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Abstract

Cloud computing is an increasingly popular paradigm for @esing computing resources. A popular
class of computing clouds is Infrastructure as a Servica%$leclouds, exemplified by Amazon’s Elastic
Computing Cloud (EC2). In these clouds, users are givensactevirtual machines on which they can
install and run arbitrary software, including database ®ms. Users can also deploy database appli-
ances on these clouds, which are virtual machines with pstalled pre-configured database systems.
Deploying database appliances on laaS clouds and perfoceatuming and optimization in this environ-
ment introduce some interesting research challenges.igrptiper, we present some of these challenges,
and we outline the tools and techniques required to addiessit We present an end-to-end solution to
one tuning problem in this environment, namely partitignthe CPU capacity of a physical machine
among multiple database appliances running on this machie also outline possible future research
directions in this area.

1 Introduction

Cloud computing has emerged as a powerful and cost-eféepiiradigm for provisioning computing power
to users. In the cloud computing paradigm, users use amett the Internet to access a shared computing
cloud that consists of a large number (thousands or tensak#nds) of interconnected machines organized as
one or more clusters. This provides significant benefits bmtbroviders of computing power and to users of
this computing power. For providers of computing power,gheh to cloud computing is driven by economies
of scale. By operating massive clusters in specially desicand carefully located data centers, providers can
reduce administrative and operating costs, such as the obgiower and cooling [15, 16]. In addition, the
per-unit costs of hardware, software and networking becsigmficantly cheaper at this scale [4]. For users,
cloud computing offers simple and flexible resource pravisig without up-front equipment and set up costs
and on-going administrative and maintenance burdens.sdser run software in the cloud, and they can grow
and shrink the computing power available to this softwanmegponse to growing and shrinking load [4].

There are different flavors of cloud computing, dependingp@m much flexibility the user has to customize
the software running in the cloud. In this paper, we focus emputing clouds where the user sees a bare-
bones machine with just an operating system and gets fulbflix in installing and configuring software on
this machine. These clouds are knownrasastructure as a Service (laa$)ouds. A very prominent example
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of this type of cloud is Amazon’s Elastic Computing Cloud (2], which enables users to rent computing
power from Amazon to run their software. Other providershig style of cloud computing include GoGrid [13]
and AppNexus [3]. Additionally, many organizations arelding laaS clouds for their internal use [6, 22].

In laaS clouds, users are typically given accesdgrtoal machines (VMs[5, 23] on which they can install
and run software. These virtual machines are created andgedrby avirtual machine monitor (VMMyvhich
is a layer of software between the operating system and tysqath machine. The VMM controls the resources
of the physical machine, and can create multiple VMs thatesttzese physical machine resources. The VMs
have independent operating systems running independphitajpns, and are isolated from each other by the
VMM. The VMM controls the allocation of physical machine oeisces to the different VMs. The VMM also
provides functionality such as saving and restoring thegienaf a running VM, or migrating VMs between
physical machines.

A common model for deploying software in virtual machine iemwments is thevirtual appliancemodel.
A virtual appliance is a VM image with a pre-installed preafigured application. Deploying the application
simply requires copying this VM image to a physical machstayting the VM, and performing any required
configuration tasks. The cost of installing and configurimg dpplication on the VM is incurred once, when the
appliance is created, and does not need to be incurred agaigels of the appliance. Aatabase appliance
is a virtual appliance where the installed application isatallase system. With the increasing popularity of
virtualization and cloud computing, we can expect that armom way of providing database services in the
future will be throughdatabase appliances deployed in laaS cloudés an example of this deployment mode,
Amazon offers MySQL, Oracle, and Microsoft SQL Server \aitappliances for deployment in its EC2 cloud.

An important question to ask is how to get the best databagersyperformance in this environment. Cloud
providers are interested in two related performance ot maximizing the utilization of cloud resources
and minimizing the resources required to satisfy user dem&isers are interested in minimizing application
response time or maximizing application throughput. Dgiplg database appliances in the cloud and tuning the
database and virtualization parameters to optimize padace introduces some interesting research challenges.
In this paper, we outline some of these challenges (Sec}icam@ we present the different tools and techniques
required to address them (Section 3). We present our workaotitipning CPU capacity among database
appliances as an example end-to-end tuning solution faratized environments (Section 4). We conclude by
outlining some possible future research directions indhés (Section 5).

