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Abstract 
 
BigTable is a distributed storage system developed at 
Google for managing structured data and has the 
capability to scale to a very large size: petabytes of 
data across thousands of commodity servers. As now, 
there exist two open-source implementations that 
closely emulate most of the components of Google’s 
BigTable i.e. HBase and Hypertable. HBase is 
written in Java and provides BigTable like 
capabilities on top of Hadoop. Hypertable is 
developed in C++ and is compatible with multiple 
distributed file systems. Both HBase and Hypertable 
require a distributed file system like Google File 
System (GFS) and the comparison therefore also 
takes into account the architectural differences in the 
available implementations of GFS like systems. This 
paper provides a view of the capabilities of each of 
these implementations of BigTable, and should help 
those trying to understand their technical similarities, 
differences, and capabilities. 
 
 

Introduction 
 
Implementing distributed, reliable, storage-intensive 
file systems or database systems is fairly complex. 
These systems face several challenges like data 
placement algorithms, cache management policies for 
quick retrieval of data, provide a high degree of fault-
tolerance because of deployment over thousands of 
nodes, scalability and security to some extent.  
 
The key motivation behind systems like BigTable is 
the ability to store structured data without first 
defining a schema provides developers with greater 

flexibility when building applications, and eliminates 
the need to re-factor an entire database as those 
applications evolve. BigTable allows you to organize 
massive amounts of data by some primary key and 
efficiently query the data. 

The HBase project is for those whose cannot afford 
Oracle license fees or whose MySQL install is 
starting to buckle because tables have a few blob 
columns and the row count is heading north of a 
couple of million rows. HBase is for storing huge 
amounts of structured or semi-structured data. 

 
Related Work 
 
Google’s BigTable was not the first solution towards 
the problem of managing structured data in a 
distributed environment. The problem has been 
widely researched and there exist a number of 
generic and specific solutions in the industry as well 
as academia. Microsoft’s Boxwood Project, 
developed in C# and C, provides components with 
overlapping functionality with Google’s Chubby 
Lock Service, GFS and BigTable. However, 
Boxwood is a research project and there are no 
performance comparisons available for any large 
deployments of the Boxwood Project.  
 
Mnesia is a distributed Database management system 
and provides and extremely high degree of fault 
tolerance. Mnesia provides a large number of features 
such as distributed storage, table fragmentation, no 
impedance mismatch, no GC overhead, hot updates, 
live backups, and multiple disc/memory storage 



options. Mnesia is developed in Erlang and layers on 
top of CouchDB to provide BigTable like features.  
 
Dynamo is a distributed storage system by Amazon 
however; it focuses on writes as compared to 
BigTable that focuses on reads and assumes writes to 
be almost negligible. SimpleDB is another service 
from Amazon that offers BigTable like 
functionalities. However, Bigtable values are an 
uninterpreted array of bytes and SimpleDB stores 
only strings; SSDS has string, number, datetime, 
binary and boolean datatypes.  

 
HBase 
 
Introduction 
 
HBase is an Apache open source project whose goal 
is to provide Big Table like storage. Data is logically 
organized into tables, rows and columns. Columns 
may have multiple versions for the same row key. 
The data model is similar to that of Big Table. There 
are a few differences in HBase from Big Table. 
Currently with HBase, only 1 row at a time can be 
locked. The next version will allow multi row 
locking. SSTable is called HStore in HBase and each 
HStore has 1 or more MapFiles which are stored in 
HDFS. Currently these MapFiles cant be mapped to 
memory. HBase identifies a row range by table name 
and start key where as in Big Table it uses the table 
name and the end key.  

 Requirements 

HBase requires java 1.5.x and Hadoop 0.17.x. ssh 
must be installed and sshd must be running to use 
Hadoop's scripts to manage remote Hadoop daemons. 
The clocks on cluster members should be in basic 
alignments. Some skew is tolerable but wild skew 
can generate odd behaviors. All the table data is 
stored in the underlying HDFS. 

