Dataflow Processing and Optimization on Grid and Cloud
Infrastructures *

M. Tsangaris, G. Kakaletris, H. Kllapi, G. Papanikos, F.tads,
P. Polydoras, E. Sitaridi, V. Stoumpos, Y. loannidis
Dept. of Informatics & Telecom, Ma@lK Lab, University of Athens, Hellas (Greece)
{mmt,gkakas,herald,g.papanikos,frank,p.polydoras,st@mpos,yannjgdi.uoa.gr
http://madgik.di.uoa.gr/

Abstract

Complex on-demand data retrieval and processing is a charatic of several applications and com-
bines the notions of querying & search, information filtgria retrieval, data transformation & analysis,
and other data manipulations. Such rich tasks are typicafyresented by data processing graphs, hav-
ing arbitrary data operators as nodes and their producensamer interactions as edges. Optimizing
and executing such graphs on top of distributed architexstuis critical for the success of the corre-
sponding applications and presents several algorithmid systemic challenges. This paper describes
a system under development that offers such functionalityp of Ad-hoc Clusters, Grids, or Clouds.
Operators may be user defined, so their algebraic and othepgaties as well as those of the data they
produce are specified in associated profiles. Optimizasdmased on these profiles, must satisfy a vari-
ety of objectives and constraints, and takes into accownptiticular characteristics of the underlying
architecture, mapping high-level dataflow semantics talflexuntime structures. The paper highlights
the key components of the system and outlines the majotidite®f its development.

1 Introduction

Imagine you have developed an innovative web-based searcites that you would like to offer to the world.
Cloud Computing enables you to host this service remotetly deal with scale variability: as your business
grows or shrinks, you can acquire or release Cloud resowasiyy and relatively inexpensively. On the other
hand, implementation and maintenance of data servicestbacalable and adaptable to such dynamic condi-
tions becomes a challenge. This is especially the case farsgavices that are compositions of other, possibly
third-party services (e.g., Google Search or Yahoo ImagacBg where the former become data processing
graphs that use the latter as building blocks (nodes) arukéthem during their execution. Running services
under various quality-of-service (Qo0S) constraints th#ieent customers may desire adds further complica-
tions. Handcrafting data processing graphs that implersech services correctly, make optimal use of the

Copyright 2009 IEEE. Personal use of this material is petedit However, permission to reprint/republish this makfor
advertising or promotional purposes or for creating newledlive works for resale or redistribution to servers ottdisor to reuse any
copyrighted component of this work in other works must bainbd from the IEEE.

Bulletin of the IEEE Computer Society Technical Committee e Data Engineering

*Partially supported by the European Commission under actsttNFRA-2007-212488, FP6-1ST-027749, and FP6-1ST2604for
the D4Science, Health-e-Child, and DILIGENT projectspesgively.

resources available, and satisfy all QoS and other condra a daunting task. Automatic dataflow optimiza-
tion and execution are critical for data services to be bbaland adaptable to the Cloud environment.

This is in analogy to query optimization and execution irditianal databases but with the following dif-
ferences: component services may represent arbitranatipes on data with unknown semantics, algebraic
properties, and performance characteristics, and arestriated to come from a well-known fixed set of opera-
tors (e.g., those of relational algebra); optimality maygbkject to QoS or other constraints and may be based on
multiple diverse relevant criteria, e.g., monetary costesburces, staleness of data, etc., and not just solely on
performance; the resources available for the executiondata processing graph are flexible and reservable on
demand and are not fixed a-priori. These differences malgflolatoptimization essentially a new challenging
problem; they also generate the need for run-time mechartisat are not usually available.

This paper presen®&DP (Athena Distributed Processing), a distributed datafloscessing system that at-
tempts to address the above challenges on top of Ad-Hocezsugthysical computer nodes connected with a
fast local or wide-area network), Grids [5], and Clouds E¢ch time adapting itself to the particular character-
istics or constraints of the corresponding architectureest architectures do not represent arbitrary unrelated
choices, but can be considered as distinct points in an goary path. While an Ad-Hoc cluster simply pro-
vides raw compute power, the Grid additionally provides Inag&tsms for managing computational, storage, and
other resources in a synergistic way. When evolving frond&td Clouds, additional resources are made avail-
able for lease, offering opportunities for more complexeysc scenarios, but also making service scalability,
and performance, and composability even more challenging.

The paper begins with the internal representations of AD&igs. It continues with the runtime system of
ADP, the stand-alone representations of operator pr@serdind the key features of its query optimization. It
concludes with the implementation status of ADP, a comparisith related work, and some future directions.

