
Ruminations on Multi-Tenant Databases

Dean Jacobs, Stefan Aulbach

Technische Universität München
Institut für Informatik - Lehrstuhl III (I3)

Boltzmannstr. 3
D-85748 Garching bei München

{dean.jacobs, stefan.aulbach}@in.tum.de

Abstract: This is a position paper on multi-tenant databases. As motivation, it first
describes the emerging marketplace of hosted enterprise services and the
importance of using multi-tenancy to handle high traffic volumes at low cost. It
then outlines the main requirements on multi-tenant databases: scale up by
consolidating multiple tenants onto the same server and scale out by providing an
administrative framework that manages a farm of such servers. Finally it describes
three approaches to implementing multi-tenant databases and compares them based
on some simple experiments. The main conclusion is that existing database
vendors need to enhance their products to better support multi-tenancy.

1 Hosted Services and Multi-Tenancy

In the hosted service model [GM02a, GM02b, Wa03], a service provider develops an
application and operates the system that hosts it. Customers access the application over
the Internet using industry-standard web browsers or Web Services clients. As the
Internet has matured, hosted services have appeared for an increasingly wide variety of
enterprise applications, including ones that manage sales, marketing, support, human
resources, planning, manufacturing, inventory, financials, purchasing, and compliance
[Th06]. While hosted services are attractive to all segments of the market, they are
particularly appealing to small- to medium-sized businesses, which often lack the
resources to maintain a complex data center. Hosted services are exploiting such
“greenfield” opportunities to expand the overall size of the market.

In comparison to traditional on-premises solutions, hosted services can reduce the total
cost of ownership of an application by aggregating customers together and leveraging
economy of scale. This principle applies to both capital expenditures, e.g., for hardware
and software, and operational expenditures, e.g., for bandwidth and personnel. Because a
hosted service is focused on one application, the infrastructure and the procedures for
managing it can be highly optimized: well-known examples here include the Google File
System [GGL03] and Hotmail [Sm05]. Such optimizations are essential to support large
numbers of small- to medium-sized businesses, which would otherwise be prohibitively
expensive.

ruesche
Textfeld
12. GI-Fachtagung für Datenbanksysteme inBusiness, Technologie und Web (BTW 2007)5. bis 9. März 2007 - Aachen, Germanyhttp://www.btw2007.de/

http://www.btw2007.de/

Multi-tenancy is an optimization for hosted services in which multiple customers are
consolidated onto the same operational system, a technique pioneered by salesforce.com
[Sa06, Co06]. Multi-tenancy allows pooling of resources, which improves utilization by
eliminating the need to provision each customer for their maximum load. Multi-tenancy
can also improve management efficiencies by providing a uniform framework for
administering the system. A multi-tenant system should support both scale up and scale
out [De99]: scale up by consolidating multiple customers onto the same server and scale
out by having the administrative framework span a farm of such servers. Scale out is
required because it is not cost effective to scale up a single server indefinitely.

The administrative framework of a multi-tenant system should support the ability to
migrate a customer from one server to another within the farm. For example, a customer
might start out on a server that manages trial accounts, be moved to a server that
manages small production accounts, and grow until it is moved to a dedicated server that
manages only one account. Migration should also be possible between farms, for
example, to allow customers to be moved from one data center to another. The
administrative framework should also support rolling upgrade, where the servers in a
farm are upgraded to a new version of the application one at a time. Since it is difficult
to generate realistic Internet-scale workloads for testing, rolling upgrades are needed to
gain experience with new versions before they are put widely into production.

2 Requirements on Multi-Tenant Databases

Multi-tenancy can be applied at the database layer of a hosted service, where it can be
very effective due to the high cost of provisioning and operating databases. This section
argues that, in addition to managing customers’ private data, a multi-tenant database
should manage customer metadata and shared public data.

