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Abstract: This is a position paper on multi-tenant databases. As motivation, it first 
describes the emerging marketplace of hosted enterprise services and the 
importance of using multi-tenancy to handle high traffic volumes at low cost. It 
then outlines the main requirements on multi-tenant databases: scale up by 
consolidating multiple tenants onto the same server and scale out by providing an 
administrative framework that manages a farm of such servers. Finally it describes 
three approaches to implementing multi-tenant databases and compares them based 
on some simple experiments. The main conclusion is that existing database 
vendors need to enhance their products to better support multi-tenancy. 

1 Hosted Services and Multi-Tenancy 

In the hosted service model [GM02a, GM02b, Wa03], a service provider develops an 
application and operates the system that hosts it. Customers access the application over 
the Internet using industry-standard web browsers or Web Services clients. As the 
Internet has matured, hosted services have appeared for an increasingly wide variety of 
enterprise applications, including ones that manage sales, marketing, support, human 
resources, planning, manufacturing, inventory, financials, purchasing, and compliance 
[Th06]. While hosted services are attractive to all segments of the market, they are 
particularly appealing to small- to medium-sized businesses, which often lack the 
resources to maintain a complex data center. Hosted services are exploiting such 
“greenfield” opportunities to expand the overall size of the market. 

In comparison to traditional on-premises solutions, hosted services can reduce the total 
cost of ownership of an application by aggregating customers together and leveraging 
economy of scale. This principle applies to both capital expenditures, e.g., for hardware 
and software, and operational expenditures, e.g., for bandwidth and personnel. Because a 
hosted service is focused on one application, the infrastructure and the procedures for 
managing it can be highly optimized: well-known examples here include the Google File 
System [GGL03] and Hotmail [Sm05]. Such optimizations are essential to support large 
numbers of small- to medium-sized businesses, which would otherwise be prohibitively 
expensive. 
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Multi-tenancy is an optimization for hosted services in which multiple customers are 
consolidated onto the same operational system, a technique pioneered by salesforce.com 
[Sa06, Co06]. Multi-tenancy allows pooling of resources, which improves utilization by 
eliminating the need to provision each customer for their maximum load. Multi-tenancy 
can also improve management efficiencies by providing a uniform framework for 
administering the system. A multi-tenant system should support both scale up and scale 
out [De99]: scale up by consolidating multiple customers onto the same server and scale 
out by having the administrative framework span a farm of such servers. Scale out is 
required because it is not cost effective to scale up a single server indefinitely. 

The administrative framework of a multi-tenant system should support the ability to 
migrate a customer from one server to another within the farm. For example, a customer 
might start out on a server that manages trial accounts, be moved to a server that 
manages small production accounts, and grow until it is moved to a dedicated server that 
manages only one account. Migration should also be possible between farms, for 
example, to allow customers to be moved from one data center to another. The 
administrative framework should also support rolling upgrade, where the servers in a 
farm are upgraded to a new version of the application one at a time. Since it is difficult 
to generate realistic Internet-scale workloads for testing, rolling upgrades are needed to 
gain experience with new versions before they are put widely into production.  

2 Requirements on Multi-Tenant Databases 

Multi-tenancy can be applied at the database layer of a hosted service, where it can be 
very effective due to the high cost of provisioning and operating databases. This section 
argues that, in addition to managing customers’ private data, a multi-tenant database 
should manage customer metadata and shared public data. 

The administrative framework of a multi-tenant database should maintain metadata 
about customers, such as their contact information, their location in the farm, and the 
features they are allowed to access. Certain administrative operations will need to access 
this metadata alongside of customer data. For example, a service provider might want to 
scan the metadata to find all customers in a given region and then determine which of 
those customers have more than a certain amount of data. To support such operations, 
the administrative framework should offer a unified query language that obviates the 
need for a general-purpose programming language with embedded queries. In addition to 
being easier to use, this approach makes it simpler to execute administrative operations 
in bulk on individual databases in the farm. 



The target application for a hosted service will generally have a base schema that 
specifies all of its standard data. A multi-tenant database should maintain an instance of 
this base schema for each customer. The unified query language should ensure that DDL 
statements for modifying the base schema and DML statements for transforming existing 
data within it are applied to all customers in the farm, within the context of a rolling 
upgrade. The ability to perform such operations in bulk on the individual databases is 
essential to minimize downtime during an upgrade. Many business applications, such as 
CRM or ERP, allow customers to extend the base schema, e.g., by adding new columns 
to existing tables and adding new tables. The administrative framework should maintain 
the specification of each customer’s schema extensions as part of their metadata.  

