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We examine how the biomedical informatics (BMI) community, especially consortia that share data and
applications, can take advantage of a new resource called ‘‘cloud computing”. Clouds generally offer
resources on demand. In most clouds, charges are pay per use, based on large farms of inexpensive, ded-
icated servers, sometimes supporting parallel computing. Substantial economies of scale potentially yield
costs much lower than dedicated laboratory systems or even institutional data centers. We present an
analysis (and analytical approach) that establish plausibility for the vendors’ claims, concluding that
clouds belong on the list of approaches to be seriously considered for BMI. It was very advantageous
to formulate analyses in terms of component technologies, which enabled us to bypass the cacophony
of alternative definitions (e.g., exactly what does a cloud include) and to analyze alternatives that employ
some of the component technologies (e.g., an institution’s data center). Relative analyses are another great
simplifier. Rather than listing the absolute strengths and weaknesses of cloud-based systems (e.g., for
security or data preservation), we focus on the changes from a particular starting point, e.g., individual
lab systems. We often find a rough parity (in principle), but one needs to examine individual acquisi-
tions—is a loosely managed lab moving to a well managed cloud, or a tightly managed hospital data cen-
ter moving to a poorly safeguarded cloud? Overall, even with conservative assumptions, for applications
that are not I/O intensive and do not demand a fully mature environment, the numbers suggested that
clouds can sometimes provide major improvements.

� 2009 Elsevier Inc. All rights reserved.
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R1. Introduction

‘‘Cloud” computing has been receiving much attention as an
alternative to both specialized grids and to owning and managing
one’s own servers. Currently available articles, blogs, and forums
focus on applying clouds to industries outside of biomedical infor-
matics. In this article, we describe the fundamentals of cloud com-
puting and illustrate how one might evaluate a particular cloud for
biomedical purposes.

Typically, laboratories purchase local servers for computation-
or data-intensive tasks that cannot be performed on desktop
machines. Locally-hosted machines are also increasingly used to
share data and applications in collaborative research, e.g., in the
Biomedical Informatics Research Network (BIRN) and Cancer Bio-
medical Informatics Grid (caBIG), both funded by the National
Institutes of Health (NIH).

Meanwhile, image analysis, data mining, protein folding, and
gene sequencing are all important tools for biomedical researchers.
These resource-intensive shared applications often involve large
data sets, catalogs, and archives, under multiple owners, often with
bursty workloads. In response, biomedical consortia (often involv-
ing multiple institutions) have implemented their applications on
84

85
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top of laboratory-hosted servers in a distributed grid architecture,
as described in Section 2. To sustain such servers, laboratories and
their institutions require space, cooling, power, low-level system
administration, and negotiations (e.g., about software standards
and firewalls between institutions). The consequent dollars and
delays are often ignored in purchase decisions, but can be very
substantial.

Clouds shift the responsibility to install and maintain hardware
and basic computational services away from the customer (e.g., a
laboratory or consortium) to the cloud vendor. Higher levels of
the application stack and administration of sharing remain intact,
and remain the customer’s responsibility.

For consumers, cloud computing is primarily a new business par-
adigm, as opposed to a new technical paradigm; a cloud vendor (a
commercial company) provides hardware, a platform, or software
(an application) as a service to its customers. In the simplest sce-
nario, a cloud vendor allows its customers to gain the capabilities
of a simple server—albeit a virtual one—in which the processing, net-
work, and storage resources are controlled dynamically. More
sophisticated clouds also provide useful datasets (e.g., genomic or
census data), management capabilities, programming environments
(e.g., .Net in Microsoft Azure), web service platforms (e.g., Google
App Engine), or access to particular applications (e.g., BLAST [1]).
Cloud users can acquire or relinquish processing power and storage,
business paradigm for biomedical information sharing. J Biomed Inform
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often in minutes, merely by sending a service request to the cloud
vendor. The server (or storage, or communication channel) is
‘‘virtual” in the sense that the vendor provides capacity as
needed—e.g., a server, or slice of a server, from its pool of machines.

The goal of this paper is to help decision makers at biomedical
laboratories, funding agencies, and especially consortia to under-
stand where cloud computing may be appropriate and to describe
how to assess a particular cloud. We focus on labs that need to
share information with outsiders, such as consortia investiga-
tors—the rapidly-growing cloud literature suffices to guide labs
that simply wish to acquire cheaper compute resources.

Two aspects of our analysis bear mentioning. First, we steer
around the un-resolvable debate about where to draw the bound-
ary between ‘‘cloud” and ‘‘not a cloud” (or ‘‘grid” and ‘‘not a grid”).
Authors have different concerns, and will persist in drawing differ-
ent boundaries. Also, definitions involve a list of inclusions and
exclusions, which a reader is unlikely to recall. So we present a fea-
ture list, rather than absolutely requiring or forbidding features.
Technical analyses refer to systems having or lacking a particular
feature, regardless of whether that system is categorized as a
cloud, institutional data center, or consortium grid. The features
are useful as information retrieval keywords—we call a system a
cloud if it has a preponderance of the features that authors empha-
size in systems they call clouds. Second, we clarify discussions of
both costs and security by employing a relative approach. That is,
rather than list pros and cons of clouds in isolation, we consider
‘‘before” and ‘‘after”. By identifying issues that are not substantially
changed, we greatly reduce the scope of comparison.

