the separate benefits of individual op-
timization techniques, we manually enable/disable cer-
tain optimizations. Overall, we define three optimiza-
tion configurations: Original, under which queries are
executed without Comet optimizations; Logical, which
adopts only query normalization and logical optimiza-
tions; and Full, which includes query normalization, log-
ical and physical optimizations.

6.1 Micro Benchmark Study

The micro benchmark study evaluates the overall benefit
as well as the cost model and choices in the jumbo query
optimization, e.g., shared scan and shared partitioning.

We construct a micro benchmark, which consists of
the three query series in Figure 5. Their structure re-
sembles that of the most popular query series we have
found in the query trace of the real workload. The dataset
contains per-day segments of a real stream from the
same workload. The average size of the per-day seg-
ments is around 2 TB. We projected the five most popular
columns (denoted as A—E) into a stream. Each segment is
evenly partitioned and stored to the machines in the clus-
ter. The average size of each segment is around 16 GB.
Column A has a relatively small number of distinct val-
ues with an uneven distribution, Column B follows the
zip-f distribution, and Columns C, D, and E are nearly
evenly distributed.

The final execution plans for the jumbo-query based
on the three query series and the given dataset are as fol-
lows: Original uses a normal DryadLINQ generated ex-

[Original S Logical @ Full

Total 1/0 (GB)

1 2 3 4 5 6 7
Day
(a) Total I/O

10,000
9,000
8,000
7,000
6,000
5,000
4,000
3,000
2,000
1,000

Full

@ Original & Logical

Total machine time (sec)

(b) Total machine time

Figure 9: The effectiveness of Comet with a detailed breakdown.

ecution plan, Logical uses the plan in Figure 8 (c), and
Full uses the plan in Figure 8 (e2) (we will discuss why
Comet did not select Figure 8 (d) later.) All the experi-
ments on the micro benchmark are performed on a clus-
ter of 40 machines, each with a dual 2GHz Intel Xeon
CPU, 8 GB memory and two 1TB SATA disks, con-
nected with 1 Gb Ethernet.

Overall effectiveness. We run the three query series
against the data of several weeks, and we repeated the
experiment under the three optimization configurations.
Figure 9 (a) shows the total I/O of one week in a steady
execution, denoted as day 1 to day 7. In Original, Q1 and
Q3 are daily executed from day 1 to day 7, and Q2 is ex-
ecuted on day 7 only. Original has a sharp spike in the
total I/O on day 7 due to Q2.

For both Logical and Full, queries are normalized
into SS-queries, which are aligned with the per-day
stream updates. From day 1 to day 6, both Logical and
Full are stable, as they repeat the same jumbo-query. On
day 7, they perform an additional final grouping opera-
tion on the seven materialized views generated in previ-
ous jumbo-queries for the second query series, thereby
incurring higher total I/O. Figure 9 (b) shows the total
machine time, which is consistent with the results on the
total I/O.

With logical optimization, Comet reduces the total
machine time by 30.5%, and the total I/O by 12.3%. With
both logical and physical optimizations, Comet reduces
the total machine time by 42.0%, and the total I/O by
42.3%. Besides, since our optimization divides the exe-
cution for Q3 into seven days, Logical and Full have a
more balanced load compared to Original.

Cost Model Accuracy. We evaluate the accuracy of our
cost model by comparing the total I/O numbers from the
practical runs above and from estimation based on the
statistics from the previous runs, i.e., we use the statis-
tics from the previous execution and the input size of the
current one to estimate the cost of the current execution.
The experiment was done twice under the Original and

10

200

& Original
(Measurement)

[y
%
o

B Original
(Estimation)

Total 1/0 (GB)

Full
(Measurement)

50 NS

[
o
o

| SALLL S LSS L LSS L SIS LSS SIS

= @ Full

1 2 3 a4 5 6 7 (Estimation)

Figure 10: Estimated and measured total I/O from day 1
to day 7.

Full configurations. Figure 10 shows the result: the esti-
mated total I/O follows the actual total I/O closely, which
validates the accuracy of our cost model.

Shared Scan. To investigate the appropriate number of
branches to be combined in one shared scan vertex (Sec-
tion 4.5), we combine 16 SS-queries from the first query
series together with a varying number of branches in one
shared scan vertex (1, 2, 4, 8, and 16). For example, we
split the 16 SS-queries into 4 vertices when the number
of branches in one vertex is 4. Figure 11 shows the to-
tal machine time with different selectivities (by chang-
ing the filtering condition). The results show that it is
beneficial to enable shared scan with a large number of
branches when the selectivity is low: this is the case for
most queries in our trace. When the filtering ratio is high,
the appropriate number of queries per shared scan vertex
should be small. Our cost model can guide this decision
making.