A service provider may want to maintain public information, such as area code data, 
census data, streaming stock prices, or industry best practices, that is accessible to all 
customers. Such shared data will generally be read-only, although there are cases where 
space-saving technologies like copy-on-write [PB03] should be used to allow customers 
to privately update the data. A multi-tenant database should allow customers to 
seamlessly access shared data alongside of their private data. This will entail either 
replicating the shared data on each server in the farm or providing a mechanism to 
access it remotely. 

3 Implementing Multi-Tenant Databases 

This section describes and compares three approaches to implementing multi-tenant 
databases: shared machine, shared process, and shared table. These approaches are 
increasingly better at pooling resources and executing administrative operations in bulk. 
However they increasingly break down the isolation between customers, weakening 
security and increasing contention for resources. 

The discussion presents the results of some preliminary experiments on the memory and 
disk usage of five databases: PostgreSQL [Po06], MaxDB [Ma06], and three commercial 
databases cleverly code-named Commercial1, Commercial2, and Commercial3. Unless 
otherwise indicated, no specialized tuning was performed on these databases. The 
experiments used a simplified version of the CRM schema offered by salesforce.com 
containing eleven tables, each with about twelve fields.  

The experiments were focused on the shared process approach: they created different 
numbers of schema instances, each with eleven empty tables, and loaded them into 
memory in the same database process. The experiments are preliminary in that the tables 
were not populated and no queries were executed against them. The results are shown in 
Table 1. In all cases, the storage requirements were close to being linear in the number of 
schema instances, hence only the end points at 1 and 10,000 instances are presented. 
PostgreSQL and Commercial1 produced various errors that prevented the experiments 
from completing and the final numbers are extrapolated. These errors were generally 
fixed limits on internal structures, such as the number of objects in a table space. All 
numbers are in megabytes. 



 Memory  

1 instance 

Memory 

10,000 instances 

Disk 

1 instance 

Disk 

10,000 instances 

PostgreSQL 55 79 4 4,488 

MaxDB 80 80 3 1,168 

Commercial1 171 616 200 414,210 

Commercial2 74 2,061 3 693 

Commercial3 273 359 1 13,630 
 

Table 1. Storage Requirements for Schemas Instances (in megabytes) 

3.1 Shared Machine 

In the shared machine approach, each customer gets their own database process and 
multiple customers share the same machine. An example of this approach is CasJobs, 
which supports analysis of data in the Sloan Digital Sky Survey database [Mu05]. This 
approach is popular in practice because it does not require modifying the implementation 
of the database. In addition, it does not substantially reduce customer isolation, 
particularly if each process is placed in its own virtual machine.  

The main limitation of this approach is that it does not pool memory. The first column of 
Table 1 shows that the memory requirements to handle one schema instance vary from 
55 MB to 273 MB across the five databases. This result indicates that this approach 
cannot scale beyond tens of active customers per server. Another limitation of this 
approach is that each database requires its own connection pool on each application 
server, so sockets will not be shared among customers. To improve this situation, the 
implementation could be modified to share memory and sockets among co-located 
database processes, possibly at a level below those processes. 

Because isolation between customers is strong in this approach, executing administrative 
operations in bulk is not feasible: each database will execute queries on its own. In 
addition, providing seamless access to shared data requires a mechanism to access it 
remotely, otherwise it will end up being replicated multiple times on the same server. 
Customer migration is straightforward however, in that it entails simply moving files 
from one server to another.  

An interesting issue is brought to light by the third column of Table 1, which shows the 
disk requirements to handle one schema instance. Commercial1 pre-allocates 200 MB 
for the database, although this could be reduced by additional tuning. Under this 
approach, this practice could result in terabytes of wasted disk space when multiplied 
across thousands of small businesses.  



3.2 Shared Process 

In the shared process approach, each customer gets their own tables and multiple 
customers share the same database process. For most databases, it does not matter 
whether each customer gets their own schema, since schemas are implemented using a 
lightweight prefixing mechanism. However, it is useful if each customer gets their own 
physical table space so that customer migration entails simply moving files from one 
server to another. In addition, it allows the system administrator to balance the I/O load 
by distributing customers across different backing disks.  

This approach is considerably better at pooling memory. The second column of Table 1 
shows that the memory requirements to handle 10,000 schema instances vary from 79 
MB to 2,061 MB across the five databases. MaxDB stands out in that the memory 
requirements were the same regardless of the number of schema instances, suggesting 
that the data dictionary is being paged. Further experiments are required to determine the 
performance implications of this technique. In any case, this result indicates that this 
approach should easily scale up to thousands of active customers per server, a two orders 
of magnitude improvement over the shared machine approach. Further improvements 
could be provided by modifying the implementation to keep only one copy of the 
schema and having each instance refer to it. This technique could also be applied to the 
disk, although the third and fourth columns of Table 1 indicate that it would save only 
gigabytes of storage. 