In Section 2 we present background information on grids and
clouds. Section 3 provides an overview of consortium computing.
Section 4 discusses cloud infrastructure for medical consortia and
describes sample cloud vendors. The next two sections contain
the central evaluations. Section 5 evaluates several different trade-
offs, and Section 6 discusses cloud security, a major concern of
many potential adopters. Section 7 identifies properties that make
a project amenable (or not) to cloud computing, and Section 8 pre-
sents conclusions.
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E2. Background

Powerful instruments, satellites, and sensor networks can easily
generate terabytes to petabytes of scientific data in a day [2]. As bio-
medical research transitions to a data-centric paradigm, scientists
need to work more collaboratively, crossing geographic, domain,
and social barriers. Interdisciplinary collaboration over the Internet
is in demand, making it necessary for individual laboratories to
equip themselves with the technical infrastructure needed for infor-
mation management and data sharing. For example, a research
group may need to include data from clinical records, genome stud-
ies, animal studies, and toxicology analyses. The era of spreadsheet-
based research data storage is approaching its limits [3].
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2.1. Distributed system architectures

Grids, virtualized data centers, and clouds constitute three
approaches to sharing computer resources and data to facilitate
collaboration. These architectures overlap in their implementation
techniques and in the features they offer to biomedical consortia.
Furthermore, systems of each category adopt good ideas from the
others, and tradeoffs often depend on the presence of that feature,
not on the overall categorization. We summarize these architec-
tures briefly here and express detailed comparisons in terms of
individual features.

Grid technology is popular in the scientific community. Grid
participants typically share computational resources running on
Please cite this article in press as: Rosenthal A et al. Cloud computing: A new
(2009), doi:10.1016/j.jbi.2009.08.014
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independently-managed machines, using standard networking
protocols. Grid toolkits often provide management and security
capabilities. When running computationally-intensive jobs, one
frequently receives an entire machine, or several.

Data center virtualization products typically assume a dedi-
cated pool of machines that are used to support a variety of tasks.
They have become quite successful in commercial and government
data centers. While one may occasionally allocate a whole machine
(or cluster) to a single, computationally-expensive task, more often
these products allow multiple virtual processors, storage systems,
and networks to be supported over the same set of underlying
hardware. Virtual machines can be quickly activated or deacti-
vated. If each virtual machine is lightly utilized, one can consoli-
date many virtual machines onto the same physical hardware,
thus improving utilization and cost. Pressed by open source prod-
ucts (such as Xen), leading vendors (such as VMware) now include
higher-level services, such as configuration management, work-
load orchestration, policy-based allocation, and accounting.

Cloud computing is a highly touted recent phenomenon. As
noted, there is little hope of obtaining consensus or a standard def-
inition regarding exactly what constitutes a ‘‘cloud” (and the term
‘‘grid” has been similarly overloaded). For example, [4] emphasizes
quality of service contracts for a cloud, [5] contrasts social issues
with technical infrastructure, while others focus on price or on
the nature of the resources provided (e.g., storage, processors, plat-
forms, or application services). Some writers emphasize what the
cloud provides to its consumers, e.g., services on demand. Others
emphasize what is underneath—a warehouse full of servers. No
single definition is ‘‘best” for all purposes.
209
E2.2. Cloud features

The following features, especially the first three, are commonly
associated with clouds. A consumer can be an individual lab, a con-
sortium participant, or consortium itself.

� Resource outsourcing: Instead of a consumer providing their own
hardware, the cloud vendor assumes responsibility for hardware
acquisition and maintenance.

� Utility computing: The consumer requests additional resources as
needed, and similarly releases these resources when they are
not needed. Different clouds offer different sorts of resources,
e.g., processing, storage, management software, or application
services [6].

� Large numbers of machines: Clouds are typically constructed
using large numbers of inexpensive machines. As a result, the
cloud vendor can more easily add capacity and can more rapidly
replace machines that fail, compared with having machines in
multiple laboratories. Generally speaking these machines are
as homogeneous as possible both in terms of configuration
and location.

� Automated resource management: This feature encompasses a
variety of configuration tasks typically handled by a system
administrator. For example, many clouds offer the option of
automated backup and archival. The cloud may move data or
computation to improve responsiveness. Some clouds monitor
their offerings for malicious activity.

� Virtualization: Hardware resources in clouds are usually virtual;
they are shared by multiple users to improve efficiency. That is,
several lightly-utilized logical resources can be supported by the
same physical resource.

� Parallel computing: Map/Reduce and Hadoop are frameworks for
expressing and executing easily-parallelizable computations,
which may use hundreds or thousands of processors in a cloud.
The system coordinates any necessary inter-process communi-
cations and masks any failed processes.
business paradigm for biomedical information sharing. J Biomed Inform
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3. Consortium computing

Clouds are candidates for several roles in biomedical comput-
ing, ranging from compute services to archival storage to acting
as a neutral zone among laboratories in a consortium. Individual
labs often include basic servers. Labs that engage in computation-
ally expensive research (e.g., protein folding or simulations) may
rely on clusters of high-performance machines with fast intercon-
nects between processors. At the other extreme, international
repositories (e.g., SwissProt and GenBank) require extensive
storage, but less impressive computational power. Between these
extremes are biomedical consortia that facilitate the exchange of
data and applications among its participants, sometimes employ-
ing grid architectures such as BIRN and caBIG to accomplish their
goals. In this section, we provide an overview of biomedical com-
puting infrastructure, paying particular attention to the needs of
consortia.

3.1. Laboratory infrastructure

To meet its research needs, a laboratory must build or acquire
computational infrastructure. As illustrated in Fig. 1, the most basic
capabilities include computation, storage, and network bandwidth.
These resources are managed by an operating system, which also
provides simple mechanisms for coordinating application requests
(e.g., to register and invoke services) and for enforcing policy. On
top of the operating system, one layers complex generic infrastruc-
ture (such as a database management system, catalog, digital
library, or workflow manager) and complex policies. Uniquely
biomedical infrastructure (e.g., BLAST) leverages this generic infra-
structure. Finally, one deploys biomedical applications built atop
the underlying layers.
U
N
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R
R

E
C

T

Fig. 1. A generic computing infrastructure employed at local laboratories, managed
by the laboratory itself or a consortium for data sharing.