Architecture Overview (Implementation) 

There are three major components of the HBase 
architecture: 

1. HBaseMaster. The HBaseMaster is responsible 
for assigning regions to HRegionServers. The 
first region to be assigned is the ROOT region 
which locates all the META regions to be 
assigned. The HBaseMaster also monitors the 
health of each HRegionServer, and if it detects a 
HRegionServer is no longer reachable, it will 
split the HRegionServer's write-ahead log so that 
there is now one write-ahead log for each region 
that the HRegionServer was serving. After it has 
accomplished this, it will reassign the regions 
that were being served by the unreachable 
HRegionServer. In addition, the HBaseMaster is 
also responsible for handling table administrative 
functions such as on/off-lining of tables, changes 
to the table schema (adding and removing 
column families), etc. 

 
2. HRegionServer.  The HRegionServer is 

responsible for handling client read and write 
requests. It communicates with the HBaseMaster 
to get a list of regions to serve and to tell the 
master that it is alive. Region assignments and 
other instructions from the master "piggy back" 
on the heart beat messages. 

 
3. HBase client. The HBase client is responsible 

for finding HRegionServers that are serving the 
particular row range of interest. On instantiation, 
the HBase client communicates with the 
HBaseMaster to find the location of the ROOT 
region. This is the only communication between 
the client and the master. 

 

Evaluation 

Observations 

HBase has a new Shell which allows you to do all the 
admin tasks which include create, update, insert, etc. 
commands. The row counter is very slow. When 
updates were made to the table, say for example 
when rows of the table were deleted; the size of the 
table in the HDFS used to increase. This is mostly 
because of the fact that Major compactions occur 
with less periodicity. So the changes do not reflect as 
expected immediately.  

 



System Configuration 

The machine used for the single node evaluation of 
HBase had an Intel Core2 Duo – 2 GHz processor 
with 3 GB memory and 200 GB of secondary storage 
was available. Scripts for cause random/sequential 
read/write were implemented to evaluate the 
performance of HBase. We also used the 
performance evaluation scripts that were already 
made available with HBase the tests. Performance 
was monitored on the standalone setup only. 

All the evaluations were done using one 
HRegionServer. HBase performed well and as 
expected for most of the tests performed. In some 
instances it scaled poorly and overall performance is 
still several orders of magnitude worse than 
BigTable.  

Performance of the Scanner 

HBase provides a cursor like Scanner interface to the 
contents of the table. When one doesn't know the row 
you are looking for we can use this. We can 
configure the number of rows per fetch in the hbase-
default.xml file. This corresponds to the number of 
rows that will be fetched when calling next on the 
scanner if it is not served from the memory. The 
performance for the Scanner was thus tested for 
different values of rows per fetch. The following 
results were obtained 

Rows per fetch Rate of row fetch 

1 1600 rows/second 

10 9000 rows/second 

20 18000 rows/second 

 

Thus it is seen that the performance of the scanner 
improves significantly by configuring the number of 
rows per fetch to a larger number. This can be 
attributed to the fact that by increasing the number of 
rows per fetch, we are reducing the number of RPC 
calls made significantly – hence better rates 
observed. Higher caching values will enable faster 
scanners but will eat up more memory and some calls 

of next may take longer and longer times when the 
cache is empty. 
 
Scaling the column families 
 
(Note :- This test was carried out by Kareem Dana at 
Duke University over a year ago. The same is 
performed on a newer version of HBase now by us.) 
 
A table having a specified number of column families 
was created and wrote 1000 bytes of data into each 
column family. After creating the table and adding 
data into it, random reads were performed across the 
different column families. Then we tried to carry out 
sequential updates to the data in these column 
families. The following results were observed.   
 
Number of column 
families 

100 300 500 550 

Reads/Sec 170 165 170 Timeout 
(Sequential)Writes/sec 250 250 260  -  
(Random) Writes/sec 240 250 235 - 
 
On trying to create over 500 column families, 
sometimes it was able to create upto 600 column 
families but most often it used to timeout or hang. 
The read and write performance was found not to 
depend on the number of column families. 
 
Reads/Writes 

The same table that was used for the previous test 
was used. The client code was modified to write 1GB 
of data into 1 million rows, each row having a single 
column whose value is randomly-generated 1000 
bytes of data. Both random and sequential read 
operations and write operations were performed. The 
performance evaluation script that was available with 
HBase was used to do the required tests and the 
following results were observed. 
 