Since there is only one database in this approach, customers can share connection pools. 
There is a well-known downside to connection pooling however: all connections must be 
associated with a fixed principal who can access everything. This means that both 
security and the management of resource contention have to be handled at the 
application layer. Thus errors in the application code could allow one customer to access 
another customer’s tables or prevent them from getting their fair share of resources. This 
problem could be mitigated by allowing the principal associated with a database 
connection to be picked up from the application server. Support for this feature is 
beginning to appear in databases today. 

To execute administrative operations in bulk in this approach, the metadata embodied in 
the schemas has to be made available as data and it must be possible to create operations 
that are parameterized over the domain of table names. Some support for these features 
is available in databases today. These capabilities are also required in the administrative 
framework to handle queries that go across the individual databases in the farm. 

In this approach, administrative operations such as adding customers, removing 
customers, and extending the base schema entail executing DDL statements. This 
requirement can be problematic for some databases, which behave poorly if schemas are 
modified while the system is in operation.  



3.3 Shared Table 

In the shared table approach, data from many customers is stored in the same tables, as 
illustrated in Figure 1. A TenantId column is added to each table to identify the owner 
of each row. Every application query is expected to specify a single value for this 
column. To allow customers to extend the base schema, each table is given a fixed set of 
additional generic columns. These columns might be of type VARCHAR, as shown in 
Figure 1, or they might have a mix of types. The data for the n-th new column of a table 
for each customer is placed in the n-th generic column of the appropriate type, after 
performing any necessary type conversions.  

TenantId Account Name … Val0 … Val100 

1041 0021 Acme  1/3/95  ---- 

1041 0029 Ball  3/7/72  ---- 

1053 0016 Gump  red  ---- 

1053 0049 Wonk  blue  ---- 

Figure 1. Account Table in the Shared Table Approach 

This approach is clearly the best at pooling resources. Its ability to scale up is limited 
only by the number of rows the database can hold, which should offer several orders of 
magnitude improvement over the shared process approach. Administrative operations 
can be executed in bulk simply by executing queries that range over the TenantId 
column. And since there is only one database, customers can share connection pools. 

There are however several significant problems with this approach. First, since files on 
the disk have intermingled data from multiple customers, migration requires executing 
queries against the operational system. Second, such intermingling can impact the 
performance of accessing a customer’s data, since it may be spread out across many 
pages.  Third, security can be pushed down into the database only if different access 
privileges can be assigned to different rows in the same table. Fourth, the use of generic 
columns is feasible only if the database has a compact representation for sparse tables. 
Fifth, if typing of the generic columns has been abandoned, it will be hard to use 
column-oriented features such as indexes and integrity constraints.  

The sixth and biggest problem with this approach is that queries intended for a single 
customer have to contend with data from all customers, which compromises query 
optimization. In particular, optimization statistics aggregate across all customers and 
table scans go across all customers. Moreover, if one customer requires an index on a 
column, then all customers have to have that index. To improve this situation, the 
implementation could be modified to treat the TenantId column as if it defined 
separate tables. Alternatively, this problem could be handled above the database in a 
query preprocessor that performed its own optimizations. 



4 Conclusions 

This paper has argued that multi-tenant databases are essential for hosted services to 
manage high traffic volumes at low cost. Multi-tenant databases may also be useful 
behind the firewall of a single organization, e.g., to handle multiple branches that have 
the same schema. 

This paper described and compared three approaches to implementing multi-tenant 
databases. The authors’ opinion is that, among these, shared-process is the most 
promising approach. Shared-machine will continue to be used in circumstances where 
security concerns are paramount. Modifications to increase resource pooling could 
provide moderate improvements in scalability, however they may not be worth the effort 
of performing delicate inter-process coordination. Shared-table swings too far in the 
other direction, potentially compromising performance, customer migration, security, 
and typing. Shared-process can be made more scalable by maintaining only one copy of 
the base schema, and more secure by having the principal associated with a database 
connection be picked up from the application server. In any case, it is clear that existing 
database vendors need to enhance their products to better support multi-tenancy. 

It is interesting to note that support for multi-tenancy generally requires blurring the line 
between data and metadata: shared-process offers bulk execution of administrative 
queries by allowing them to be parameterized over the domain of table names, while 
shared-table repairs query processing by having the TenantId column implicitly 
define tables. Since these features require only limited support for dynamic manipulation 
of schemas, it should be possible to support them without compromising query 
optimization. 
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