2 Deployment and Tuning Challenges

Our focus is on deploying and tuning virtual machines rugrdatabase systems (i.e., database appliances) on
large clusters of physical machines (i.e., computing cpudhis raises deployment and computing challenges,
which we describe next.

2.1 Deployment Challenges

Creating a database appliance that can easily be deplogezrland, and obtaining an accessible, usable database
instance from this appliance require addressing many sseelated to deployment. These issues are not the
research focus of our work, but we present them here sinse teemingly simple and mundane tasks can be
very tricky and time consuming. These issues include:

Localization:

When we start a VM from a copy of a database appliance, we oagidd this new VM and the database system
running on it a distinct “identity.” We refer to this proceaslocalization For example, we need to give the
VM a MAC address, an IP address, and a host name. We also neddjib (or localize) the database instance
running on this VM to the VM’s new identity. For example, so&abase systems require every database



instance to have a unique name, which is sometimes basee tro$h name or IP address. The VMM and the
underlying operating system and networking infrastrietmiay help with issues such as assigning IP addresses,
but there is typically little support for localizing the datise instance. The specific localization required varies
from database system to database system, which incre@sefidtt required for creating database appliances.

Routing:

In addition to giving every VM and database instance a disiidentity, we must be able to route application
requests to the VM and database instance. This include$thevél routing of packets to the VM, but it also
includes making sure that database requests are routed tottect port and not blocked by any firewall, that
the display is routed back to the client console if needeat, It requests are routed to the correct virtual storage
device if the “compute” machines of the laaS cloud are diffeéfrom the storage machines, and so on.

Authentication:
The VM must be aware of the credentials of all clients thatrteeconnect to it, independent of where it is run
in the cloud.

2.2 Tuning Challenges

Next, we turn our attention to the challenges related tonitine parameters of the virtualization environment
and the database appliance to achieve the desired perfoenadfectives. These are the primary focus of our
research work, and they include:

Placement:

Virtualization allows the cloud provider to run a user's VM any available physical machine. The mapping
of virtual machines to physical machines can have a signifizapact on performance. One simple problem
is to decide how many virtual machines to run on each physizathine. The cloud provider would like to
minimize the number of physical machines used, but runningenvMs on a physical machine degrades the
performance of these VMs. It is important to balance thesdlicting objectives: minimizing the number of
physical machines used while maintaining acceptable paence for users.

A more sophisticated mapping of virtual machines to physiwchines could consider not only the number
of VMs per physical machine, but also the resource requingsnef these VMs. The placement algorithm
could, for example, avoid mapping multiple I/O intensive ¥ltb the same physical machine to minimize 1/0
interference between these VMs. This type of mapping reguinderstanding the resource usage characteristics
of the application running in the VM, which may be easier tofdlodatabase systems than for other types of
applications since database systems have a highly stydizéaften predictable resource usage pattern.

Resource Partitioning:

Another tuning challenge is to decide how to partition treoreces of each physical machine among the virtual
machines that are running on it. Most VMMs provide tools orl$\Roxr controlling the way that physical
resources are allocated. For example VMM scheduling passiean be used to apportion the total physical
CPU capacity among the VMs, or to control how virtual CPUs raapped to physical CPUs. Other VMM
parameters can be used to control the amount of physical nyetimat is available to each VM. To obtain the
best performance, it is useful to take into account the dbariagtics of the application running in the VM so that
we can allocate resources where they will provide the mamirbanefit. Database systems can benefit from this
application-informed resource partitioning, as we wilbshin Section 4.