Operation   Rate  
Sequential reads 310 Reads/sec 
Sequential writes 1600 Writes/sec 
Random Reads  290 Reads/sec 
Random writes 1550 Writes/sec 

 



When compared with the results put up in the HBase 
site it is evident that the numbers have not improved 
much over new releases. Reads a significantly slower 
than writes as reads from memory has not been 
implemented yet which essentially means that reads 
pay the price of accessing the disk repeatedly.  

Pitfalls 
 
HBase is still under development. Currently, here are 
only 3 committers working on it. As a result the 
development is not rapid and there are some essential 
features that are still under development. MapFiles in 
HBase cannot be mapped to memory. When the 
HBase master dies, the entire cluster shuts down. 
This is because they an external lock management 
system like Chubby has not been implemented yet. 
HBase master is the single point to access all 
HRegionServers and thus translates to a single point 
of failure.  Performance really depends heavily on the 
number of RPC calls made. So a general thumb rule 
would be to configure parameters such that it shall 
minimize the number of RPC calls. 

 

Hypertable 
 
Introduction 
 
Hypertable is an open source, high performance, 
scalable database, modeled after Google's Bigtable. It 
stores data in a table, sorted by a primary key. There 
is no typing for data in the cells, all data is stored as 
uninterpreted byte strings as in BigTable. Scaling is 
achieved by breaking tables in contiguous ranges and 
splitting them up to different physical machines. Data 
is stored as <key,value> pairs. All revisions of the 
data are stored in Hypertable, so timestamps are an 
important part of the keys. A typical key for a single 
cell is <row> <column-family> <column-qualifier> 
<timestamp>.  
 
Requirements 
 
Hypertable is designed to run on top of a "third party" 
distributed filesystem that provides a broker 
interface, such as Hadoop DFS or CloudStore (earlier 
known as KFS, developed in C++). However, the 
system can also be run on top of a normal local 

filesystem. All table data is stored in the underlying 
distributed filesystem. 
 
Architecture Overview (Implementation) 
 
Hypertable consists of the following components 
interacting with each other as described in Fig. 1. 
 
1. Hyperspace. Hyperspace is the equivalent of 

Chubby lock service for Hypertable. It provides 
a file system for storing small amounts of 
metadata and acts a lock manager.  In the current 
implementation of Hypertable, it is implemented 
as a single server. 

 
 

 
 

Figure 1: Processes in Hypertable and how they 
relate to each other. 

 
2. RangeServers.  When the size of the table 

increases beyond a certain threshold, it is split 
into multiple tables, each of which is stored at a 
Range Server. The ranges for the new data are 
assigned by the Master. This is analogous to 
ChunkServers in BigTable terminology. 
 

3. Master. The master handles all meta operations 
such as creating and deleting tables. The master 
is also responsible for range server allotment for 
table splits. As per the current implementation, 
there is only a single master process.  
 

4. DFSBroker. Hypertable achieves independence 
from a distributed filesystem by using a 
DFSBroker. The DFSBroker converts 
standardized filesystem protocol messages into 



the system calls that are unique to the specific 
filesystem.  

 
Hypertext Query Language (HQL) is used as the 
query language with Hypertable. HQL closely 
follows SQL type syntax including primitives like 
SELECT, INSERT, DELETE. 
 
 

Evaluation 
 
Experimental Setup for Hypertable 
 
The Elastic Compute Cloud (EC2) infrastructure 
service from Amazon was used as a testbed for the 
performance evaluation. Amazon EC2 provides the 
following instance configurations. For brevity 
purposes, we only describe the instances used in the 
evaluation. 
 