2 ADP Query Language Abstractions

User requests to ADP take the form of queries in some highl-ldeclarative or visual language, not described
here. Internally, they are represented by equivalent gsémiprocedural languages at various abstraction levels:
Operator Graphs: These are the queries ADFL (Athena Data Flow Language), the main internal ADP
language. Their nodes are datperators and their (directed) edges are operator interactions irfdima of
producing and consumingataflows (or simply flows). Operators encapsulate data processing algorithms and
may be custom-made by end users. Flows originate from apsratire transformed by operators, and are
delivered as results by the root operator of a query. A flowfisite sequencef records. ADP treats records as
abstract data containers during processing. Their priegdie.g., type name, type compatibility, keys, size) are
stored inrecord profiles and play an important role when establishing operatopfm(ator or end-user) flows.

authorsearch . @ PP imagesearch @

Figure 1: The Query Operator Graph

Example Suppose a user wants to search the Web for images of auth&®&B and ACM papers. Figure 1
shows an ADFL query that corresponds to this need. The gqa@gsentially a chain (composition) of operators:
First, there is a custom operator, AUTHORSEARCH, commuirigawith some particular external digital-
library service to retrieve author names, filtered to setedy authors of IEEE and ACM papers. Then, the
standard operator UNIQUE eliminates duplicate author mariNext, the resulting flow of author names is sent
to another custom operator, IMAGESEARCH, which uses theasato identify corresponding images in an

external database. Finally, a face detection operatorHACTER, is used to identify images that contain only
faces and forced to output only the best match (topk="1")tekt form, the query in Figure 1 is expressed as

FACEFILTER{topk="1"} ON IMAGESEARCH ON UNIQUE ON AUTHORSEARCKpub="IEEE” or "ACM" } [

Concrete Operator Graphs: These are similar to operator graphs but their nodes@merete operators
i.e., software components that implement operators in ticpéar way and carry all necessary details for their
execution. The UNIQUE operator, for example, has to stdreeabrds (or record keys) seen so far; it may be
realized as two alternative Java implementations, onedoasenain memory (fast but limited by memory size)
and one based on external storage (slower but limited onlgligly size). Choosing among them becomes an
optimization decision, based for example, on expectedtifipw sizes.

Subject to its initialization, as part of its execution, aciete operator may be contacting external services
to retrieve data from them. In that case, it must deal wittphilsical, security, and semantic issues related to
such external communication. This is transparent, howewgethe operator that consumes the flow resulting
from such external services: all sources of flows appearairesindependent of any external interactions.

Execution Plans These are similar to concrete operator graphs, but theliesiare concrete operators that
have been allocated resources for execution and have @lirti@lization parameters set.

3 ADP Runtime Environment

Concrete operator graph queries are eventually evalugtéitelART (ADP Run Time) subsystem, which has
two main software partsContainers are responsible for supervising concrete operators anddimg the nec-
essary execution context for them (memory resources, isecoedentials, communication mechanisms, etc.).
ResultSetsare point-to-point links to transport polymorphic recob#gween concrete operators and implement
the query flows. While different manifestations of data anggorted, e.g., native objects, byte-streams, or XML
content, ResultSets are type agnostic.

Containers are the units of resource allocation between AR the processing nodes of the underlying
distributed infrastructure. Based on the optimizer’s siecis, ART dynamically creates or destroys containers
to reflect changes in the system load. Thus, a complex queybmaalistributed across multiple containers
running on different computer systems, each containeglreisponsible for one or more of the query’s concrete
operators and ResultSets. Likewise, based on the optisidecisions, ResultSets control the mode of record
transportation, ranging from pipelining (totally synchowus producer/consumer operation) to store & forward
(full buffering of entire flow before making it available tbeé consumer).

Containers feature the same set of tools to support ADFLyoevaluation but are implemented differently
depending on the characteristics of the underlying disteith infrastructure architecture, hiding all lower-level
architectural details and the corresponding technologgrdity. Containers on Ad-Hoc clusters or Clouds, for
example, may simply be just processes, while on Grid, they lbeaWeb Service containers. ResultSets may
utilize WebService transport (SOAP) on Grids, or simply T&fkets on Ad-Hoc Clusters or Clouds. The
optimizer may try to minimize Cloud resource lease cost lyttastg down some or not using several containers,
while this is not an issue in other architectures.

