
HBase and Hypertable for large scale distributed storage
systems

A Performance evaluation for Open Source BigTable Implementations

Ankur Khetrapal, Vinay Ganesh
Dept. of Computer Science, Purdue University

{akhetrap, ganeshv}@cs.purdue.edu

Abstract

BigTable is a distributed storage system developed at
Google for managing structured data and has the
capability to scale to a very large size: petabytes of
data across thousands of commodity servers. As now,
there exist two open-source implementations that
closely emulate most of the components of Google’s
BigTable i.e. HBase and Hypertable. HBase is
written in Java and provides BigTable like
capabilities on top of Hadoop. Hypertable is
developed in C++ and is compatible with multiple
distributed file systems. Both HBase and Hypertable
require a distributed file system like Google File
System (GFS) and the comparison therefore also
takes into account the architectural differences in the
available implementations of GFS like systems. This
paper provides a view of the capabilities of each of
these implementations of BigTable, and should help
those trying to understand their technical similarities,
differences, and capabilities.

Introduction

Implementing distributed, reliable, storage-intensive
file systems or database systems is fairly complex.
These systems face several challenges like data
placement algorithms, cache management policies for
quick retrieval of data, provide a high degree of fault-
tolerance because of deployment over thousands of
nodes, scalability and security to some extent.

The key motivation behind systems like BigTable is
the ability to store structured data without first
defining a schema provides developers with greater

flexibility when building applications, and eliminates
the need to re-factor an entire database as those
applications evolve. BigTable allows you to organize
massive amounts of data by some primary key and
efficiently query the data.

The HBase project is for those whose cannot afford
Oracle license fees or whose MySQL install is
starting to buckle because tables have a few blob
columns and the row count is heading north of a
couple of million rows. HBase is for storing huge
amounts of structured or semi-structured data.

Related Work

Google’s BigTable was not the first solution towards
the problem of managing structured data in a
distributed environment. The problem has been
widely researched and there exist a number of
generic and specific solutions in the industry as well
as academia. Microsoft’s Boxwood Project,
developed in C# and C, provides components with
overlapping functionality with Google’s Chubby
Lock Service, GFS and BigTable. However,
Boxwood is a research project and there are no
performance comparisons available for any large
deployments of the Boxwood Project.

Mnesia is a distributed Database management system
and provides and extremely high degree of fault
tolerance. Mnesia provides a large number of features
such as distributed storage, table fragmentation, no
impedance mismatch, no GC overhead, hot updates,
live backups, and multiple disc/memory storage

options. Mnesia is developed in Erlang and layers on
top of CouchDB to provide BigTable like features.

Dynamo is a distributed storage system by Amazon
however; it focuses on writes as compared to
BigTable that focuses on reads and assumes writes to
be almost negligible. SimpleDB is another service
from Amazon that offers BigTable like
functionalities. However, Bigtable values are an
uninterpreted array of bytes and SimpleDB stores
only strings; SSDS has string, number, datetime,
binary and boolean datatypes.

HBase

Introduction

HBase is an Apache open source project whose goal
is to provide Big Table like storage. Data is logically
organized into tables, rows and columns. Columns
may have multiple versions for the same row key.
The data model is similar to that of Big Table. There
are a few differences in HBase from Big Table.
Currently with HBase, only 1 row at a time can be
locked. The next version will allow multi row
locking. SSTable is called HStore in HBase and each
HStore has 1 or more MapFiles which are stored in
HDFS. Currently these MapFiles cant be mapped to
memory. HBase identifies a row range by table name
and start key where as in Big Table it uses the table
name and the end key.

 Requirements

HBase requires java 1.5.x and Hadoop 0.17.x. ssh
must be installed and sshd must be running to use
Hadoop's scripts to manage remote Hadoop daemons.
The clocks on cluster members should be in basic
alignments. Some skew is tolerable but wild skew
can generate odd behaviors. All the table data is
stored in the underlying HDFS.

Architecture Overview (Implementation)

There are three major components of the HBase
architecture:

1. HBaseMaster. The HBaseMaster is responsible
for assigning regions to HRegionServers. The
first region to be assigned is the ROOT region
which locates all the META regions to be
assigned. The HBaseMaster also monitors the
health of each HRegionServer, and if it detects a
HRegionServer is no longer reachable, it will
split the HRegionServer's write-ahead log so that
there is now one write-ahead log for each region
that the HRegionServer was serving. After it has
accomplished this, it will reassign the regions
that were being served by the unreachable
HRegionServer. In addition, the HBaseMaster is
also responsible for handling table administrative
functions such as on/off-lining of tables, changes
to the table schema (adding and removing
column families), etc.