1. Small Instance: 1.7 GB of memory, 

1 EC2 Compute Unit (1 virtual core with 
1 EC2 Compute Unit), 160 GB of instance 
storage, 32-bit platform 
 

2. Large Instance:  7.5 GB of memory, 
4 EC2 Compute Units (2 virtual cores with 
2 EC2 Compute Units each), 850 GB of instance 
storage, 64-bit platform 

 
3. High-CPU Medium Instance:  1.7 GB of 

memory, 5 EC2 Compute Units (2 virtual cores 
with 2.5 EC2 Compute Units each), 350 GB of 
instance storage, 32-bit platform 

 
EC2 Compute Unit (ECU) – One EC2 Compute Unit 
(ECU) provides the equivalent CPU capacity of a 
1.0-1.2 GHz 2007 Opteron or 2007 Xeon processor. 
 
RightScale 
 
RightScale is a third-party web tool for managing the 
deployments over Amazon EC2. It provides an easy 
interface for adding/deleting servers to the 
deployments and managing remote access to those 
servers via a simple to use web-based ssh interface.  
However it becomes a major hurdle due to the lack of 
support available about its usage and basic tools.  

RightScale’s wiki fails to mention some of the 
important aspects of managing a large deployment 
over EC2 including bundling a running instance and 
managing credentials for sub-accounts. RightScale 
provides pre-built/configured images for easy 
deployment of basic systems like Hadoop however 
due to lack to support about setting it up and 
providing proper credentials, setting up a Hadoop 
cluster from scratch turned out to be an easier task 
than using RightScale. 
 
Being a third-party tool, RightScale does not seem to 
offer any specific advantage over the native Amazon 
interface or ElasticFox.  
 
 
Hypertable Benchmark Implementation 
 
We set up a Hypertable cluster with N RangeServers 
to measure the performance for random reads and 
random writes into a test table. Rows are by default 
sorted by the primary key in Hypertable. A random 
write corresponds to creating rows in no specific 
order where the final location of each row is decided 
by the master node on the fly. The data used for 
evaluation of Hypertable was random data created on 
the fly by using a random() function and creating a 
fixed length random key of 12 bytes. 
 
Sequential reads and sequential write performance 
are measured by reading/writing data from rows in a 
fixed order. Throughput for writes is measured in 
terms of records inserted per sec and cells scanned 
per sec for reads. 
 
Testbed Configuration 
 
In the experimental setup, the master was running as 
a Small Instance while the RangeServers were 
running on High-CPU Medium Instance with each 
RangeServer running on a single node. The test were 
also performed with the master node running on a 
Large instance, however, as in case of Bigtable, the 
master was not found to be a performance bottleneck 
and hence similar results were obtained.  
 
For the purpose of this evaluation, Hypertable was 
running over HDFS however since it supports a 
broker interface that can be used with any GFS-like 



distributed file system, we also plan to evaluate the 
performance over CloudStore, earlier known as 
Kosmos File System (KFS), which is developed in 
C++. In the current setting, HDFS was configured 
with 3-way replication. 
 
As in BigTable, clients control whether or not the 
tablets held by RangeServers are compressed or not. 
For basic evaluation of the system, compression was 
turned off in order to compare with the numbers 
provided for BigTable.  
 
Variable Factors 
 
The following factors are critical when measuring the 
performance of Hypertable for random reads and 
writes 
. 

1. Blocksize: This is the size of the value for a 
corresponding key to be written into the 
table.  
 

2. RangeServers: This denotes the resources 
available for the system and acts as a 
measure of scalability of Hypertable.  

 
Fault Tolerance 
 
Hypertable is still under development and therefore 
there are some critical features that are missing from 
the current release. As per the documentation, 
currently Hyperspace and Master are implemented as 
a single server leading to a single point of failure.  
 
Performance 
 
As proceeded in the BigTable paper, we begin the 
performance evaluation of Hypertable with only 1 
RangeServer. The fault tolerance of Hypertable was 
evaluated using a single RangeServer. It was found 
that Hypertable does not tolerate the failure of 
RangeServers gracefully. If a RangeServer crashes or 
becomes unavailable to the master, the system is not 
able to recover and the data at the range is lost as per 
the system. 
 
The following table contains the results obtained with 
a single RangerServer compared to the results from 
the BigTable paper. The performance numbers 

provided in this section correspond to only the 
successful runs of random reads and writes. In the 
current evaluation, clients write approximately 1 GB 
data in the RangeServer. 
 