The runtime mechanisms provided for query execution havej@mimpact on application development
in that they liberate implementers from dealing with exemuplatform or data communication details. Note
that there is a particularly good match between Cloud achites and certain characteristics of ADP: Cus-
tom operators within ADFL queries are an easy and attrastisg to use ad hoc third-party services (e.g.,
AUTHORSEARCH or FACEFILTER), which is an important featw&Clouds. More importantly, dynamic
acquisition and release of resources (containers andvirtachines) by ADP as a systemic response to load or
QoS requirements fits very well with the canonical Cloud bess model; the presence of Service Level Agree-
ments (SLASs) that must be met requires such flexible resallgeation, which in turn, calls for sophisticated
optimization of the kind ADP is designed to offer. The neadddvanced optimization strategies is less marked

in other architectures, e.g., in Grid, where simple maighluhoperations to resources usually suffices.

4 Operator Profiles

Given the ad hoc nature of most ADP operators, no pertindotnration about them is hardwired into the
system; instead it is all provided by users and storegpierator profiles. Typically, for each level of internal
language abstraction, there is relevant information in@erator’'s profile. Accordingly, ADP uses the profile
contents recursively to drive the corresponding stagesiefygoptimization and execution. Below, we indicate
some fundamental properties that may be found in (or deffireed) an operator’s profile for each abstraction
level, emphasizing primarily those that generate equitaéiernatives that the optimizer must examine when
a query with that operator is considered. We avoid des@ibiie precise structure/schema of the profile or the
language used to express some of its contents; instead,engesiglized pseudo-language for easy exposition.

Operator Graphs: At this level, in addition to its signature (input/outputvls with specific record profiles),
of great importance are algebraic equivalences that ageraatisfy. These include typicalgebraic transfor-
mations, e.g., associativity, commutativity, or distributivitgle)compositionsi.e., operators being abstractions
of whole operator graphs that involve compositions, agafiegs, and other interactions of more specific opera-
tors, andpartitions, i.e., operators being amenable to replication and pamibeessing by each replica of part
of the original input, in conjunction with some pre- and ppgicessing operators.

Example Consider the following information being known about theemtors of Figure 1.

e Algebraic transformation - Filtered on multiple publisheAUTHORSEARCH is equivalent to merging
the results of itself filtered on each one of them separately:
operator AUTHORSEARCKpub=x or y} is MERGE on AUTHORSEARCHKpub=x} and AUTHORSEARCHpub=y};

e Operator decomposition - Filtered on IEEE or ACM, AUTHORSE®H is equivalent to another operator
that searches directly the IEEE or ACM Digital Librariesspectively:
operator AUTHORSEARCKpub="IEEE"} is IEEESEARCH;
operator AUTHORSEARCKpub="ACM"} is ACMSEARCH;

e Operator partition - FACEFILTER is trivially parallelizbbon its input, with operators SPLIT and MERGE
performing the necessary flow pre- and post-processingrdahnd after the parallel execution of an arbi-
trary (unspecified) number of FACEFILTER instances:
operator FACEFILTER is splitable withpre-process = SPLIT ; post-process = MERGE]

Concrete Operator Graphs At this level, capturing an operator’s available implernagion(s) is the critical
information. In general, there may be multiple concreterafpes implementing an operator, e.g., a low-memory
but expensive version and a high-memory but fast one; a #tmtteded version and a single-threaded one; or
two totally different but logically equivalent implemetitans of the same operator. For example, there may be a
standard UNIQUE implementation determining record edyuéiased on the entire record, while an alternative
custom implementation may only look at a specific key recttribate. Also, IMAGESEARCH may have just
a multi-threaded implementation associated with it, bUCEAILTER may have both a single-threaded and a
multi-threaded one. All these concrete operators shoulgt@ded in the corresponding operator’s profile.

Execution Plart At this level, the profile of a concrete operator storesrimiation about its multiple poten-
tial instantiations in a container, its initialization pameter values, and any constraints on resources it may use,
e.g., number of threads, size of memory, software licenspat/output rates, communication channels, etc. It
also stores information about how the optimizer may evalaaparticular instantiation of the concrete opera-
tor. For example, the multi-threaded concrete operatartMAGESEARCH and FACEFILTER have several
additional degrees of freedom at the execution plan legahey can use multiple local CPUs and cores.