The administrative framework of a multi-tenant database should maintain metadata
about customers, such as their contact information, their location in the farm, and the
features they are allowed to access. Certain administrative operations will need to access
this metadata alongside of customer data. For example, a service provider might want to
scan the metadata to find all customers in a given region and then determine which of
those customers have more than a certain amount of data. To support such operations,
the administrative framework should offer a unified query language that obviates the
need for a general-purpose programming language with embedded queries. In addition to
being easier to use, this approach makes it simpler to execute administrative operations
in bulk on individual databases in the farm.

The target application for a hosted service will generally have a base schema that
specifies all of its standard data. A multi-tenant database should maintain an instance of
this base schema for each customer. The unified query language should ensure that DDL
statements for modifying the base schema and DML statements for transforming existing
data within it are applied to all customers in the farm, within the context of a rolling
upgrade. The ability to perform such operations in bulk on the individual databases is
essential to minimize downtime during an upgrade. Many business applications, such as
CRM or ERP, allow customers to extend the base schema, e.g., by adding new columns
to existing tables and adding new tables. The administrative framework should maintain
the specification of each customer’s schema extensions as part of their metadata.

A service provider may want to maintain public information, such as area code data,
census data, streaming stock prices, or industry best practices, that is accessible to all
customers. Such shared data will generally be read-only, although there are cases where
space-saving technologies like copy-on-write [PB03] should be used to allow customers
to privately update the data. A multi-tenant database should allow customers to
seamlessly access shared data alongside of their private data. This will entail either
replicating the shared data on each server in the farm or providing a mechanism to
access it remotely.

3 Implementing Multi-Tenant Databases

This section describes and compares three approaches to implementing multi-tenant
databases: shared machine, shared process, and shared table. These approaches are
increasingly better at pooling resources and executing administrative operations in bulk.
However they increasingly break down the isolation between customers, weakening
security and increasing contention for resources.

The discussion presents the results of some preliminary experiments on the memory and
disk usage of five databases: PostgreSQL [Po06], MaxDB [Ma06], and three commercial
databases cleverly code-named Commercial1, Commercial2, and Commercial3. Unless
otherwise indicated, no specialized tuning was performed on these databases. The
experiments used a simplified version of the CRM schema offered by salesforce.com
containing eleven tables, each with about twelve fields.

The experiments were focused on the shared process approach: they created different
numbers of schema instances, each with eleven empty tables, and loaded them into
memory in the same database process. The experiments are preliminary in that the tables
were not populated and no queries were executed against them. The results are shown in
Table 1. In all cases, the storage requirements were close to being linear in the number of
schema instances, hence only the end points at 1 and 10,000 instances are presented.
PostgreSQL and Commercial1 produced various errors that prevented the experiments
from completing and the final numbers are extrapolated. These errors were generally
fixed limits on internal structures, such as the number of objects in a table space. All
numbers are in megabytes.

 Memory

1 instance

Memory

10,000 instances

Disk

1 instance

Disk

10,000 instances

PostgreSQL 55 79 4 4,488

MaxDB 80 80 3 1,168

Commercial1 171 616 200 414,210

Commercial2 74 2,061 3 693

Commercial3 273 359 1 13,630

Table 1. Storage Requirements for Schemas Instances (in megabytes)

3.1 Shared Machine

In the shared machine approach, each customer gets their own database process and
multiple customers share the same machine. An example of this approach is CasJobs,
which supports analysis of data in the Sloan Digital Sky Survey database [Mu05]. This
approach is popular in practice because it does not require modifying the implementation
of the database. In addition, it does not substantially reduce customer isolation,
particularly if each process is placed in its own virtual machine.

The main limitation of this approach is that it does not pool memory. The first column of
Table 1 shows that the memory requirements to handle one schema instance vary from
55 MB to 273 MB across the five databases. This result indicates that this approach
cannot scale beyond tens of active customers per server. Another limitation of this
approach is that each database requires its own connection pool on each application
server, so sockets will not be shared among customers. To improve this situation, the
implementation could be modified to share memory and sockets among co-located
database processes, possibly at a level below those processes.

Because isolation between customers is strong in this approach, executing administrative
operations in bulk is not feasible: each database will execute queries on its own. In
addition, providing seamless access to shared data requires a mechanism to access it
remotely, otherwise it will end up being replicated multiple times on the same server.
Customer migration is straightforward however, in that it entails simply moving files
from one server to another.

