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Abstract

The emergence of the Cloud system has simplified the deplopfiarge-scale distributed systems
for software vendors. The Cloud system provides a simpleaifieéd interface between vendor and user,
allowing vendors to focus more on the software itself rattman the underlying framework. EXxisting
Cloud systems seek to improve performance by increasingll@iism. In this paper, we explore an
alternative solution, proposing an indexing framework foe Cloud system based on the structured
overlay. Our indexing framework reduces the amount of datasferred inside the Cloud and facilitates
the deployment of database back-end applications.

1 Introduction

The emergence of the Cloud system has simplified the deplulyofdarge-scale distributed systems for soft-
ware vendors. The Cloud system provides a simple and unffiiedface between vendor and user, allowing
vendors to focus more on the software itself rather than titertlying framework. Applications on the Cloud
include Software as a Service system [1] and Multi-tenatalmeses [2]. The Cloud system dynamically allo-
cates computational resources in response to customsmine reservation requests and in accordance with
customers’ predesigned quality of service.

The Cloud system is changing the software industry, witkrdaching impact. According to an estimation
from Merrill Lynch [3], by 2011, the Cloud computing markétasild reach $160 billion, including $95 billion
in business and $65 billion in online advertising. Due to doenmercial potential of the Cloud system, IT
companies are increasing their investments in Cloud rele&ixisting Cloud infrastructures include Amazon’s
Elastic Computing Cloud (EC2) [4], IBM's Blue Cloud [5] andbGgle’s MapReduce [6].

As a new computing infrastructure, the Cloud system requivether work for its functionalities to be
enhanced. An area that draws most attention is data storapeetrieval. Current Cloud systems rely on
underlying Distributed File Systems (DFS) to manage dakantples include Google’s GFS [8] and Hadoop’s
HDFS [9]. Given a query, the corresponding data are retti¢i@m the DFS and sent to a set of processing
nodes for parallel scanning. Through parallel processheyCloud system can handle data intensive application
efficiently. The challenges here lie in how to partition dataong nodes and how to have nodes collaborate for
a specific job. To simplify implementation, current progdesamploy a simple query processing strategy, e.g.,
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Figure 1: Indexing Framework of the Cloud

parallel scanning the whole data set. Given enough praagssides, even the simple strategy can provide good
performance. However, such an approach may only work in &ated system built for a specific purpose
of a single organization. For example, Google employs itpREduce [6] to compute the pagerank of web
pages. In the system, nodes are dedicated to serving oneizatjan. In contrast, in an open service Cloud
system, such as Amazon’s EC2, different clients deploy then software products in the same Cloud system.
Processing nodes are shared among the clients. Data mas@tgbetomes more complicated. Therefore,
instead of scanning, a more efficient data access serviegusred.

Following this direction, Aguilera et al.[7] proposed alfatiolerant and scalable distributed B-tree for the
Cloud system. In their approach, nodes are classified inémtsl and servers. The client lazily replicates
all inner B™-tree nodes, and the servers synchronously maintairi-&ré® version table for validation. This
scheme incurs high memory overhead for the client machineplcating the inner nodes across the clients.
Moreover, it is not scalable when the updates follow skewsttibution, invoking more splitting and merging
on the inner nodes. In this paper, we examine the requirenienthe Cloud systems and propose an indexing
framework based on our earlier work outlined in [10]. Fysthis indexing framework supports all existing
index structures. Two commonly used indexes, hash indexBanttee index, are employed as examples to
demonstrate the effectiveness of the framework. Secopdbgessing nodes are organized in a structured P2P
(Peer-to-Peer) network. A portion of the local index is s&dd from each node and published based on the
overlay protocols. Consequently, we maintain a globalxridger above the structured overlay. It effectively
reduces the index maintenance cost as well as the netwdfik &mong processing nodes, resulting in dramatic
query performance improvement.

The rest of the paper is organized as follows: We presentrmaxing framework in the next section and
discuss the details of our indexing approach in Section 3Sdation 4, we focus on the adaptive indexing
approach. And some other implementation and researchsisgaentroduced in section 5. Finally, we present
our preliminary experimental results in Section 6 and catelthe paper in Section 7.