Early filtering versus shared partitioning. As dis-
cussed in Section 4.5, pushing down a selection opera-
tor for shared partitioning is not always profitable. We
investigate how the total I/O varies with the selectivity
of the selection operators in the first query series (by
changing the filtering conditions.) The experiment was
done twice on two instances of the first query series: the

4,000

51% -4-33% -+<10% -%0.01%
3,500

3,000
2,500
2,000
1,500
1,000

500

Total Machine Time of Shared Scan (sec)

il

#Queries in a Shared Scan Vertex

Figure 11: Total machine time of the shared scan.

140
120
= 100
C
o 80
~
Z 60
§ 40 ——Early filtering
-&-| ate filtering
20
0
0% 50% 100%
Filtering ratio
Figure 12: Performance on running two instances of

Q1.

first instance applies early filtering without shared par-
titioning; the second instance applies late filtering with
shared partitioning. Figure 12 shows the total I/O num-
bers for the two cases with the varying selectivity: As
the selectivity increases, the benefit of shared partition-
ing increases. When the selectivity is larger than 50%,
late filtering is preferable. Comet decides early filtering
or shared partitioning using cost estimation according to
selectivity.

Early aggregation versus shared partitioning. Recall
that Comet selected Figure 8 (e2) (w/ shared partitioning)
instead of Figure 8 (d) (w/ early aggregation) as our Full
optimization benchmark. The reasons are as follows. The
Count early aggregation applied to the second query se-
ries can save only 0.2 GB of the network I/O, due to the
distribution of the partitioning key A, B for the aggre-
gation. Meanwhile, the shared partitioning between the
first and second query series can save 0.9 GB network
I/0, which is much more profitable.

Co-location of partitioned views. We also evaluate the
impact of co-location between two partitioned views that
are to be joined as in the third query series. We run the
experiments without and with co-locating the two views,
and found that the total I/O is reduced from 191.6 GB to
175.2 GB, which has performance gain of 8.6%.

11

[}
o
o

B Measurement

%)
(=]
o

Simulation

Ny

o

o
I

Total I/O (GB)
N w
(=) o
o o

=

o

o
I

o
I

Original Logical Full

Figure 13: Simulation validation on micro benchmark.

6.2 Global Effectiveness Study

The simulator offers the capability of estimating the ef-
fectiveness with a real trace from a production system.
In this study, we use the trace described in Section 2 and
report the simulation results. The average optimization
time under the Full configuration on the trace of each
day is consistently under one minute, leading to an av-
erage of under one second for each query series. This
overhead is negligible in practice, compared with typical
query execution time in the real cluster.

Simulation validation. We first evaluate the accuracy of
our simulation. Figure 13 shows the total I/O of the mi-
cro benchmark reported in the above experiments and our
simulation, with the three optimization configurations.
We found that the maximum deviation is approximately
5% for the Full configuration, which validates the credi-
bility of our simulation.

Overall effectiveness. We run the simulator on the en-
tire trace under the two optimization configurations. By
default, the optimization configurations are with query
normalization. To study the effectiveness of normaliza-
tion, we also simulate them without normalization. Fig-
ure 14 shows the simulated results under these four con-
figurations. We can see that the Full optimization with
normalization can reduce the total I/O to 48%, which is
a significant cost saving. The Full optimization without
normalization can also reduce the total I/O to 58 %, which
means that the normalization contributes 10% of the cost
saving; this is consistent with the fact that over 67% of
the query series in our trace are daily executed that need
no query normalization. For the remaining two Logical
configurations, we can still get 15% to 16% performance
gain in terms of the total I/O.

Performance gain breakdown. A closer look at the sav-
ings from logical optimizations reveals that around 76%
and 22% of their savings come from the extraction and
aggregation operations, with around 2% due to the shared
computation from other operations. As for physical opti-
mizations, over 97% of all the physical optimization sav-
ings come from shared scan, with the remaining due to
shared partitioning.

1.0

'§ 85% 84% g w/o normalization
'_; 0.8 O w/ normalization
£ 58%
= 0.6
N 48%
T <
27 04
g
5 0.2
2
0.0

Logical Full

Figure 14: Total I/O in simulation with and without
query normalization.