Service Level Objectives:

To optimize the performance of a database appliance in a@onironment, it is helpful to be able to ex-
press differenservice level objectivesThe high-level tuning goal is to minimize the cloud res@srcequired
while maintaining adequate performance for the databagkaape. Expressing this notion of “adequate per-
formance” is not a trivial task. A database system is typigadrt of a multi-layer software stack that is used to



serve application requests. Service level agreementypgically expressed in terms of end-to-end application
performance, with no indication of how much of this perfonoa budget is available to the database system vs.
how much is available to other layers of the software staak ,(&he application server and the web server). De-
riving the performance budget that is available to the detalsystem for a given application request is not easy,
since an application request can result in a varying numbdgitabase requests, and these database requests can
vary greatly in complexity depending on the SQL statemertagrexecuted. Tuning in a cloud environment
therefore requires developing practical and intuitive svalyexpressing database service level objectives. Differ-
ent workloads can have different service level objectiagsl the tuning algorithms need to take these different
service level objectives into account.

Dynamically Varying Workloads:

Tuning the performance of a database appliance (e.g.,mpkteand resource partitioning) requires knowledge
of the appliance’s workload. The workload can simply be thksiet of SQL statements that execute at the appli-
ance. However, it is an interesting question whether thanebe a more succinct but still useful representation
of the workload. Another interesting question is whethensauning decisions can be made without knowledge
of the SQL statements (e.g., if this is a new database insfattds also important to detect when the nature of
the workload has changed, possibly by classifying the veartt[11] and detecting when the workload class has
changed. The tuning algorithms need to be able to deal withmiycally changing workloads that have different
service level objectives.

3 Tools and Techniques

Next, we turn our attention to the tools and techniques tteahaeded to address the tuning challenges outlined
above. These include:

Performance Models:

Predicting the effect of different tuning actions on thefpenance of a database appliance is an essential com-
ponent of any tuning solution. This requires developingueaie and efficient performance models for database
systems in virtualized environments. There are two gerdaaises of models: white box models, which are
based on internal knowledge of the database system, arkltimaanodels, which are typically statistical mod-
els based on external, empirical observations of the detedgstem’s performance.

White box modeling is especially attractive for databasstesys for two reasons. First, database systems
have a stylized and constrained interface for user requélséy accept and execute SQL statements. This
simplifies defining the inputs to the performance model. 8dcand more importantly, database systems already
have highly refined internal models of performance. One wealuild a white box model is to expose these
internal models to the tuning algorithm and adapt them tottiming task at hand. For example, the query
optimizer cost model, which has been used extensively asa&ivbost model for automatic physical database
design [7], can be used to quantify the effect of allocatiiffeent shares of physical resources to a database
appliance (see the next section for more details). Selfagiaig database systems have other internal models that
can be exposed for use in performance tuning in a cloud enwiemt. These include the memory consumption
model used by a self-tuning memory manager [8, 21] or the nggi#ml for automatic diagnosis of performance
problems [10].

The disadvantage of white box modeling is that the requirerfbopmance models do not always exist in the
database system, and developing white box models fromchcimdifficult and time consuming. Even when
internal models do exist in the database system, these madelksometimes not calibrated to accurately pro-
vide the required performance metric, and they sometimée mianplifying assumptions that ignore important
aspects of the problem. For example, the query optimizerrooslel is designed primarily to compare query
execution plans, not to accurately estimate resource ogoison. This cost model focuses on one query at a



time, ignoring the sometimes significant effect of concutlserunning interacting queries [1]. Because of these
shortcomings of white box modeling, it is sometimes desirdb build black box models of performance by
fitting statistical models to the observed results of penfamce experiments [1]. When building these models
it is important to carefully decide which performance expents to conduct to collect samples for the model,
since these experiments can be costly and they have a caaidelémpact on model accuracy [18]. However,
the illusion of infinite computing resources provided bySadouds can actually simplify black box experimen-
tal modeling of database systems, since we can now easWysfo as many machines as we need to run the
performance experiments required for building an accuraidel.

An interesting research question is whether it is posstbmbine the best features of black box and white
box modeling, by using the internal models of the databastesyas a starting point, but then refining these
models based on experimental observations [12].