2. HRegionServer. The HRegionServer is

responsible for handling client read and write
requests. It communicates with the HBaseMaster
to get a list of regions to serve and to tell the
master that it is alive. Region assignments and
other instructions from the master "piggy back"
on the heart beat messages.

3. HBase client. The HBase client is responsible

for finding HRegionServers that are serving the
particular row range of interest. On instantiation,
the HBase client communicates with the
HBaseMaster to find the location of the ROOT
region. This is the only communication between
the client and the master.

Evaluation

Observations

HBase has a new Shell which allows you to do all the
admin tasks which include create, update, insert, etc.
commands. The row counter is very slow. When
updates were made to the table, say for example
when rows of the table were deleted; the size of the
table in the HDFS used to increase. This is mostly
because of the fact that Major compactions occur
with less periodicity. So the changes do not reflect as
expected immediately.

System Configuration

The machine used for the single node evaluation of
HBase had an Intel Core2 Duo – 2 GHz processor
with 3 GB memory and 200 GB of secondary storage
was available. Scripts for cause random/sequential
read/write were implemented to evaluate the
performance of HBase. We also used the
performance evaluation scripts that were already
made available with HBase the tests. Performance
was monitored on the standalone setup only.

All the evaluations were done using one
HRegionServer. HBase performed well and as
expected for most of the tests performed. In some
instances it scaled poorly and overall performance is
still several orders of magnitude worse than
BigTable.

Performance of the Scanner

HBase provides a cursor like Scanner interface to the
contents of the table. When one doesn't know the row
you are looking for we can use this. We can
configure the number of rows per fetch in the hbase-
default.xml file. This corresponds to the number of
rows that will be fetched when calling next on the
scanner if it is not served from the memory. The
performance for the Scanner was thus tested for
different values of rows per fetch. The following
results were obtained

Rows per fetch Rate of row fetch

1 1600 rows/second

10 9000 rows/second

20 18000 rows/second

Thus it is seen that the performance of the scanner
improves significantly by configuring the number of
rows per fetch to a larger number. This can be
attributed to the fact that by increasing the number of
rows per fetch, we are reducing the number of RPC
calls made significantly – hence better rates
observed. Higher caching values will enable faster
scanners but will eat up more memory and some calls

of next may take longer and longer times when the
cache is empty.

Scaling the column families

(Note :- This test was carried out by Kareem Dana at
Duke University over a year ago. The same is
performed on a newer version of HBase now by us.)

A table having a specified number of column families
was created and wrote 1000 bytes of data into each
column family. After creating the table and adding
data into it, random reads were performed across the
different column families. Then we tried to carry out
sequential updates to the data in these column
families. The following results were observed.

Number of column
families

100 300 500 550

Reads/Sec 170 165 170 Timeout
(Sequential)Writes/sec 250 250 260 -
(Random) Writes/sec 240 250 235 -

On trying to create over 500 column families,
sometimes it was able to create upto 600 column
families but most often it used to timeout or hang.
The read and write performance was found not to
depend on the number of column families.

Reads/Writes

The same table that was used for the previous test
was used. The client code was modified to write 1GB
of data into 1 million rows, each row having a single
column whose value is randomly-generated 1000
bytes of data. Both random and sequential read
operations and write operations were performed. The
performance evaluation script that was available with
HBase was used to do the required tests and the
following results were observed.

Operation Rate
Sequential reads 310 Reads/sec
Sequential writes 1600 Writes/sec
Random Reads 290 Reads/sec
Random writes 1550 Writes/sec

When compared with the results put up in the HBase
site it is evident that the numbers have not improved
much over new releases. Reads a significantly slower
than writes as reads from memory has not been
implemented yet which essentially means that reads
pay the price of accessing the disk repeatedly.

Pitfalls

HBase is still under development. Currently, here are
only 3 committers working on it. As a result the
development is not rapid and there are some essential
features that are still under development. MapFiles in
HBase cannot be mapped to memory. When the
HBase master dies, the entire cluster shuts down.
This is because they an external lock management
system like Chubby has not been implemented yet.
HBase master is the single point to access all
HRegionServers and thus translates to a single point
of failure. Performance really depends heavily on the
number of RPC calls made. So a general thumb rule
would be to configure parameters such that it shall
minimize the number of RPC calls.

Hypertable

Introduction

Hypertable is an open source, high performance,
scalable database, modeled after Google's Bigtable. It
stores data in a table, sorted by a primary key. There
is no typing for data in the cells, all data is stored as
uninterpreted byte strings as in BigTable. Scaling is
achieved by breaking tables in contiguous ranges and
splitting them up to different physical machines. Data
is stored as <key,value> pairs. All revisions of the
data are stored in Hypertable, so timestamps are an
important part of the keys. A typical key for a single
cell is <row> <column-family> <column-qualifier>
<timestamp>.