2 System Architecture

Figure 1 illustrates our proposed indexing framework fer @oud system. There are three layers in our design.
In the middle layer, thousands of processing nodes are amagtt in the Cloud system to provide their compu-
tational resources to users. Users’ data are partitiortedsome data chunks and these chunks are disseminated
to different nodes based on DFS protocols. Each node builae docal index for its data. Besides the local
index, each node shares parts of its storage for maintathinglobal index. The global index is a set of index
entries, selected from the local index and disseminatedarciuster. The middle layer needs to implement the
following interfaces:

Map(v)/Map(r) Map a value or data range into a remote node
GetLI(v)/GetLI(r) | Given a value or data range, return the corresponding ladali
GetGl(v)/GetGlI(r)| Given a value or data range, return the corresponding glodak

InsertGI(l) Insert an index entry into the global index




All the methods excepBetLI rely on theMap function. Given a value (hash based index) or a ranget{Be
based index)Viap defines how to locate a processing node responsible for the @arange. Its implementation
depends on the lower layer’s interface.

To provide an elegant interface for users, we apply the &ired overlay to organize nodes and manage the
global index. In the lower layer, processing nodes are lgasmnected in a structured overlay. After a new node
joins the Cloud, the node performs the join protocol of thertay. Specifically, the node will accept a few other
nodes as its routing neighbors and notify others aboutigng. This process is similar to the construction of a
P2P network. However, our system differs significantly fribim P2P network. In the Cloud system, services are
administrated by the service provider, and nodes are addedhe system to provide computational resources.
On joining the network, nodes must remain online unless dénévirare fails. In contrast, in the P2P network, peer
nodes are fully autonomous and unstable. A peer joins thene#ork for its own purpose (e.g., to download
files or watch videos) and leaves the network on finishingaig&.t In our system, the P2P overlay is adopted
only for routing purposes. The interfaces exposed for theeufayers are:

lookup(v)/lookup(r)| Given a value or a range, locate the responsible node
join Join the overlay network
leave Leave the overlay network

In principle, any structured overlays are applicable. Hmveto support B-tree based index, range search is
required. Therefore, we adopt structured overlays thai@pange queries, such as CAN[11] and BATON[12].

In the upper layer, we provide a data access interface toghesiapplications based on the global index.
The user can select different data access methods foradiffgueries. Scanning is suitable for the analysis of
large data sets while index-based access is more prefenredlifne queries.

3 Indexing Framework

In this section, we shall discuss the implementation issfi¢lse middle layer in the framework. Algorithm 1
shows the general idea of the indexing scheme. First, wey @pphdaptive method to select some index values
(the adaptive approach will be discussed in the next sectleor a specific index value we retrieve its index
entry through theGetLlI method. The index entry is a value record in the hash basexk inda tree node in
the B™-tree based index. Then, we apply tMe@p function to locate a processing node and forward the index
entry to the node, where it will be added to the global indelgofithm 2 shows the query processing algorithm
via the global index. The query is forwarded to the nodesrmet by theMap function, where the query is
processed through the global index in parallel. As the #lyois show, theMap function plays an important
role in the index construction and retrieval. In this sattiwe discuss how to define a propéap function for
different types of indexes.

Algorithm 1 EstablishGloballndex(node n)
1: ValueSet S=getindexValue()
2: for Vv € S do
3 I=GetLI(v)
4: publish | to Map(v)
5: end for

3.1 Hash Based Indexing

The hash index is used to support exact key-match queriggadSa we use the hash functiapto build the
local hash index. For an index valugwe can simply define thilap function as:

Map(v)=lookup, (V)
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Algorithm 2 SearchGloballndex(range r)

1: NodeSet N=Map(r)

2: for Vn € N do

3 I=n.GetGlI(r)

4: process queries based on |
5

. end for

whereh, is a global hash function for the Cloud system dodkup is the basic interface of the structured
overlay. In the structured overlay, for routing purposesheaode is responsible for a key space. For the hash
index, all nodes appl¥, to generate a kelyfor an index value. Given a kelpokupreturns the node responsible
for the key. Note that, does not need to be equivalent to the hash functioas each node may build their
local hash index based on different hash functions.

3.2 Bf-tree Based Indexing

The B-tree based index is built for supporting range search. Imander B -tree, all the internal nodes,
except the root node, may hadechildren, wheren < d < 2m. The leaf nodes keep the pointers to the disk
blocks of the stored keys. To define thkap function for the B -tree index, a range is generated for each tree
node. Basically, B-tree nodes can inherit a range from their parents. In Figun®ded is nodea’s third child.

So its range is from the second key to the upper bound aamely (35,45). The range afis from the lower
bound of the domain to the first key of its parent. Thais,range is (0,45). Specifically, the range of the root
node is set to be the domain range.
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Figure 2: Node Range in Btree
After generating the range for aBtree noden, we define théMap function as:

Map(n)=lookup(range(n))

To support the above mapping relation, the underlying ayemiust provide théookupinterface for a specific
range. In this case, only the structured overlays that stippoge search are applicable, such as BATON [12],
CAN [11] and P-Ring [13].