5 Query Optimization

Evaluation Parameters: Evaluation of query execution plans is at the heart of qu@tinozation, regarding
both the objective function being optimized and any (QoStlee) constraints being satisfied. Depending on the
application, such evaluation may be based on a variety ahpeters, e.g., monetary cost of resources or fresh-
ness of data, and not just solely as is traditional on perdmeea metrics. Given the ad hoc nature of operators,
their profiles store mathematical formulas to describe quarameters and any properties of their inputs and
outputs that are deemed relevant, e.g., image resolutilRAGEFILTER cpu cost, or image database age for
IMAGESEARCH freshness. Consequently, for any parametdrttay be important to the operators’ evalution,
statistics should be either maintained or obtained, formgte, on the fly through some sampling. Similarly,
the mathematical formulas associated with the evaluati@m @perator may be either explictly inserted into its
profile by some user or predicted based on some sample orgecutions of the operator. ADP is designed to
offer generic functionality for synthesizing appropriéemulas and propagating parameter values through the
operators of an execution plan to obtain its final evaluation

Space of Alternatives Transformation of an ADFL query to an execution plan that ganerate the re-
guested results goes through several stages, corresgdodime levels of internal language abstractions, where
every alternative in one level has multiple alternative piags to the next lower level according to the proper-
ties in the profiles of the operators involved. There arersd\aperator graphs that are algebraicly equivalent to
the original query, each one mapping to several concreteatgeraphs (based on the corresponding mappings
of its operators), each one mapping to several executiams g instantiating containers and ResultSets and
assigning the instantiated concrete operators and flowsafdncrete operator graph to them.

Example The algebraic properties in the profiles of AUTHORSEARCH &ACEFILTER (assuming 3-
way parallelism for the latter) generate the operator gliaditated in Figure 2 as an alternative to Figure 1.
Instantiating an execution plan for that graph requireshiy concrete operators and then: container instantia-
tion - the set of containers available to the query are chdkesugh dynamic release or acquisition of containers
and (virtual) hosts, or reuse of existing ones; concreteatpeinstantiation - all concrete operators are initial-
ized (e.g., the number of threads for the multi-threadedémpntations of IMAGESEARCH and FACEFILTER
is set) and assigned to containers; flow instantiation - ect&d as inputs and outputs of concrete operators, the
endpoints of each flow are instantiated via technologyifipendpoint implementations of the ResultSet, fine-
tuned for the flow’s and connected operators’ needs. Fiduegsl 3 indicate particular alternatives with respect
to these choices, at the level of the operator graph and #®ug®n plan, respectively.]

Container 3

facefilter

Container 1 Container 2

@ Container 4
@ I @ : @ S @ @

facefilter

Container 5

Figure 2: Query Operator Graph after all operator transédions and assignments to containers

Optimization Stages In principle, optimization could proceed in one giant stepamining all execution
plans that could answer the original query and choosing tigetloat is optimal and satisfies the required con-
straints. Alternatively, given the size of the alternativepace, optimization could proceed in multiple smaller
steps, each one operating at some level and making assasatimut the levels below. ADP optimization
currently proceeds in three distinct steps, corresponeagtly to the three language abstraction levels of ADP.

Container
Concrete operator
Result Set

Operator with
muitiple threads

8| o

Figure 3: Query Execution Plan with explicit mapping of aers to containers on Cloud (virtual) hosts

The techniques developed for the first two steps are notskscuhere due to space limitations.

Execution Plan Instantiation: Assignment of concrete operators to containers is cuyremdeled and im-
plemented in ADP as a constraint satisfaction problem (@SR)llows: ConsideN containerd.q, Lo, ..., Ly,
each with a current resource capabiltyAP(L;),1 < i < N, and a hostH(L;) where it resides. Let
NETCAP(L;,Lj), 1 < i,j < N be the network capacity (bandwidth) betweBrL;) and H(L;). Let
Py, Py, ..., Py be the set of concrete operators present in the respectaratop graph and EM AN D(F;),
1<i < M, be the resources that operaf@rrequires. The CSP solved is to assign each concrete opé&vaor
container ¢'(P;) = L) so that a user-defined cost function (), ; ;<\, NETCOST(F;, P;), network cost
between operators) is optimized subject to the constraints

e container resource capability is not exhausted:), DEMAND(F;) < CAP(L),
e internode bandwidth is not exhausted;c p,_;, ¢(p,)—rs NETCOST(P;, P;) < NETCAP(L,L).

The above problem can naturally be expanded to model morelearsituations, e.g., taking into account oper-
ator gravity (preference for operators to be assigned tgdh@ container), or different optimization objectives.