Requirements

Hypertable is designed to run on top of a "third party"
distributed filesystem that provides a broker
interface, such as Hadoop DFS or CloudStore (earlier
known as KFS, developed in C++). However, the
system can also be run on top of a normal local

filesystem. All table data is stored in the underlying
distributed filesystem.

Architecture Overview (Implementation)

Hypertable consists of the following components
interacting with each other as described in Fig. 1.

1. Hyperspace. Hyperspace is the equivalent of

Chubby lock service for Hypertable. It provides
a file system for storing small amounts of
metadata and acts a lock manager. In the current
implementation of Hypertable, it is implemented
as a single server.

Figure 1: Processes in Hypertable and how they
relate to each other.

2. RangeServers. When the size of the table

increases beyond a certain threshold, it is split
into multiple tables, each of which is stored at a
Range Server. The ranges for the new data are
assigned by the Master. This is analogous to
ChunkServers in BigTable terminology.

3. Master. The master handles all meta operations
such as creating and deleting tables. The master
is also responsible for range server allotment for
table splits. As per the current implementation,
there is only a single master process.

4. DFSBroker. Hypertable achieves independence
from a distributed filesystem by using a
DFSBroker. The DFSBroker converts
standardized filesystem protocol messages into

the system calls that are unique to the specific
filesystem.

Hypertext Query Language (HQL) is used as the
query language with Hypertable. HQL closely
follows SQL type syntax including primitives like
SELECT, INSERT, DELETE.

Evaluation

Experimental Setup for Hypertable

The Elastic Compute Cloud (EC2) infrastructure
service from Amazon was used as a testbed for the
performance evaluation. Amazon EC2 provides the
following instance configurations. For brevity
purposes, we only describe the instances used in the
evaluation.

1. Small Instance: 1.7 GB of memory,

1 EC2 Compute Unit (1 virtual core with
1 EC2 Compute Unit), 160 GB of instance
storage, 32-bit platform

2. Large Instance: 7.5 GB of memory,
4 EC2 Compute Units (2 virtual cores with
2 EC2 Compute Units each), 850 GB of instance
storage, 64-bit platform

3. High-CPU Medium Instance: 1.7 GB of

memory, 5 EC2 Compute Units (2 virtual cores
with 2.5 EC2 Compute Units each), 350 GB of
instance storage, 32-bit platform

EC2 Compute Unit (ECU) – One EC2 Compute Unit
(ECU) provides the equivalent CPU capacity of a
1.0-1.2 GHz 2007 Opteron or 2007 Xeon processor.

RightScale

RightScale is a third-party web tool for managing the
deployments over Amazon EC2. It provides an easy
interface for adding/deleting servers to the
deployments and managing remote access to those
servers via a simple to use web-based ssh interface.
However it becomes a major hurdle due to the lack of
support available about its usage and basic tools.

RightScale’s wiki fails to mention some of the
important aspects of managing a large deployment
over EC2 including bundling a running instance and
managing credentials for sub-accounts. RightScale
provides pre-built/configured images for easy
deployment of basic systems like Hadoop however
due to lack to support about setting it up and
providing proper credentials, setting up a Hadoop
cluster from scratch turned out to be an easier task
than using RightScale.

Being a third-party tool, RightScale does not seem to
offer any specific advantage over the native Amazon
interface or ElasticFox.

Hypertable Benchmark Implementation

We set up a Hypertable cluster with N RangeServers
to measure the performance for random reads and
random writes into a test table. Rows are by default
sorted by the primary key in Hypertable. A random
write corresponds to creating rows in no specific
order where the final location of each row is decided
by the master node on the fly. The data used for
evaluation of Hypertable was random data created on
the fly by using a random() function and creating a
fixed length random key of 12 bytes.

Sequential reads and sequential write performance
are measured by reading/writing data from rows in a
fixed order. Throughput for writes is measured in
terms of records inserted per sec and cells scanned
per sec for reads.

Testbed Configuration

In the experimental setup, the master was running as
a Small Instance while the RangeServers were
running on High-CPU Medium Instance with each
RangeServer running on a single node. The test were
also performed with the master node running on a
Large instance, however, as in case of Bigtable, the
master was not found to be a performance bottleneck
and hence similar results were obtained.

For the purpose of this evaluation, Hypertable was
running over HDFS however since it supports a
broker interface that can be used with any GFS-like

distributed file system, we also plan to evaluate the
performance over CloudStore, earlier known as
Kosmos File System (KFS), which is developed in
C++. In the current setting, HDFS was configured
with 3-way replication.

As in BigTable, clients control whether or not the
tablets held by RangeServers are compressed or not.
For basic evaluation of the system, compression was
turned off in order to compare with the numbers
provided for BigTable.

Variable Factors

The following factors are critical when measuring the
performance of Hypertable for random reads and
writes
.