Table 2: Normalized simulated I/O of different optimiza-
tion approaches

Approaches | Normalized simulated I/0
Original 100%
MV 85%
SM 80%
MV+SM 75%
Comet 48%

We further studied the amount of daily I/O with Full
optimization. During our observed period, the amounts
of daily I/O with Full are between 35% and 98% of those
with Original, indicating our optimization techniques re-
duce the total I/O for every day.

Performance gain on ad hoc queries. We further look
at the component of the ad hoc queries in our evaluation.
Those ad hoc queries account for 30% of the total I/O in
the original trace, but the ratio goes up to 61% after the
optimizations because our optimizations are more effec-
tive to recurring queries. Ad hoc queries also benefit if
some of their computation has already been performed
previously. Our results show a saving of 2% in terms of
the total I/O for the ad hoc queries.

Comparison with existing approaches. Finally, we im-
plemented two existing complementary multi-query op-
timization approaches in the simulator, one based on ma-
terialized views [18] for caching (denoted as MV), and
the other scheduling input scans [1] (denoted as SM). MV
identifies the common computation from the workload in
the previous day, and stores the results for the common
computation of the current day for reuse. SM considers
shared scans among queries in the query waiting queue.
Compared with Comet, these two approaches do not have
query normalization or global optimizations on shared
input scans.

Table 2 shows the normalized I/O of simulating dif-
ferent multi-query optimizations, where MV+SM de-
notes the result of applying both MV and SM approaches
to the system. Comet is more effective than MV+SM,
with 36% less 1/0.

12

6.3 Summary

The evaluations on the micro benchmark show that the
optimizations in Comet reduce 42.0% of total machine
time and 42.3% of total I/O. The simulations show that
Comet reduce over 50% of the total I/O, and has 36%
less I/O than the combined optimization of the two ex-
isting multi-query optimization approaches in DISC sys-
tems [1, 18]. Reducing the total I/O by one half is likely
to double the capacity of the system, which can save a
great deal of the investment on the data center.

7 RELATED WORK

Comet builds on prior work in both data intensive dis-
tributed systems and databases systems, especially those
on query optimizations.

7.1 Large-scale Data Processing Systems

The need for large-scale data processing has given rise
to a series of new distributed systems. The state-of-the-
art execution engines, such as MapReduce [8], Dryad
[16], and Hadoop [14] provide scalable and fault-tolerant
execution of individual data analysis tasks. More re-
cently, high-level languages, such as Sawzall [20], Pig
Latin [19], DryadLINQ [28], and SCOPE [6] introduce
high-level programming languages, often with certain
SQL flavors, to facilitate specification of intended com-
putation. All these systems adopt the batched process-
ing model and treat queries individually. A set of op-
timization techniques, such as early aggregation (or lo-
cal reduction), have been proposed and incorporated into
those systems, almost exclusively for optimizing individ-
ual queries.

Olston et al. [18] recognizes the relevance of database
optimization techniques and proposes a rule-based ap-
proach for both single- and multi-query optimizations
in batch processing. They further propose shared scans
of large data files to improve I/O performance [1]. The
work focuses on a theoretical analysis, with no report of
real implementations or evaluations. The adoption of the
BSP model does help Comet address the challenges that
were considered difficult: the BSP model allows a natural
alignment of multiple queries to enable shared scans and
makes a simple and accurate cost model feasible. The
techniques in [18, 1] are useful for Comet to handle ad
hoc queries.

Our previous work [15] presents the preliminary
study on the trace and outlines some research opportu-
nities. This work extends the previous study with an em-
phasis on query correlations as well as data and compu-
tation popularity, and realizes the research opportunities
through the proposal of the BSP model and the integra-
tion into DryadLINQ.

7.2 Database Optimizations

Many core ideas in Comet optimizations can find their
origins in query processing techniques in database sys-
tems [9, 13], both in batch processing [9, 23, 25] and in
stream processing [3].

As with the stream processing model [3], computa-
tion in the BSP model is triggered by new updates to
data streams, but without resource and timing constraints
normally associated with stream processing; as with the
batch processing model, each query in a query series is a
batch job, but the computation is recurring, as it is trig-
gered by a (bulk) update to data streams.