An interesting issue is brought to light by the third column of Table 1, which shows the
disk requirements to handle one schema instance. Commercial1 pre-allocates 200 MB
for the database, although this could be reduced by additional tuning. Under this
approach, this practice could result in terabytes of wasted disk space when multiplied
across thousands of small businesses.

3.2 Shared Process

In the shared process approach, each customer gets their own tables and multiple
customers share the same database process. For most databases, it does not matter
whether each customer gets their own schema, since schemas are implemented using a
lightweight prefixing mechanism. However, it is useful if each customer gets their own
physical table space so that customer migration entails simply moving files from one
server to another. In addition, it allows the system administrator to balance the I/O load
by distributing customers across different backing disks.

This approach is considerably better at pooling memory. The second column of Table 1
shows that the memory requirements to handle 10,000 schema instances vary from 79
MB to 2,061 MB across the five databases. MaxDB stands out in that the memory
requirements were the same regardless of the number of schema instances, suggesting
that the data dictionary is being paged. Further experiments are required to determine the
performance implications of this technique. In any case, this result indicates that this
approach should easily scale up to thousands of active customers per server, a two orders
of magnitude improvement over the shared machine approach. Further improvements
could be provided by modifying the implementation to keep only one copy of the
schema and having each instance refer to it. This technique could also be applied to the
disk, although the third and fourth columns of Table 1 indicate that it would save only
gigabytes of storage.

Since there is only one database in this approach, customers can share connection pools.
There is a well-known downside to connection pooling however: all connections must be
associated with a fixed principal who can access everything. This means that both
security and the management of resource contention have to be handled at the
application layer. Thus errors in the application code could allow one customer to access
another customer’s tables or prevent them from getting their fair share of resources. This
problem could be mitigated by allowing the principal associated with a database
connection to be picked up from the application server. Support for this feature is
beginning to appear in databases today.

To execute administrative operations in bulk in this approach, the metadata embodied in
the schemas has to be made available as data and it must be possible to create operations
that are parameterized over the domain of table names. Some support for these features
is available in databases today. These capabilities are also required in the administrative
framework to handle queries that go across the individual databases in the farm.

In this approach, administrative operations such as adding customers, removing
customers, and extending the base schema entail executing DDL statements. This
requirement can be problematic for some databases, which behave poorly if schemas are
modified while the system is in operation.

3.3 Shared Table

In the shared table approach, data from many customers is stored in the same tables, as
illustrated in Figure 1. A TenantId column is added to each table to identify the owner
of each row. Every application query is expected to specify a single value for this
column. To allow customers to extend the base schema, each table is given a fixed set of
additional generic columns. These columns might be of type VARCHAR, as shown in
Figure 1, or they might have a mix of types. The data for the n-th new column of a table
for each customer is placed in the n-th generic column of the appropriate type, after
performing any necessary type conversions.

TenantId Account Name … Val0 … Val100

1041 0021 Acme 1/3/95 ----

1041 0029 Ball 3/7/72 ----

1053 0016 Gump red ----

1053 0049 Wonk blue ----

Figure 1. Account Table in the Shared Table Approach

This approach is clearly the best at pooling resources. Its ability to scale up is limited
only by the number of rows the database can hold, which should offer several orders of
magnitude improvement over the shared process approach. Administrative operations
can be executed in bulk simply by executing queries that range over the TenantId
column. And since there is only one database, customers can share connection pools.

There are however several significant problems with this approach. First, since files on
the disk have intermingled data from multiple customers, migration requires executing
queries against the operational system. Second, such intermingling can impact the
performance of accessing a customer’s data, since it may be spread out across many
pages. Third, security can be pushed down into the database only if different access
privileges can be assigned to different rows in the same table. Fourth, the use of generic
columns is feasible only if the database has a compact representation for sparse tables.
Fifth, if typing of the generic columns has been abandoned, it will be hard to use
column-oriented features such as indexes and integrity constraints.