Please cite this article in press as: Rosenthal A et al. Cloud computing: A new
(2009), doi:10.1016/j.jbi.2009.08.014
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3.2. Biomedical research consortia

Today, one typically provides servers within a laboratory; insti-
tutional data centers provide a second option. However, a single
institution cannot provide all the needed resources, and collabora-
tions go beyond its boundary. The complexity of deploying compu-
tational infrastructure, especially across multiple institutions, has
encouraged creation of many independent biomedical consortia
to facilitate sharing data and software among labs. The consortium
provides the skills and resources needed to support a rich set of
capabilities, offloading some work from the laboratory. Individual
laboratories can then focus on extending the higher, biomedical-
specific layers.

Traditionally, these consortia have contributed to all layers of
the computational stack. As surveyed in the next section, fre-
quently, they create a grid that provides a unified interface, and
some management capabilities, for a large set of machines.
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O3.3. Grid infrastructure for consortia

Grid technologies have proved useful in the scientific commu-
nity, enabling researchers to employ computation, data, and soft-
ware across a range of machines. Surveys appear in [4], [7], and
[8]. Underneath the interface that consumers see, grid implemen-
tations typically connect independently owned and geographically
distributed servers. Naturally, there is also a need to federate
across several grids or clouds [9].

Some notable grids provide cheap computational power for
long-running computations that require more resources than
one institution can afford, e.g., large, decomposable problems in
protein folding or astronomical signal analysis [10] and [11].
These rely on machines volunteered from the general public.
The price is unbeatable (machine time is free, and the grid soft-
ware is open source, and Internet traffic is cheap). However, this
approach does not guarantee fast response, or provide robust,
always-available storage. Worse, it cannot be used with sensitive
data – since an untrustworthy host machine can easily bypass
grid security [12].

Several biomedical consortia have built their own grids, federat-
ing the data and applications contributed by their members. Such
grids often employ sophisticated open source software such as Glo-
bus for computation [13] and the Storage Resource Broker for large
data sets [14] (commercial digital library systems from IBM, Micro-
soft, etc., provide rather similar capabilities to the latter [15]). Such
grid software offers substantial management capabilities, such as
catalogs for discovery (e.g., find images based on metadata values),
and mechanisms for ensuring data security and privacy. The cata-
log and security services face demands (unmet in some initial re-
leases) for high availability and for rapid scale-up to handle
surges when large numbers of new images need to be registered
and processed. As they mature, clouds will be an attractive candi-
date. Grids also often support such as sequence similarity search
[16] or image processing [17] tasks that require substantial com-
putational power. Sometimes the code is tuned to particular pro-
cessor and interconnect designs, making it difficult to port to
other hardware.

The consortium often imposes minimum requirements on the
participants’ hardware and software configurations. For example,
the BIRN requires participants to install standardized hardware
racks [18]. These requirements (to be removed in the implementa-
tion of the next-generation BIRN) can represent a significant bar-
rier to entry, especially for small laboratories. Overviews of the
experiences of the BIRN and caBIG consortium grids appear in
[15] and [19]. Several technologies and demonstration systems
are surveyed in [20].
business paradigm for biomedical information sharing. J Biomed Inform
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3.4. Coping with institutional concerns

Institutional authorities need to be satisfied that sharing
arrangements are appropriate and secure. Also, institutions may
require adherence to hardware, software, or governance standards,
which may conflict with the standards required by a consortium.
Such constraints can lead to laborious negotiations, delays, missing
capabilities, and vulnerabilities. This section describes three major
areas that concern institutional authorities, and separates out is-
sues that are unaffected by whether a cloud is used.

3.4.1. Data privacy
The institution is obligated to protect data that it generates or

receives from partners. To do so, review boards must ask whether
the planned usage for the data is appropriate (e.g., ethical and cov-
ered by patient consent), and whether the external recipient seems
trustworthy.

We can now provide two substantial simplifications for analyz-
ing the effect of clouds on privacy. First, while vetting the appropri-
ateness of proposed usage is important, it can be handled as a
separate process, independent of the mechanisms used to achieve
sharing. It will thus not be further discussed. Second, at the top le-
vel, we can treat trustworthiness of the sharing mechanism much
as we would treat trustworthiness of an external research partner.
For example, similar top level questions (below) apply to either, ‘‘Is
a pharmaceutical company in France a trustworthy partner to re-
ceive our data?” or ‘‘Is a sharing mechanism implemented at a data
center hosted in France a suitable recipient?”

We formulate our discussions of Trustworthiness in terms of
three questions. First, is the recipient legitimate (i.e., do we think
they mean well)? The recipient’s reputation, including organiza-
tional affiliation and certifications, may guide such decisions. Har-
vard or IBM might be acceptable, respectively, for research or
cloud; unknown unaffiliated researchers or startup companies
might not. Second, to avoid misunderstandings, has the recipient
made appropriate promises (accepted obligations) about degree of
system protection and about enforcing the owner’s policy about
sharing the data onward? (A recipient laboratory might simply
promise not to pass the data onward, but a sharing mechanism will
need to enforce a complex policy. Each might be required to main-
tain firewalls and to audit limit staff access). Third, are the recipi-
ent’s technical and human systems able to meet their obligations to
protect data against attacks and carelessness?