Batch processing. There is a large body of research
on query optimizations for batch processing in tradi-
tional (parallel) databases [9]. Shared-nothing database
systems like Gamma [10] and Bubba [5] focus mainly
on parallelizing a single query. As for multiple query
optimizations, materialized views [2, 23] are an ef-
fective mechanism in exploiting the result of common
subexpressions within a single query or among multiple
queries. Zhou et al. improves the view matching oppor-
tunities on similar subexpressions [29]. In Comet, per-
sistent outputs registered in a catalog are materialized
views, without complicated and usually expensive view
maintenance in databases [4]. Additionally, by combin-
ing queries into a jumbo query, the results of most
common expressions do not need to be materialized.
Zukowski et al. [30] enhanced the existing I/O schedul-
ing policies for concurrent disk scans.

Stream processing. Stream processing systems such as
STREAM [27], OpenCQ [17], and NiagaraCQ [7] usu-
ally process real-time and continuous data streams. Due
to resource and time constraints, stream data are usu-
ally not stored persistently. Continuous queries run on
a stream for a period of time, and return new results as
new data arrives. Query processing algorithms for incre-
mental computation [26, 17] and for identifying common
subqueries among continuous queries [7] are proposed to
process streams efficiently.

8 DISCUSSIONS

The BSP Model and Ad Hoc Queries. Comet’s design
targets the BSP model, but can easily accommodate ad
hoc queries. In fact, we expect that for any DISC sys-
tems the workload will consists of those conforming to
the BSP model and those ad hoc queries that do not.
Many optimization techniques in Comet can benefit ad
hoc queries as well, as our simulation indicates. Clearly,
ad hoc queries cannot take full advantages of the opti-
mizations in Comet: because an ad hoc query is triggered
upon submission, it cannot be easily aligned with other
queries for shared scans; because an ad hoc query is non-
recurring, the cost model might be less accurate.

13

The co-existence of the BSP queries and the ad hoc

queries also impose challenges on other parts of the sys-
tem. Ad hoc queries are likely to be significantly smaller
than jumbo queries. Fairness in scheduling thus becomes
crucial for providing a reasonable service to ad hoc
queries.
The BSP Model and its Impact on the Underlying
System. Comet can also benefit from better support
from the underlying execution engines. Currently, jumbo
queries that Comet creates are given to the underly-
ing system as a single job: the information that the job
contains multiple queries is lost. This makes it hard to
achieve the fairness among queries in a job and for pre-
venting failures of individual queries from aborting other
queries in the same job.

There is also a tension between maximizing sharing

and enabling parallel executions. For example, to get the
benefits of shared scan and shared partitioning, multiple
queries are now scheduled to run on the same machines
concurrently. While this optimizes the overall through-
put and improves resource utilizations, it might create
hotspots in some part of the system, with idle resources
elsewhere. As for the power-law popularity on data ac-
cesses, a distributed storage system must balance allo-
cation of cold and hot data; this will help alleviate the
tension in Comet.
Declarative Operators and Imperative Custom Func-
tions. The combination of declarative operators and im-
perative custom functions in DryadLINQ might appear to
be a prefect choice for expressiveness, ease of program-
ming, and flexibility. But the effect of pollution from
those imperative custom functions is particularly alarm-
ing, especially for some of the seeming natural optimiza-
tions we would like to perform. It seems to echo some of
criticisms from the database community [11]. Some way
of constraining that flexibility seems desirable.

The issue has already surfaced in the original
DryadLINQ system, as hinted by its authors. Optimiza-
tions such as early aggregations become hard with cus-
tom aggregation functions. The custom functions also
make it hard to propagate the data properties that are
important for optimizations. One proposal is to let users
annotate the functions. Comet faces a more significant
challenge: because Comet optimizations are often across
queries from different users, users might not be aware
of such optimizations to help. We believe that a combi-
nation of automatic program analysis and tasteful con-
straints on the custom functions might help address the
issues.

9 CONCLUSIONS

With the increasing uses of distributed systems in large-
scale data processing, we envision the inevitable conver-
gence of database systems and distributed systems in this

context, which will bring a set of new challenges and
opportunities in performance and resource optimization.
Motivated by the observations from a real system, Comet
is a step towards that convergence, embracing an execu-
tion model driven by arrivals of data updates, and making
cross-query optimization tractable. We hope that insights
from Comet, especially on execution models and opti-
mization techniques, and their interplay, could help in-
spire and influence future research in this emerging and
increasingly important area.

REFERENCES

[1] P. Agrawal, D. Kifer, and C. Olston. Scheduling shared scans of large data

files. Proc. VLDB Endow., 1(1):958-969, 2008.

[2] S. Agrawal, S. Chaudhuri, and V. R. Narasayya. Automated selection of

materialized views and indexes in SQL databases. In VLDB, 2000.

B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom. Models and
issues in data stream systems. In ACM PODS, 2002.