Experiment Hypertable BigTable 
Random reads 431 1208 
Random Writes 1903 8850 
Sequential Reads 621 4425 
Sequential Writes 1563 8547 

 
Figure 2. Number of 1000 byte values read/written 
per second in a cluster with only one RangeServer. 
 
Comparing with BigTable, the initial numbers seem 
way behind. Each random read involves a transfer of 
64KB block over the network out of which only 1000 
byes are used, hence leading to a lower throughput 
for random reads as compared to random writes. The 
RangeServer executes approximately 431 reads per 
second which translates to approximately 27MB/s of 
data read from the HDFS as compared for 75 MB/s 
for BigTable and GFS.  
 
Sequential reads and sequential writes were expected 
to be similar since the bottleneck for writes is writing 
to the commit log and not the RangeServers 
themselves. This is consistent across BigTable, 
HBase and Hypertable.  
 
Fig. 3. shows the variation of throughput (records 
inserted per second) for different block sizes for 
inserting a fixed amount of data. For the purpose of 
these measurements, 1000 byte records were inserted 
randomly into the table amounting to a total of 1GB 
on a cluster with a master and one RangeServer. 
 
Increase in aggregate throughput is observed as the 
system is scaled by adding multiple RangeServers but 
the increase does not seem as drastic as described for 
BigTable. As in case of BigTable, the increase in 
throughput is far from linear.  For example, the 
performance of random writes increases by a factor 
of 1.6 approximately as the number of RangeServers 
increases by a factor of 3.2 
 
The performance increase is not linear as current 
version of Hypertable does not perform any load 



     
 
Fig. 3. Variation of throughput (records 
inserted/sec) with blocksize with random writes. 

       Fig. 4. Results from BigTable 
 

 

 
 

Figure 5. Total number of 1000-byte values read/written per second with increase in number of RangeServers. 
 
balancing amongst the RangeServers. As for 
BigTable, the random reads benchmark shows thee 
worst scaling with an aggregate increase in 
throughput only by a factor of 3 for a 20 fold increase 
in the RangeServers.  
 

Experience 
 
System Reliability 
 
The current release of Hypertable (0.9.12) seems to 
be relatively unstable with frequent failures of master 
node leading to a complete loss of data stored in the 
system. The failures were particularly observed when 
writing large amounts of data into the system. The 
frequency of the system reaching an unresponsive 
state was comparatively higher when the writes were 
of greater than a few GB. Hypertable appears to be 
relatively stable to random reads and failures were 
not frequent when reading large chunks of data. 
HBase, on the other hand, seemed to be much more 

reliable than Hypertable when run on a single node in 
terms of dealing with large chunks of data.  
While writing large chunks of data, some of the 
failures were reported as “Hadoop I/O error” 
signaling either the limitations of HDFS under stress 
or incompatibilities between Hypertable and HDFS. 
 
Hypertable Query Language (HQL) 
 
The query language for describing the loose schema 
of the tables used in Hypertable is Hypertable Query 
Language. HQL closely resembles SQL and is easy 
to use.  
  

Other Minor Contributions  
 
Log4cpp: It is a library used to provide logging 
support for systems developed in C++ corresponding 
to Log4j for Java. The last release was in 2002 and is 
incompatible with g++ 4.3.x and hence minor fixes 
were required. 
 



Future Work 
 
In order to do a complete evaluation of Hypertable, a 
performance analysis over CloudStore is planned. A 
combination for CloudStore and Hypertable when 
compared against HBase and Hadoop, would make 
up a new chapter in the age old C++ vs. Java battle 
for large scale distributed storage systems.  
 
Another important aspect is to scale up comparatively 
to the extent described by Google. Amazon EC2 does 
provide the resources to scale up to a much higher 
extent than described in the report, however failures 
of master node in Hypertable limits repeating the 
experiment in the same setup. We have coordinated 
with the Hypertable development group and we plan 
to scale the system up further once the bug is 
resolved. 
 
Scaling up HBase is another aspect that was planned 
for the project. We plan to scale HBase up to similar 
set up and study the performances under a consistent 
setup.  