3.4.2. Protecting other systems
When a lab hosts consortium or other externally-accessible re-

sources, external traffic must traverse the institution’s networks
and firewall.1 This traversal increases risks of congestion and mal-
ware, especially if the firewall is loosened to accommodate the traffic
(e.g., to allow database accesses from outside the institution). Also,
whenever the consortium’s services and membership expand, risks
may need to be reexamined.

3.4.3. Efficiency and standards
Institutions often seek to reduce costs by reducing heterogene-

ity. For example, site licensing agreements or chief information
officer (CIO) mandates at one institution may require Oracle dat-
abases on Sun servers. These institutional policies may conflict
with consortia requirements to use PostgreSQL on HP. If a labora-
tory does not get the necessary waivers, the multi-institution
data-sharing consortium will thus have heterogeneous hardware
and software. Some applications may fail, or run very slowly, and
1 A firewall prevents unwanted traffic from crossing a perimeter, usually by filtering
a message header based on local policy. Firewalls understand networks, ports, and
servers, but not individual users or stored data items.

Please cite this article in press as: Rosenthal A et al. Cloud computing: A new
(2009), doi:10.1016/j.jbi.2009.08.014
extra costs will be incurred for training, software conversion, and
configuration management.
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4. Clouds

Cloud vendors effectively sell computation and storage re-
sources as commodities, providing users with the illusion of a sin-
gle virtual machine or cluster, implemented over thousands of the
vendor’s computers (in some cases, virtual and physical machines
correspond 1-to-1). Some cloud vendors and third parties sell high-
er-level resources, such as the GoogleApp application platform,
relational database management systems (DBMSs) [21], or the
SalesForce application. Underneath, the virtual resources are
mapped transparently to the underlying physical resources,
optionally subject to constraints on geographic location (e.g., repli-
cate at a remote site, but stay within the European Union. The cus-
tomer controls the virtual machine’s capacity (computational and
storage) by sending the cloud vendor a service request to add or
subtract resources as needed. The time to gain or release capacity
(for small fractions of the provider’s inventory) is typically mea-
sured in minutes, not months.

Fig. 2 illustrates graphically the layers that cloud offerings often
allow to be offloaded. Note that this diagram is essentially identical
to the server architecture described above in Fig. 1. The difference
lies in who is responsible for providing the lower-level capabilities.

Like a lab’s cluster from Sun or HP, a cloud provides a base upon
which customers build their own applications. The general infra-
structure layer provides capabilities needed by application build-
ers (e.g., databases) and system administrators (e.g., security
mechanisms). The next layer provides capabilities widely needed
Fig. 2. Clouds can offload the responsibility of the bottom two layers of a basic
computing infrastructure.

business paradigm for biomedical information sharing. J Biomed Inform
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in biomedical informatics. Finally, each laboratory will need to add
capabilities and applications to meet its own needs. As Fig. 2
shows, many additional layers of capabilities still need to be pro-
vided by a consortium, a system integrator, or biomedical software
environment vendor. Regardless of the underlying infrastructure,
customers still need to provide everything specific to their own
application.

4.1. Cloud infrastructure for biomedical consortia

As discussed above, biomedical researchers are beginning to
rely on consortium grids, due to the difficulties of managing labo-
ratory silos when researchers from multiple institutions need to
share data. However, laboratories still acquire their consortium-
support hardware conventionally, with substantial delays, need
for physical space, and limited economy of scale. They still face
the management difficulties of either heterogeneous underpin-
nings or being forced to acquire uniform systems. Labs small re-
source pool makes it hard to rapidly increase or decrease capacity.

Clouds offer many management services similar to grids, but
their underpinnings have a ‘‘mass production” flavor. They typi-
cally use large data centers with many thousands of processors, ac-
quired and managed by one organization, often kept fairly uniform.
Within a data center, the network bandwidth is usually high,
allowing the underlying computers to share data with one another
efficiently (though not as fast as a specialized cluster). Public
clouds contain data from multiple customers and problem do-
mains; the consequent security tradeoffs are discussed in Section
6. The cloud can be owned either by the vendor (creating control
and legal issues, discussed in Section 6.3), or, for private clouds,
by the customer organization.

Compared with scientific data centers, clouds offer economies
of scale and the ability to adjust to workload variations. They have
attracted wide interest, going beyond the scientific community.

4.2. Sample cloud vendors

We now provide sample data points—gleaned from company
announcements, blogs, and other sources—about current cloud
capabilities and the directions cloud computing seems to be
headed. Of course, the landscape of offerings is likely to change
rapidly. Clouds are offered externally, or used internally, by the
following:

� Internet companies: These may offer space for rent on clouds they
run to support their normal operations or create new clouds for
customer use.
s Amazon, the current leader, sells virtual servers on its cloud

(EC2) [22], along with simple message queuing (SQS) [22],
file space (Simple Storage Service—S3 [23]), an n-tuple store
(SimpleDB) [24], an announced UNIX file system, and several
other services [25]. These support commonly used virtual
machines (e.g., Linux, Windows), can run many popular soft-
ware products (e.g., databases, though performance needs
deeper investigation), and present an idiosyncratic interface
for storage and management.

s Other Internet companies such as Google [26], Yahoo! [27],
and Microsoft MSN [28] already use clouds to support their
own operations [29], including extensive parallelism. Some
of their publically available cloud applications (e.g., search,
gmail) were written to match their own clouds’ interfaces
(e.g., Google’s cloud facilitates parallelism). Multiple such
interfaces are expected. IBM and other major vendors are
expected to offer Amazon-like infrastructure capabilities,
together with enterprise-quality management, security, and
robustness.
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� Enterprise-internal clouds: Many computer companies are
expected to help large enterprises set up their own clouds, inter-
nal to their own firewalls. Such an arrangement may alleviate
worries about control and liability (e.g., requirements of the Sar-
banes-Oxley law), but will not help facilitate cross-institutional
data sharing. The US Department of Defense has contracted to
create a private cloud that follows military security practices
[30]; advocates tout improvements in speed of procurement.
Hybrid clouds may soon federate a public cloud with a private
cloud that hosts more sensitive data.