(3]

[4] J. A. Blakeley, P.-A. Larson, and F. W. Tompa. Efficiently updating

materialized views. SIGMOD Rec., 15(2):61-71, 1986.

[S] H.Boral, W. Alexander, L. Clay, G. Copeland, S. Danforth, M. Franklin,
B. Hart, M. Smith, and P. Valduriez. Prototyping bubba, a highly parallel

database system. /EEE Trans. on Knowl. and Data Eng., 2(1):4-24, 1990.

R. Chaiken, B. Jenkins, P.-A. Larson, B. Ramsey, D. Shakib, S. Weaver,
and J. Zhou. SCOPE: easy and efficient parallel processing of massive
data sets. Proc. VLDB Endow., 1(2), 2008.

[6]

[7] J. Chen, D. J. Dewitt, F. Tian, and Y. Wang. NiagaraCQ: A scalable

continuous query system for internet databases. In ACM SIGMOD, 2000.

[8] J. Dean and S. Ghemawat. MapReduce: Simplified data processing on

large clusters. In OSDI, 2004.

[9] D.DeWitt and J. Gray. Parallel database systems: the future of high

performance database systems. Commun. ACM, 35(6):85-98, 1992.

D.J. Dewitt, S. Ghandeharizadeh, D. A. Schneider, A. Bricker, H. I.
Hsiao, and R. Rasmussen. The gamma database machine project. /EEE
Trans. on Knowl. and Data Eng., 2(1):44-62, 1990.

[10]

[11] D.J. DeWitt and M. Stonebraker. Mapreduce: A major step backwards.

The Database Column, 1, 2008.

[12] S. Ghemawat, H. Gobioft, and S.-T. Leung. The google file system.

SIGOPS Oper. Syst. Rev., 37(5):29-43, 2003.

14

[13]

[14]
[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

G. Graefe. Query evaluation techniques for large databases. ACM
Comput. Surv., 25(2):73-169, 1993.

Hadoop. http://hadoop.apache.org/.

B. He, M. Yang, Z. Guo, R. Chen, W. Lin, B. Su, H. Wang, and L. Zhou.
Wave computing in the cloud. In HotOS, 2009.

M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad: distributed
data-parallel programs from sequential building blocks. SIGOPS Oper.
Syst. Rev., 41(3):59-72, 2007.

L. Liu, C. Pu, and W. Tang. Continual queries for internet scale
event-driven information delivery. IEEE Transactions on Knowledge and
Data Engineering, 11:610-628, 1999.

C. Olston, B. Reed, A. Silberstein, and U. Srivastava. Automatic
optimization of parallel dataflow programs. In USENIX ATC, 2008.

C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins. Pig Latin: a
not-so-foreign language for data processing. In ACM SIGMOD, 2008.

R. Pike, S. Dorward, R. Griesemer, and S. Quinlan. Interpreting the data:
Parallel analysis with Sawzall. Sci. Program., 13(4), 2005.

L. Popa, M. Budiu, Y. Yu, and M. Isard. Dryadlnc: Reusing work in
large-scale computations. In HotCloud, 2009.

G. Ramalingam and T. Reps. A categorized bibliography on incremental
computation. In POPL, 1993.

P. Roy, S. Seshadri, S. Sudarshan, and S. Bhobe. Efficient and extensible
algorithms for multi query optimization. SIGMOD Rec., 29(2), 2000.

P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and T. G.
Price. Access path selection in a relational database management system.
In ACM SIGMOD, 1979.

T. K. Sellis. Multiple-query optimization. ACM Trans. Database Syst.,
13(1):23-52, 1988.

D. Terry, D. Goldberg, D. Nichols, and B. Oki. Continuous queries over
append-only databases. In ACM SIGMOD, 1992.

The Stanford STREAM Group. STREAM: The stanford stream data
manager. IEEE Data Engineering Bulletin, 26(1), 2003.

Y. Yu, M. Isard, D. Fetterly, M. Budiu, U. Erlingsson, P. K. Gunda, and
J. Currey. DryadLINQ: A system for general-purpose distributed
data-parallel computing using a high-level language. In OSDI, 2008.

J. Zhou, P.-A. Larson, J.-C. Freytag, and W. Lehner. Efficient exploitation
of similar subexpressions for query processing. In ACM SIGMOD, 2007.

M. Zukowski, S. Héman, N. Nes, and P. Boncz. Cooperative scans:
dynamic bandwidth sharing in a dbms. In VLDB, 2007.