In high-load conditions, we deploy an admission controbethm to ensure optimal balancing of workload.
Before entering the CSP solution process, the optimizeadwasts information on the concrete operator graph
and “asks” containers to declare which operators they cstantiate (if asked to do so). Containers monitor
these requests as well as the actual optimizer decisiongsanthis information to restrict the number and type
of concrete operators they are willing to instantiate. Eamitainer makes potentially a different decision, which
are all then used to restrict the space of possible CSP @outlf the existing containers’ decisions do not allow
all concreted operators of a query to be instantiated scaii@&xecution plan may be obtained, then the query
is automatically resubmitted after a short time expectirgptgr container availability. If this is not the case,
additional containers are requested based on the numbey@adf concrete operators that are unassigned.

The algorithm used by containers to restrict the amount yoel of operators they are willing to instantiate
follows the lines of [7]. In critical load situations, it efttivelly diverts resources used by concrete operatots tha
are rarely requested to the ones that are frequently useslisTéchieved using the following microeconomics-
inspired mechanism: Assuming thdtis the number of concrete operators, containers interhallgt a private
vectorp € IR{E of virtual concrete operator prices. These prices are ndigetosed; they only provide to the
admission control algorithm the means to measure the boititth of a concrete operator to the performance
of the whole distributed system. As demand for a concreteabpeincreases/decreases, its respective prices
increase/decrease as well. Each container uses its fyivetlel prices to periodically (everyunits of time)
select a vectoF € NC of operators to admit. This vector is different for each eamr, represents the type and
number of operators admitted, and is the one that maximieesittual price § - p) of the admitted operators
under the resource constraints of each container. Thatdh, eontainer solvesiaxz s - p so thats' is feasible,
i.e., the container has enough resources to instantiateraléate operators iwithin ¢ units of time.

6

6 Implementation Status

An initial implementation of ADP is in operation for a yeanmand is used by data mining and digital library
search applications. The ADFL language enables ad-hoatmpsrtto be introduced, without the need to change
its parser. Operator profiles contain information such asjdkia classes implementing operators. ART uses
Axis-on-Tomcat Web Service containers, each one runningroAd-Hoc cluster node or on the Grid. The
optimizer performs simple rewriting driven by operator files, changes the number of containers dynamically
based on current “load”, and decides how to assign concpeeators to containers, as described above. A
simulated annealing optimization engine is used to geadhat execution plan, based on the concrete operator
graph. ResultSets have been implemented, attached to ddaqing operator, and communicating via TCP
sockets or SOAP messages to the consuming operators.d3Retmrds model relational database table rows,
whereas XML Records provide additional structure. Finatlyaddition to the default execution engine, there is
a second implementation based on BPEL (Business Processtiexel anguage), as well as a proof-of-concept
“standalone ADP” implementation, which is a single javaerable including an ADFL parser, ART, a single
container, a library of operator implementations, and aiR8st implementation.

7 Related Work

ADP provides both a testbed for validating research ideadisinibuted data processing and a core platform
for supporting several data-intensive distributed irtftactures. It has been influenced by lessons learned from
on-going work on data services in the areas of Digital Lilesre-Health, Earth Sciences, etc., which all need a
scalable software layer that can perform compute-intendata tasks easily, reliably, and with low application
complexity. The ADP concepts have been validated in theesordf the DILIGENT [12], Health-e-Child
[14], and D4Science [13] projects, and form the heart of tGeilge system’s information retrieval facilities
[15]. Although several core ADP concepts can be found elsesvhs well, integrating them in one system and
handling the resulting increased complexity does not app@amon. ADP incorporates ideas from databases,
streams, distributed processing, and service compogiiaadress the relevant challenges and offer a flexible
system that can hide the complexities of its underlying isgctural environment.

Typically, some middleware is used to execute user-defioeé i distributed environments. In the Grid,
OGSA-DAI [2] formalizes access to and exchange of data.eBaip with OGSA-DQP [1], it also addresses
guery optimisation and scheduling. The Condor / DAGMan fiss$et is a representative technology of the High
Performance Computing area. Its capacities for schedutmmgnitoring and failure resilience render it a robust
and easily scalable mechanism for exploiting vast scieritifrastructures of (mostly) computational resources.
Furthermore, Pegasus [4] supports a higher lever of allisingor both data and operations, and therefore offers
true optimization features, as opposed to simple matcHilngerators to a fixed set of containers.