� Small players: Several relatively small companies host clouds
already, as well as help enterprises acquire their own clouds.
For example, 3Tera claims to provide many management ser-
vices absent in Amazon and to already host MySQL comfortably
[31].

� Application providers: Rather than running their own server
farms, these companies and consortia provide versions of their
products that run on clouds. DBMSs2 now available on the cloud
include Oracle, DB2, Vertica, and MySQL. On the other hand, the
robust, distributed S3 storage poses problems for DBMS capabili-
ties [32]. For parallel computing, there is Apache’s Hadoop, an
open source analog of Google’s MapReduce parallelization facility.
This facility allows one to easily deploy a highly parallel biomed-
ical research service such as BLAST [16].

The cloud vendor’s business proposition is that, as a service pro-
vider (e.g., Google, Microsoft, Amazon, IBM, or a smaller player),
they can buy, power, manage, and repair a massive array of rather
uniform servers in a large warehouse, at a much lower unit cost
than can a single university, or consortium that spans geographi-
cally distributed laboratories.

Our specimen cost analysis below shows that this cost proposi-
tion is very plausible. Current prices for resources on commercial
clouds are very attractive for some applications, and our calcula-
tions suggest that these prices are based on real low costs, not mar-
keting ploys. Armbrust et al. [21] and Hamilton [33] suggest even
larger savings. The technical strengths and emerging competition
suggest that these favorable trends will continue [34]. Nonetheless,
there are applications where today’s clouds are more costly; e.g.,
Amazon charges heavily for moving data on and off the cloud,
and if inactive users remain connected, continues to charge for
their virtual machines.

The choice is not binary. An institutional data center exhibits
some cloud characteristics (e.g., virtualization, services on demand,
collocated servers) that may sometimes be an attractive alternative
to laboratory-based computing, especially when data is not shared
with outsiders. They may offer greater local knowledge and per-
haps lower communication costs and fewer legal complications.
One needs to compare costs and responsiveness for the particular
needs, to make a decision.
5. Evaluating the tradeoffs of using clouds

Advocates expect that clouds will soon become the default way
to host highly flexible shared data repositories. Still, each organiza-
tion must perform a comparison for its needs. This section de-
scribes areas where an organization needs to understand and
evaluate the changes that a cloud would bring them—dollar costs
to be considered (Section 5.1), and qualitative changes, such as
reducing delay in expanding a sharing arrangement (Section 5.2).
Security comparisons appear in Section 6,
business paradigm for biomedical information sharing. J Biomed Inform
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5.1. Capacity, often at low cost

This section examines three major cost drivers: system admin-
istration, idle capacity, and power usage and facilities. At each step,
we provide specimen cost figures for conventional systems, ex-
tracted from our organization and from web postings. The speci-
men analysis is a coarse approximation, because environments
vary greatly, e.g., electricity rates can differ by a factor of four with-
in the USA, and administrative loads per server differ enormously.
Our calculations assume very conservatively that research organi-
zations procure hardware, bandwidth, and facilities (buildings
and power) at the same price as cloud vendors. Others, with access
to more detailed data, have estimated factors of roughly 5–7 in fa-
vor of giant purchasers (such as cloud vendors) [33]. However, our
sample organizations did have relatively high administration costs;
others may do better. With these figures, we see a very large gap
(factor of four) in underlying costs between cloud-based and con-
ventional solutions. We conclude from this rough analysis that, de-
spite our plentiful margin of error, the fundamentals seem very
favorable as an alternative to new laboratory machines; well man-
aged data centers fall somewhere in the middle.

5.1.1. System administration
Low-level system administrative costs can be quite high for lab-

oratory systems scattered around an institution, often far greater
than raw hardware costs. A cloud lets an organization offload three
sorts of low-level administration. First, the cloud vendor is respon-
sible for system infrastructure (the lower levels of Fig. 1—hardware
maintenance, spare parts, adding new machines, and infrastructure
software). Second, once a backup policy is specified, the cloud ven-
dor executes it. Finally, an application can be installed once, and
becomes available to all authorized users.3 At higher levels, admin-
istrators deal with many application-support and upgrade issues, as
well as user management. Moving to a cloud should not greatly
change such work, so in keeping with our ‘‘relative” approach, we
do not include it.

In severe cases, the low-level administration costs can be greater
than the total cost for a cloud service. We describe several data points
for specimen low-level administration costs, assuming salary cost of
$100K per administrator staff year. Administration costs seem most
significant with either loose management, volatile requirements, or
hardware scattered around many rooms on a campus.

� Using anecdotal evidence about some MITRE systems, we esti-
mated that 1/3 of administrators’ time is spent on low-level
administration. The 2/3 spent on user management and local
applications is excluded from our cost estimates. This facility
supports prototyping projects, and their frequent reconfigura-
tions may account for a relatively high cost. Each administrator
handled about 30 processors, so low-level infrastructure and
software distribution work comes to 1.1% of a staff year per ser-
ver, or $1.1K per server year (assuming a three year server life-
span, low-level administration costs slightly more than the
hardware).

� One government organization has about 8 servers per adminis-
trator. Assuming the same 1/3 ratio of low-level administration,
this costs $3.75K per year per server.4

� The BIRN consortium suggests that backup will consume 10% of
an administrator per rack5, and that hardware maintenance will
cost extra. Software distribution is managed efficiently by the cen-
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3 Note that open source or user-developed applications may be hosted in this way.
Business models for licensing commercial applications (such as Oracle) on the cloud
are immature and evolving.