Optimization and Control Algorithms:

Solving the performance tuning problems of a cloud envirentmequires developing combinatorial optimiza-
tion or automatic control algorithms that use the perforoeamodels described above to decide on the best
tuning action. These algorithms can be static algorithrasdssume a fixed workload, or they can be dynamic
algorithms that adapt to changing workloads. The algordthan simply have as a goal the best-effort maximiza-
tion of performance [20], or they can aim to satisfy diffdreervice level objectives for different workloads [17].

Tools for System Administrators:

In addition to the models and algorithms described abov&gesy administrators need tools for deploying and
tuning database appliances. These tools should expos@lyahe performance characteristics of the VM, but
also the performance characteristics of the databasensysteiing on this VM. For example, it would be useful
to expose the what-if performance models of the databasersye system administrators so that they can make
informed tuning decisions, diagnose performance prohlemsfine the recommendations of automatic tuning
algorithms.

Co-tuning and Hint Passing:

The focus of the previous discussion has been on tuningaviniachine parameters. It is also important to tune
the parameters of the database system running on this Ivin@ehine. For example, if we decide to decrease
the memory available to a VM running a database system, wettnadecrease the sizes of the different memory
pools of this database system. Thb-tuningof VM and database system parameters is important to ensure
that the tuning actions at one layer are coordinated withtuhang action at the other layer. Another way to
coordinate VM tuning with database system tuning is to pa#sthat can be used for tuning from the database
system to the virtualization layer. These hints would cionitaformation that is easy to obtain for the database
system and useful for tuning at the virtualization layerr Example, these hints could be used to ensure that
VM disks storing database objects (i.e., tables or indetked)are accessed together are not mapped to the same
physical disk. Information about which objects are acag$sgether is easily available to the database system
and very useful to the virtualization layer.

4 Virtual Machine Configuration

In this section, we consider the following tuning problemivéa N virtual machines that share one physical
machine, with each VM running an independent databasersyist#ance, how can we optimally partition the
available CPU capacity of the physical machine among thealimachines? Recall that the VMM provides
mechanisms for deciding how much CPU capacity is allocatedth VM. We outline a solution to this resource
partitioning problem below. Full details of our solutiomdae found in [19, 20].

We decide the partitioning of the available CPU capacityhaf physical machine among thé virtual
machines with the goal of maximizing the aggregate througbpthe N workloads (or minimizing their total



completion time). This is a best-effort performance goat tioes not consider explicit service level objectives
for the different workloads.

The benefit that each database system will obtain from aeaserin CPU allocation depends on that sys-
tem’s workload. We assume that we are given the set of SQkrstatts that make up the workload of each
of the N database systems. These workloads represent the SQL atdseexecuted by the different database
systems in the same time interval, so the number of statenreatworkload corresponds to its intensity (i.e., the
rate of arrival of SQL statements). We assume that the waddare fixed, and we do not deal with dynamically
varying workloads.

To determine the best CPU partitioning, we need a model op#rormance of a database workload as
a function of the CPU capacity allocated to the VM runnings thvorkload. In our solution, we use the cost
model of the database system’s query optimizer as a whatdletrto predict performance under different CPU
allocations. This requires the query optimizer cost modddd aware of the effect of changing CPU capacity
on performance. The cost model relies on one or more modelmgmeters to describe CPU capacity and
estimate the CPU cost of a query. We use different valuesesetlCPU modeling parameters for different CPU
allocations, thereby adding awareness of CPU allocatidghe@uery optimizer cost model. We call such a cost
modelvirtualization aware The calibration procedure required to determine the wabighe CPU modeling
parameters to use for each CPU allocation is performed ome dor every database system and physical
machine configuration, and can be used for any workload timest on this database system.

We use the virtualization aware cost models of Malatabase systems on theVMs in a greedy search
algorithm to determine the best partitioning of CPU capaainong the VMs. We also provide heuristics for
refining the cost models based on comparing estimated peafure to actual observed performance. We apply
these refinement heuristics periodically, and we obtainnapatitioning of CPU capacity after each refinement
of the cost model.