3.3 Multi-dimensional Indexing

A multi-dimensional index, such as the R-tree [14], is ukBfuspatial and multi-dimensional applications. In
the R-tree, each node is associated with a Minimal BoundatdRgle (MBR), which is similar to the range
defined for the B-tree node. Given an R-tree node, we need to defi@@function to locate the processing
node. Depending on the characteristics of the underlyirglays, we have two solutions:

If the underlying overlay, such as CAN [11], supports mditaensional routing, we can directly use its
lookupinterface. For an R-tree node the Map function is defined as:

Map(n)=lookup(getMBR(n))

However, most structured overlays have not been desigmesujporting multi-dimensional data indexing. In
this case, the alternative solution is to map the multi-disi@nal rectangle into a set of single dimensional
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ranges. The space filling curve [15] is commonly used for thsk. Given a rectangl&, we can define a
function f based on the space filling curve, which map$o a range sef. Finally, theMap function returns
the corresponding node set:

Map(n)={lookup(r)vr € S}

4 Index Tuning

The local index size is proportional to the data size. Thmeefwe cannot publish all the local indexes into the
global index. In this section, we discuss the index tunirgpfam in the framework.

Algorithm 3 IndexTuning(node n)
1: IndexSet I=n.getAllindexEntry()
2: for Ve € I do
3: if needSplit(efhen

4: IndexSet I'=getLowerLevellndexEntry(e)

5: remove e and insert I’ into global index

6: else

7 if needMerge(edhen

8: IndexEntry e’=getUpperLevellndexEntry(e)

9: remove e and its siblings; insert e’ into global index
10: end if
11:  endif
12: end for

Algorithm 3 shows the general strategy of index tuning. liradtex entry needs to be split due to the high
benefit for query processing, we replace the index entry itgtlower level index entries. In contrast, if it needs
to be merged with its siblings, we remove all the correspapdidex entries and insert their upper layer entry.
In this way, we dynamically expand and collapse the locatinith the global index. In the above process, we
manage the local index in a hierarchical manner. Existimgxnstructures can be easily extended to support
such operations. Again, we use hash index anetfi@e index as the examples in our discussion.

4.1 Multi-level Hash Indexing

[
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Figure 3: Hierarchical Hash Functions

Linear hashing and extendible hashing can be considerediltislenel hash functions. As shown in Fig-
ure 3, the hash function at leviek defined asi(x)=x mod2‘. Given two data items; andwvs, if h;(v1) = h;(v2),
v1 andwv, are mapped to the same bucket in leveAs a matter of fact, the index data are only stored in the
buckets of the last level (e.g., level 3 in Figure 3). The ptheel buckets store a Bloom Filter [16] to verify
membership and are maintained virtually. We generate aniBdch bucket based on its ancestors’ hash values.
For example, the bucke®; = {3,9} in level 2 has an ID “00” and the buckét; = {8} in level 3 has an ID
“110". Instead of using the hash value as the key to publistdtita, we use the bucket ID as the key. Initially,
only level 1 buckets (e.g., bucket “0” and “1”) are insertatbithe global index. If bucket O has a high query



load, it will be split into two buckets in level 2. Then, theegy load is shared between the two buckets. The
index lookup is performed in a similar way. We generate actekey based on the hash function. For example,
to perform search for 9 and 6, we generate keys “000” and “1@3pectively. Query for “000” will be sent to
the bucket “00”, whose id is the prefix of the query.

4.2 Dynamic Expansion of the B -tree based Indexes
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Figure 4: Adaptive Expansion of Btree

In the index tuning process, thetBree based global index can be considered a result of thanaign
expansion of the local B-trees. Figure 4 illustrates the idea. Due to network codtstarage cost, we cannot
publish all the leaf nodes into the global index. Therefdris, more feasible and efficient to select and publish
some tree nodes based on the cost model. Based on Algorittiva ®ining process is similar to tree expansion
or collapse. When a new processing node joins the clustiesdtts the root node of its local'Btree into the
global index. Then, it adjusts its index by expanding the tlgnamically. Figure 4 shows a snapshot of an
expanding tree.