4 The organization is rolling out a new offering, which should be more efficient.
5 http://www.nbirn.net/cyberinfrastructure/acquire_rack.shtm (downloaded on 7/

15/08).
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tral staff across dozens of homogeneous racks, and costs little (a
multiprocessor rack, switching, and cabling may come to $30K,
while just the backup component of low-level administration over
a three year life matches this figure). Our cost estimate is conser-
vative, omitting several costs that were not publicly reported—
power, hardware setup and maintenance, and negotiating institu-
tional firewall issues. We estimate administrative costs as being at
least equal to the purchase cost of a server.

For some laboratories, our estimates of current practice may be
pessimistic. Hamilton [35] estimates 140 servers per administrator
for moderate scale institutional data centers (much less than hard-
ware costs). There are also qualitative advantages to local staff,
who understand people, practices, and priorities. However, institu-
tional centers still represent a loss of control by the laboratory.
Also, for an organization experiencing high costs, advice to get bet-
ter management and more skillful staff in the lab is hard to follow.
Many labs may find it preferable to outsource to institutional data
centers or clouds, for more professional management.

5.1.2. Idle capacity
In conventional systems, system resource utilization is low,

estimated at 15–20% for data centers [36]; other estimates are low-
er. There are multiple causes for low utilization. Systems managers
tend to buy for near-peak and future loads, and thus do not use the
whole capacity all the time. Differences in work schedules and pro-
ject maturity will lead to peaks and valleys (the analysis in [21]
adds an extra charge for requests that were not served because
load exceeded capacity). In contrast, a cloud (or institutional data
center) smoothes these effects across many customers, and today
may attain 40% utilization [37], with higher values plausible in
clouds (e.g., as load sharing over time zones becomes more mature,
and exploiting more diverse user bases). One virtual server seems
likely to do the work of at least 2.5 typically-utilized servers. We
expect similar figures for bandwidth utilization. For storage, the
utilization savings will be less dramatic—data must be stored even
when not in use.

5.1.3. Power usage and facilities
Server power is expensive, and overhead power consumption is

assessed to be at least comparable to what the servers themselves
consume [38]. Together, they at least equal server purchase costs,
for typical servers today. Cloud vendors can do much better than
the typical laboratory, or even institutional data center, based on
better management of voltage conversions, cooler climates and
better cooling, and lower electricity rates (cloud vendors tend to
cluster near hydropower). They also often locate where real estate
is cheap.

5.1.4. Specimen cost comparison
We now give a specimen analysis of the cost of supporting a

biomedical application on Amazon web services. Echoing many
others, we conclude that cloud computing is already very cost-
effective in some settings. When one reaches an acquisition stage,
one needs to redo the cost calculation for the specific system being
built, and with current cost quotes from cloud vendors, and then
bring in qualitative and security issues.

Consider a grid that includes 23 TB of data and 60 processors,
with uploads of 40 GB per month and downloads of 13GB per
month—roughly comparable to the size of the system managed
by BIRN. A conventional system needs 60 processors that cost
approximately $1K per year, or $60K total, in early 2009. Storage
for 60TB costs about $6K, or only $2K per year. Assuming that
one administrator can manage 30 machines (and that one third
of the administrator’s time is spent on low-level maintenance),
there is an additional maintenance cost of $66K per year. The
business paradigm for biomedical information sharing. J Biomed Inform
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purchase and administration cost of a conventional system is
$128K each year billed to the laboratory, plus an additional
�$60K in energy costs (though these may be hidden in institu-
tional overhead) and undetermined costs for space and network
bandwidth.

Of course, many of the processors are frequently idle; assuming
16% utilization (vs. 40% for a cloud), only 24 processors would need
to be rented from a cloud vendor. Using Amazon’s online EC2 cal-
culator [22] in May 2009, a cloud-based system would cost $3.4K
per month for data storage and bandwidth (uploads and down-
loads). The processors cost an additional $1.7K per month. Thus,
the cost of using the cloud is $61K each year, which includes hard-
ware, power, operating system, basic security and infrastructure
administration, backup of the persistent store, and application
replication.

Though this cost comparison is an estimate, it demonstrates
that for new systems, clouds’ rental costs look quite attractive.
Even omitting power costs, our specimen estimate shows clouds
to be superior by roughly a factor of 3 for providing infrastructure
and replicating applications.

5.2. Qualitative benefits

This section addresses ways in which a system built using
clouds can reduce the burden on laboratory managers, be more
scalable and resilient (so users get better service), and make it eas-
ier to share data and tools.

5.2.1. Less to manage
Today, managers of laboratories or biomedical consortia need to

manage physical systems, capital expenditures, and acquisitions of
multiple kinds of hardware and software. This task can become sig-
nificantly simpler when hardware and network acquisition, main-
tenance, and management are offloaded to the clouds as illustrated
in Fig. 2. For physical security (protecting your disks from theft),
outages, or disaster recovery, the laboratory or consortium must
specify a level of service and a vendor capable of implementing it
(vendors, like in house staff, must be chosen carefully, and are fal-
lible). The net effect, subject to caveats in Section 6, is that the sys-
tems burden on principal investigators or consortium managers is
reduced.

Chargeback policies are a complex area, and we will not exam-
ine them in depth. Whatever policy is chosen, explicit charges per
use make it more transparent, but managers may wish to impose
limits.

Laboratories still have the right, and the requirement, to man-
age who accesses their virtual machines. To do so, they may em-
ploy firewall, authentication and authorization systems from the
cloud vendor, or, for greater sophistication, from third parties (as
applications on their virtual servers and virtual firewalls).