To illustrate the effectiveness of our approach, considerfollowing example (Figure 1). Using the Xen
VMM [5] we created two virtual machines, each running ananse of PostgreSQL. We ran both VMs on the
same physical machine, a Sun server with two 2.2GHz dual AMB Opteron Model 275 x64 processors
and 8GB memory, running SUSE Linux 10.1. For this exampleussd a TPC-H database with scale factor
1. On one PostgreSQL instance we ran a workload consistitigreé instances of TPC-H que@4. On the
other instance, we ran a workload consisting of nine ingsraf TPC-H queryp13. First, we allocated 50%
of the available CPU capacity to each of the two virtual maekhj ran the two workloads, and measured the
total execution time of each workload. The results aretilaied by the bars on the left for each of the two
workloads in Figure 1. Next, we repeated the experimentthisttime we allocated CPU capacity according
to the recommendations of our CPU partitioning algorithrmhe BRlgorithm recommended giving 25% of the
available CPU capacity to the first PostgreSQL instance KW&fad 1) and the remaining 75% to the second
instance (Workload 2). The execution times of the two waxkl® under this CPU allocation are shown in
Figure 1 by the bars on the right for each of the two workloadlkis change in CPU allocation reduces the
execution time of the second workload by approximately 3@%ile having little impact on the first workload.
Thus, we can see the importance of correctly partitioning C&pacity and the effectiveness of our approach to
solving this problem.

5 Future Directions

The previous section illustrates a simple performancentuproblem in a cloud computing environment and its
solution. Extending the research outlined in the previaetian opens up many possibilities for future work,
which we are exploring in our ongoing research activitiestéad of partitioning the resources of one physical
machine among the VMs, we can considaultiple physical machines and partition their resources among the
VMs, that is, decide which physical machine to use for eachafd what share of this machine’s resources are
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Figure 1: Effect of varying CPU allocation on workload penfance.

allocated to the VM. We can also extend the work to deal withaahyically varying workloads, possibly with
different explicit service level objectives. Another irgsting research direction is improving the way we refine
the query-optimizer-based cost model in response to obdgrerformance.

Another interesting research direction is optimizing thecation of 1/O resources to different VMs. Some
VMMs, such as VMWare ESX server [23], provide mechanismsémtrolling how much of the 1/0 bandwidth
of a physical machine is allocated to each VM running on thihine. Another mechanism to control the
allocation of 1/0 resources to VMs is controlling the magpif VM disks to physical disks. Using these two
mechanisms to optimize the performance of database app$an an interesting research direction, especially
since many database workloads are 1/0 bound.

It would also be interesting to explore whether we can expasenal database system models other than
the query optimizer cost model and use these models forgwivi parameters or co-tuning VM and database
system parameters. For example, the memory manager parioeymodel can be used to control memory
allocation.

The cloud environment also offers new opportunities, beyibie challenges of tuning database appliances.
For example, since we can provision VMs on-demand, it woalthteresting to explore the possibility of scaling
out a database system to handle spikes in the workload lingtaew replicas of this database system on newly
provisioned VMs. This requires ensuring consistent actesbe database during and after the replication
process, coordinating request routing to the old and new \@vid developing policies for when to provision
and de-provision new replicas.

Finally, this idea of application-informed tuning of thetuialized environment is not restricted to database
systems. This idea can be used for other types of applicatiwat run in a cloud environment, such as large
scale data analysis programs running on Map-Reduce sstiophs [9, 14].

6 Conclusion

As cloud computing becomes more popular as a resource owig paradigm, we will increasingly see
database systems being deployed as virtual appliancesfiastimcture as a Service (laaS) clouds such as
Amazon’'s EC2. In this paper, we outlined some of the chatlergssociated with deploying these appliances
and tuning their performance, and we discussed the toolsemdiiques required to address these challenges.
We presented an end-to-end solution to one tuning problamety partitioning the CPU capacity of a physical
machine among the database appliances running on this meackive also described some future directions
for this research area. It is our belief that the style of ijibn-informed tuning described in this paper can
provide significant benefits to both providers and usersafdkcomputing.
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