ADP builds on top of these technologies and introduces ADd-tdscribe user-defined code in a seman-
tically, technologically and operationally domain agmoshanner. The definition of an Operator, and most
importantly the Operator Profile, is by itself a new challengince traditional database operations like query
re-writing, cost-estimation, completion times, seldtgjvco-location capacities/requirements, etc., are Aot a
priori defined or not known at all. Distributed databases wjapsrt custom operations on data via functions or
(extended) stored procedures and handle data exchangdlgines) via efficient proprietary mechanisms, but
optimization is based on established assumptions of iflised) relational databases.

The notion of processing multiple dataflows in ADFL is alsantoon in the literature. In its more recent
form, Mashups (such as Yahoo! Pipes [16], Google MashupEfi0] and Microsoft Popfly [11]) carry out
content processing over well known sources (RSS, ATOM, HTTRe visual languages in these systems serve
as a starting point for ADFL, which in addition, deals witleahative representations for Operator Profiles. In
(e-)Business integration, workflow languages such as WELBd#e used to express complex queries that call

for systems that support multiple execution granularifggnning, execution, and monitoring mechanisms, etc.
Compared to these systems, ADP is designed to offer a ricty geriting alternatives in the query optimizer.
Finally, SawZall[8] and PigLatin [6] use a higher-lever quéanguage that is executed on MapReduce [3]
systems that support massive parallelization and acha&hed resilience. However, the language model of the
MapReduce framework is somewhat restricted and restrpgisrtunities for optimization.

8 Conclusions and On-Going Work

We have given a high-level description of ADP, a distributiedaflow processing system under development,
which is designed to run on top of Ad-Hoc Clusters, Grids, @halds, in an adaptive manner. It deals with
dataflow queries that involve user-defined operators, stibie operators’ properties in profiles, and uses those
to optimize queries at several levels. Optimization may &s&eld on diverse optimality criteria and constraints
but currently focuses on the conventional cpu work pararaete

Work on ADP moves in several directions. These include esgive declarative languages on top of ADFL,
mechanisms to deal with operators that preserve state, m@d@fade security. On the optimization side, the
focus is on Cloud-related architectures, on refining dyeamsource acquisition and release, and on dealing
with complex constraints on these resources. Addition#iky role of execution risk in ADP operators is being
ivestigated, in scenarios where different plans are exptsalifferent execution risk profiles and users have
different attitudes towards risk (e.g., risk aversion).

References

[1] M. N. Alpdemir, A. Mukherjee, N. W. Paton, P. Watson, A. A. Fernandes, A. Gounaris, and J. Smith,
“Service-based Distributed Querying on the Grid, 1IE50C 2003, pp. 467-482.

[2] M. Atkinson et al., “"A new Architecture for OGSA-DAI,” irProceedings of the UK e-Science All Hands
Meeting 2005September 2005.

[3] J. Dean and S. Ghemawat, “Mapreduce: Simplified Dataddsing on Large ClustersCommun. ACM
vol. 51, no. 1, pp. 107-113, 2008.

[4] E. Deelman et al., “Pegasus: Mapping Large Scale WorldltmDistributed Resources in Workflows in
e-Science,'Springer 2006.

[5] I. Foster, C. Kesselman, and S. Tuecke, “The Anatomy efGid: Enabling Scalable Virtual Organiza-
tions,” International J. Supercomputer Application®l. 15, no. 3, 2001.

[6] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. TorakifiPig Latin: a Not-so-Foreign Language
for Data Processing,” ifroc. 2008 ACM SIGMOD Conference on Management of (2088, pp. 1099—
1110.

[7] F. Pentaris and Y. loannidis, “Autonomic Query AllocatiBased on Microeconomics Principles,Hroc.
23rd Int'l Conf. on Data Engineering (ICDER007, pp. 266—-275.

[8] R.Pike, S. Dorward, R. Griesemer, and S. Quinlan, “lnteting the Data: Parallel Analysis with Sawzall,”
Sci. Program,.vol. 13, no. 4, pp. 277-298, 2005.

[9] L. Vaguero and et al., “A Break in the Clouds: Towards a@ldefinition,” ACM SIGCOMM Computer
Communication Reviewol. 39, no. 1, 1 2009.

[10] “Google Mashup Editor,” code.google.com/gme/.
[11] “Microsoft Popfly,” www.popfly.com.

[12] “Project DILIGENT,” 2004, www.diligentproject.org.
[13] “Project D4Science,” 2007, www.d4science.eu.
[14] “Project Health-e-Child,” www.health-e-child.org.
[15] “The gCube System,” www.gcube-system.org.

[16] “Yahoo! Pipes,” pipes.yahoo.com/pipes/.