5.2.2. Scalability
When the workload experiences significant change, a cloud can

add or release resources in minutes. A cloud can provide extra pro-
cessing resources during the peaks (within limits) when the trans-
action load spikes (such as for access to Swine Flu clinical data).
One can improve response time on large, parallelizable tasks by
applying many servers, as opposed to running a single laboratory
server for hours. Further, one pays for resources actually used,
not for capacity.

However, some users have had unpleasant surprises about costs
associated with unexpectedly heavy use of cloud resources ‘‘on
demand”. With conventional hardware, one knows how much
money is committed, but programs may spend unexpectedly large
sums of money if I/O volume is unexpectedly high, or users silently
fail to release unneeded servers and storage. These effects are dif-
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ficult to monitor. We expect some cloud vendors to offer suitable
throttling services soon; until then, administrators need to be
vigilant.

5.2.3. Superior resiliency
Cloud vendors store backups of users’ applications and data in

multiple geographical locations. If one of the locations fails, others
can take over. One can have failover among machines at one loca-
tion, or even between locations (for disaster recovery).

A laboratory that implements its own fault tolerance and disas-
ter recovery requires management effort (mentioned above); addi-
tional software, hardware, and space beyond those included in the
‘‘conventional” costs in Section 5.1; and additional risks (users who
manage recovery poorly may lose all their data, e.g., in a flood). A
cloud potentially reduces all three.6 Even for a laboratory that opts
to retain its own servers, a cloud can still be useful for archiving
and remote data backup.

5.2.4. Homogeneity
A consortium system implemented in a cloud can give all

authorized investigators access to the same tools, such as workflow
tools to process images taken from biomedical scanners. Today,
peer to peer sharing without consortium managers is unlikely to
provide all relevant tools, and keep them up to date. If the grid is
implemented over a heterogeneous environment, the consortium
cannot easily manage tools that run natively over the different
operating systems. Alternatively, while a consortium grid built
over homogeneous lab-hosted resources can distribute and man-
age tools effectively, the dedicated system increases cost and will
deter translational science collaborations that need only occasional
access.

5.2.5. Fewer issues to negotiate with institutional authorities
We now reconsider the concerns raised in Section 3.4 from the

perspective of cloud computing. The institution’s concern that non-
compliant products in a lab may increase the cost of institutional
support is likely to disappear if the products are instead part of
an externally hosted consortium service, so no negotiations will
be needed.

Negotiations about protecting other systems in the lab or the
institution are likely to be significantly reduced. When consortium
resources are hosted inside the institution, traffic involving those
resources may put other systems at the institution at risk. The
lab may need to negotiate exceptions from the institution’s firewall
to allow the traffic in, and to negotiate increases in institutional
bandwidth. Unfortunately, if the lab gets its way, the institution’s
firewall protections are weakened and congestion may result. If
the lab cannot negotiate the changes, data sharing is blocked.
Either way, both researchers and institutions must devote substan-
tial time and skill [12], [39], and [40], and collaborative research
must wait.

Cloud-hosted resources cut the Gordian knot by keeping the
new, potentially malicious traffic outside the institution, benefiting
both the institution and the laboratory, reducing both risk and
negotiations. In the same vein, no negotiation is needed if compu-
tations on the cloud wish to employ other services available exter-
nally, e.g., data mining or BLAST. Yet another positive scenario
results if the lab hosts computations on external researchers’ sen-
sitive data. In fact, one may wish to reorganize workflows to min-
imize traffic impinging on the various institutions.

Hosting data externally avoids the risk that external requests
will place a heavy load on the institution’s network. There are
business paradigm for biomedical information sharing. J Biomed Inform
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two small countervailing factors. First, the laboratory needs some
bandwidth to post its data to the cloud. Also, if a laboratory needs
to perform extensive internal processing of the cloud-hosted data,
it may keep a local replicate to avoid transferring the data repeat-
edly. Fortunately, Post traffic requires only that the institution sup-
ply low priority bandwidth (batch is tolerable), and the storage
cost for replication is low (Section 5.1.4). Thus, cloud-hosted sys-
tems seem to require less negotiation of bandwidth.

One also needs to negotiate firewall policy changes just enough
to allow data and security information to be sent to the labora-
tory’s own virtual machine on the cloud. This opening seems much
narrower than allowing a variety of service calls from a variety of
partners. Again, the need for negotiation seems reduced.

A laboratory may then take advantage of a cloud to add collab-
orators more rapidly. New collaborators no longer require greater
internal processing resources, nor do they need to negotiate band-
width increases and firewall changes. As mentioned in Section 3.4,
the cloud does not remove a laboratory’s responsibility to manage
who can access what resources. Security policies and enforcement
software are a necessary part of the infrastructure and need atten-
tion from the laboratory, whether on conventional servers or in a
cloud.

Service level agreements tend to be more formal with a cloud,
unless a customer accepts the provider’s default. Thus, outsourcing
requires the customer to be more explicit about requirements, and
then to negotiate guarantees or choose among the provider’s offer-
ings. When systems staff understands the needs, a cheaper infor-
mal process might suffice. When problems arise, a laboratory
head has great leverage on her staff, but there may be limited ma-
chine and human resources to respond, and no explicit guarantees.