1. Blocksize: This is the size of the value for a
corresponding key to be written into the
table.

2. RangeServers: This denotes the resources
available for the system and acts as a
measure of scalability of Hypertable.

Fault Tolerance

Hypertable is still under development and therefore
there are some critical features that are missing from
the current release. As per the documentation,
currently Hyperspace and Master are implemented as
a single server leading to a single point of failure.

Performance

As proceeded in the BigTable paper, we begin the
performance evaluation of Hypertable with only 1
RangeServer. The fault tolerance of Hypertable was
evaluated using a single RangeServer. It was found
that Hypertable does not tolerate the failure of
RangeServers gracefully. If a RangeServer crashes or
becomes unavailable to the master, the system is not
able to recover and the data at the range is lost as per
the system.

The following table contains the results obtained with
a single RangerServer compared to the results from
the BigTable paper. The performance numbers

provided in this section correspond to only the
successful runs of random reads and writes. In the
current evaluation, clients write approximately 1 GB
data in the RangeServer.

Experiment Hypertable BigTable
Random reads 431 1208
Random Writes 1903 8850
Sequential Reads 621 4425
Sequential Writes 1563 8547

Figure 2. Number of 1000 byte values read/written
per second in a cluster with only one RangeServer.

Comparing with BigTable, the initial numbers seem
way behind. Each random read involves a transfer of
64KB block over the network out of which only 1000
byes are used, hence leading to a lower throughput
for random reads as compared to random writes. The
RangeServer executes approximately 431 reads per
second which translates to approximately 27MB/s of
data read from the HDFS as compared for 75 MB/s
for BigTable and GFS.

Sequential reads and sequential writes were expected
to be similar since the bottleneck for writes is writing
to the commit log and not the RangeServers
themselves. This is consistent across BigTable,
HBase and Hypertable.

Fig. 3. shows the variation of throughput (records
inserted per second) for different block sizes for
inserting a fixed amount of data. For the purpose of
these measurements, 1000 byte records were inserted
randomly into the table amounting to a total of 1GB
on a cluster with a master and one RangeServer.

Increase in aggregate throughput is observed as the
system is scaled by adding multiple RangeServers but
the increase does not seem as drastic as described for
BigTable. As in case of BigTable, the increase in
throughput is far from linear. For example, the
performance of random writes increases by a factor
of 1.6 approximately as the number of RangeServers
increases by a factor of 3.2

The performance increase is not linear as current
version of Hypertable does not perform any load

Fig. 3. Variation of throughput (records
inserted/sec) with blocksize with random writes.

 Fig. 4. Results from BigTable

Figure 5. Total number of 1000-byte values read/written per second with increase in number of RangeServers.

balancing amongst the RangeServers. As for
BigTable, the random reads benchmark shows thee
worst scaling with an aggregate increase in
throughput only by a factor of 3 for a 20 fold increase
in the RangeServers.

Experience

System Reliability

The current release of Hypertable (0.9.12) seems to
be relatively unstable with frequent failures of master
node leading to a complete loss of data stored in the
system. The failures were particularly observed when
writing large amounts of data into the system. The
frequency of the system reaching an unresponsive
state was comparatively higher when the writes were
of greater than a few GB. Hypertable appears to be
relatively stable to random reads and failures were
not frequent when reading large chunks of data.
HBase, on the other hand, seemed to be much more

reliable than Hypertable when run on a single node in
terms of dealing with large chunks of data.
While writing large chunks of data, some of the
failures were reported as “Hadoop I/O error”
signaling either the limitations of HDFS under stress
or incompatibilities between Hypertable and HDFS.

Hypertable Query Language (HQL)

The query language for describing the loose schema
of the tables used in Hypertable is Hypertable Query
Language. HQL closely resembles SQL and is easy
to use.

Other Minor Contributions

Log4cpp: It is a library used to provide logging
support for systems developed in C++ corresponding
to Log4j for Java. The last release was in 2002 and is
incompatible with g++ 4.3.x and hence minor fixes
were required.

Future Work

In order to do a complete evaluation of Hypertable, a
performance analysis over CloudStore is planned. A
combination for CloudStore and Hypertable when
compared against HBase and Hadoop, would make
up a new chapter in the age old C++ vs. Java battle
for large scale distributed storage systems.

Another important aspect is to scale up comparatively
to the extent described by Google. Amazon EC2 does
provide the resources to scale up to a much higher
extent than described in the report, however failures
of master node in Hypertable limits repeating the
experiment in the same setup. We have coordinated
with the Hypertable development group and we plan
to scale the system up further once the bug is
resolved.

Scaling up HBase is another aspect that was planned
for the project. We plan to scale HBase up to similar
set up and study the performances under a consistent
setup.