The sixth and biggest problem with this approach is that queries intended for a single
customer have to contend with data from all customers, which compromises query
optimization. In particular, optimization statistics aggregate across all customers and
table scans go across all customers. Moreover, if one customer requires an index on a
column, then all customers have to have that index. To improve this situation, the
implementation could be modified to treat the TenantId column as if it defined
separate tables. Alternatively, this problem could be handled above the database in a
query preprocessor that performed its own optimizations.

4 Conclusions

This paper has argued that multi-tenant databases are essential for hosted services to
manage high traffic volumes at low cost. Multi-tenant databases may also be useful
behind the firewall of a single organization, e.g., to handle multiple branches that have
the same schema.

This paper described and compared three approaches to implementing multi-tenant
databases. The authors’ opinion is that, among these, shared-process is the most
promising approach. Shared-machine will continue to be used in circumstances where
security concerns are paramount. Modifications to increase resource pooling could
provide moderate improvements in scalability, however they may not be worth the effort
of performing delicate inter-process coordination. Shared-table swings too far in the
other direction, potentially compromising performance, customer migration, security,
and typing. Shared-process can be made more scalable by maintaining only one copy of
the base schema, and more secure by having the principal associated with a database
connection be picked up from the application server. In any case, it is clear that existing
database vendors need to enhance their products to better support multi-tenancy.

It is interesting to note that support for multi-tenancy generally requires blurring the line
between data and metadata: shared-process offers bulk execution of administrative
queries by allowing them to be parameterized over the domain of table names, while
shared-table repairs query processing by having the TenantId column implicitly
define tables. Since these features require only limited support for dynamic manipulation
of schemas, it should be possible to support them without compromising query
optimization.

Acknowledgements This paper benefited greatly from discussions with Alfons
Kemper, Mike Carey, Jim Gray, Adam Messinger, Anno Langen, and the people who
started it all, the developers at salesforce.com.

References

[GM02a] Greschler, D.; Mangan, T.: Networking lessons in delivering ‘Software as a Service’ -
Part I. Int. J. Network Mgmt 12, 2002.

[GM02b] Greschler, D.; Mangan, T.: Networking lessons in delivering ‘Software as a Service’ -
Part II. Int. J. Network Mgmt 12, 2002.

[Wa03] Walsh, K. R.: Analyzing the Application ASP Concept: Technologies, Economies, and
Strategies. CACM Vol. 46, No. 8 August, 2003.

[Th06] THINKstrategies: http://saas-showplace.com/. 2006.
[GGL03] Ghemawat, S.; Gobioff, H.; Leung, S.: The Google File System. Proc. 19th ACM Symp.

on Operating Systems Principles, New York, 2003.
[Sm05] Smoot, P.: A Conversation with Phil Smoot. ACM Queue Vol.3 Issue 10, 2005.
[Sa06] http://www.salesforce.com/, 2006.
[Co06] Salesforce.com boasts of architectural superiority. Computer Business Review Online.

http://www.cbronline.com/article_news.asp?guid=A6156ED5-55F7-432B-95BC-
7CF413E1BB88&z=rc_CRM, 2006.

[De99] Devlin, B.; Gray, J.; Laing, B.; Spix, G.: Scalability Terminology: Farms, Clones,
Partitions, and Packs: RACS and RAPS. MSR-TR-99-85, December 1999.

[PB03] Peterson, Z. N. J.; Burns, R. C.: Ext3cow: The Design, Implementation, and Analysis of
Metadata for a Time-Shifting File System. Technical Report HSSL-2003-03, Hopkins
Storage Systems Lab, The Johns Hopkins University, 2003.

[Po06] http://www.postgresql.org/, 2006.
[Ma06] http://www.mysql.com/products/maxdb/, 2006
[Mu05] Mullane, W.; Li, N.; Nieto-Santisteban, M.; Szalay, A.; Thakar, A.; Gray, J.: Batch is

back: CasJobs, serving multi-TB data on the Web. Proc. IEEE Int. Conf. on Web
Services, 2005.