4.3 Cost Modeling

In our indexing framework, a cost model is essential to etalihe cost and benefit of maintaining the global
index. In As different system configurations will lead tofeient cost models, we describe a general approach to
estimate the cost. Basically, maintenance costs can bafidsnto two types, query processing cost and index
maintenance cost. Algorithm 2 indicates that query praogssost includes the routing cost incurred fhap
and the index lookup cost incurred BetGl Based on the protocol of structured overlays, the cosfiap is
O(logN) network /0O, whereV is the number of nodes in the Cloud. The cosGettGlis the local /0 cost of
processing the query via the global index, and it depends@sttucture of current global index. For example,
in an L-level Bt -tree index, if oné:-level tree node; is inserted into the global index, query processingnia
requires additional. — h 1/0O cost. Thus, the cost @éetGl must be estimated on the fly. Once the local index
is modified, we need to update the corresponding global indetypical update operation trigger3(logNV)
network I/Os and some local I/Os. The total index maintereacmst is a function of the update pattern. We
employ the random walk model and the bayesian network mogekdict update activities in the'Btree index
and the multi-level hash index, respectively. Finally, dost of a specific index entry is computed as the sum
of its query cost and maintenance cost. And to limit the gf@reost, we set a threshold for the size of global
index. Then, the optimal indexing scheme is transformea artnapsack problem. And a greedy algorithm can
be used to solve the problem.

5 Other Implementation Issues

5.1 Concurrent Access

In an open service Cloud system, registered users are altwvdeploy their own softwares. If some users’
instances access the global index concurrently, we neeadbi@gtee the correctness of their behaviors. Suppose
an index entry receives an update request and read requesgtasieous from different instances. We need to



generate a correct serialized order for the operations.s&ipte solution is to group the relative operations in a
transaction and apply the distributed 2-phase lockingogmt However, 2-phase locking protocol reduces the
performance significantly. If consistency is not the majmaezrn, more efficient solutions may be possible [17].

5.2 Routing Performance

As discussed in the cost modBlapincursO(logN') network 1/O, wheréV is the number of nodes in the Cloud.
Although nodes in the Cloud are connected via a high bantdwidiN, the network cost is still dominating the
index lookup cost. Some systems [18] apply the routing bufieeduce the network cost. Generally, after a
success lookup operation, the node keeps the destinatietadata in its local routing buffer. In the future
processing, if a new lookup request hits the buffer, we caiewe the corresponding data within 1 network 1/0.
However, the application of routing buffer incurs new resbaroblems such as how to keep the routing buffer
up to date and how to customize the routing algorithm.

5.3 Failure Recovery

In the Cloud system, as the processing nodes are low-cokstations, there may be node failures at any time.
In this case, a master node is used to monitor the status esndhd each node will record its running status
into a log file occasionally. If a node fails, it will be rebedtby the master node and automatically resume its
status from the log file. To keep the high availability of tHelmal index, we write the global index into the log
file as well. Moreover, we exploit the replication protocéltiee overlay network to create multiple copies of
the global index. Therefore, a single node’s failure wilt affect the availability of the global index. One of the
replicas is considered as the master copy, while the otleeslave copies. The updates are sent to the master
copy and then broadcasted to the slave copies. Once a mapiefails, one of the slave copies is promoted to
be the master one. And after a node recovers its global indehe log file, it will become a slave copy and ask
the master one for the missing updates.

6 A Performance Evaluation
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Figure 5: Experiment Result

To illustrate the effectiveness of the framework, we havplemented our indexing framework on BATON
[12] for the Cloud system (see [10] for more details). In olou@ system, each node builds a locat-Bee
index for its data chunks. The global index is composed by rtigmoof local Bt-tree indexes. We deploy
our system on Amazon’s EC2 [4] platform. In our system, eamtterhosts 500k data in its local database. A
simulator is employed to issue queries. From the start oEperiment, the node will continuously obtain a
new query from the simulator after it finishes its current.of@e major metrics in the experiment are query
throughput and update throughput. To test the scalabilibupapproach, Cloud systems with different numbers



of processing nodes are created. In Figure 5(a), we gendiffdeent query sets by varying the selectivity of
the search. When = 0, the query is exact search query. Wher= 0.01, one percent of the data space is
searched in the query. Query throughput increases alnmestrly as the number of processing nodes increases.
Figure 5(b) shows the update throughput. We generate thdiims request for each local'Btree uniformly. In

our system, the updates can be processed by different nogesallel.

7 Conclusions

In this paper, we study and present a general indexing framefar the Cloud system. In the indexing frame-
work, processing nodes are organized in a structured gveetvork, and each processing node builds its local
index to speed up data access. A global index is built by 8eteand publishing a portion of the local in-
dex in the overlay network. The global index is distributagtmothe network, and each node is responsible
for maintaining a subset of the global index. Due to storagg& and other maintenance issues, an adaptive
indexing approach is used to tune the global index basedeondst model. Two experiments on a real Cloud
environment, Amazon’s EC2, illustrate the effectivenass potential of the framework.
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