The remaining criterion was to ‘‘protect the laboratory’s data”.
Trustworthiness of the sharing mechanism on the cloud raises
the same top level questions (see Section 3.4) as for a new research
collaborator, e.g., how well the recipient protects against hackers.
However, institutions may be reluctant to approve hosting in
clouds until vendors have accumulated a substantial history,
showing no more breaches than ordinary systems. Hence negotia-
tions will increase. The next section further explores data security.
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R6. Security of data stored in a cloud

Security is one of the major concerns when laboratories con-
sider moving sensitive information to machines they do not own
[41]. This section examines the security impact of outsourcing a
laboratory’s data to either a data center, to a cloud, or to a conven-
tional managed consortium grid over lab-hosted systems. We
emphasize confidentiality, because that seems the greatest barrier
to sharing arrangements; however, some comments also apply to
other aspects of security (integrity, denial of service). We find that
some risks decrease and some increase, with neither side of the
argument overwhelming the other. Thus, each laboratory or con-
sortium will need to assess security for its environment, while also
considering the tradeoffs in the previous section.

Our security analysis considers two scenarios that differ in
terms of how much is to be outsourced: (1) Just the data and appli-
cations intended for external access (while maintaining unshared
data locally); or (2) All of the data and applications on the lab ser-
ver. Intermediate points and redundant hosting are possible, but
not discussed.

As the number of partners and shared resources increase, one
will face extra labor to manage permissions. There is also extra risk
of inappropriate data release, due to having more users who may
misunderstand policy or be careless or malicious. However, this in-
crease is not greatly affected by where the laboratory resources are
hosted. For example, when an authorized recipient sells patient
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health records to a tabloid, the problem was not in the technical
system. Hence, as in Section 3.2, we omit issues that seem not to
vary with hosting.

We decompose the analysis into several parts. Section 6.1 ad-
dresses several operational issues. Section 6.2 deals with external
intrusions by hackers, a risk that concerns many decision makers
but is perhaps not increased as greatly as some think. Section 6.3
examines nontechnical risks of outsourcing from a laboratory,
and Section 6.4 summarizes security issues (see also [42]).

6.1. Security management

First, a laboratory that is serious about security will acquire
security management software (commercial or open source). Thus,
one must examine whether one’s chosen security software actually
runs well on the cloud, including potential technical or licensing
difficulties. Also, one may need additional approvals to place sen-
sitive security metadata (e.g., user identities and relationships)
on clouds. On the other hand, outside the institutional firewall, it
may be easier to provide access from other institutions. Finally, if
requirements are rudimentary, e.g., that all consortium members
can share all posted data, they may be able to use cloud vendors’
current offerings.

Second, system administrators often possess excessive privi-
leges—a significant risk. Compared with laboratories, practices in
virtualized data centers (institutional or cloud) are likely to have
greater formality, separating the administration of different as-
pects of a system. In particular, while laboratory administrators
and security staff may be allowed to read and change the data they
administer, a cloud vendor will tend to treat each customer’s vir-
tual machine as a private preserve. On the other hand, institutional
and especially cloud administrators will have more difficulty dis-
tinguishing illegitimate access or understanding laboratory priori-
ties—outsourcing can break a valuable human network.

Third, physical security protects against threats such as stealing
disks or adding tapping devices (attached or remote) to the hard-
ware and networks hosting the biomedical data. On balance, cloud
and institutional data centers seem better on this criterion. Data
centers are generally quite secure physically, while laboratories’
security levels differ drastically. Also, unencrypted CDs and laptops
have led to high profile breaches. Policy statements have prevented
personnel from creating unencrypted copies, and software to do so
might be intrusive. When data is available on the cloud, there is
less impetus for lab personnel to travel with their own copy or to
share by shipping a CD. Also, while a large data center (institu-
tional or cloud) is a richer target, targeted attacks within the cloud
against a specific laboratory’s database are difficult, since it is hard
to determine which server or disk holds the data. On the other
hand, if one physical machine in the data center is penetrated,
eventually it may host something the attacker wants.

6.2. Risks due to hackers

Wherever a laboratory stores its data, internally or externally,
outside hackers pose a threat. This section considers how the hack-
er risk and security management labor change if one moves data
from a laboratory to a cloud or to an institution’s central data
center.

The laboratory will need to decide what hacker risks are accept-
able, in return for the other promised advantages. For example,
neither clouds nor institutional data centers are as hacker-proof
as a laboratory server without Internet access, which does not need
to share biomedical data with outside users.

A cloud is shared among many users, at both the macro level
(open to many users) and a micro level (multiple virtual resources
on each physical one). An institutional data center is also shared,
business paradigm for biomedical information sharing. J Biomed Inform
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though on a smaller scale. Section 6.2.1 considers risks due to such
sharing (called multi-tenancy). Section 6.2.2 considers advantages
when one splits among virtual machines.
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6.2.1. Multi-tenancy risks
Virtual machines share physical resources, relying on a software

hypervisor to keep them appropriately separate (multi-tenancy can
also arise at the application level, and the application provides the
separation among users). The cloud thus provides less separation
than when one has separate servers in a laboratory.

Like all complex software, hypervisors can be hacked, after
which an attacker can directly access the shared physical CPU, net-
work, or storage. He then can deny service, destroy data, or steal
confidential data. Researchers have demonstrated many ways to
hack a hypervisor, and virtualization vendors have provided exten-
sive analyses of ways to reduce the risk [43,44]. As of December
2008, no malicious exploits had been reported [45].

A laboratory machine has the significant advantage that an at-
tacker has little legitimate access. An institutional data center or
private cloud makes its capability available to many hundred
users; a public cloud makes it available to anyone with a credit
card, with the ability to run arbitrary programs (the need to ar-
range payment is still a barrier against automated, broadcast
attacks).

To further assess the risk, note that targeted attacks seeking
specific lab’s biomedical data seem the most dangerous. Fortu-
nately, it may be difficult for attackers to know which physical ma-
chine to attack, if they are targeting a specific lab’s data. To make it
more difficult for an attack that subverts one of a lab’s systems to
find the others, one might wish to scatter them to different phys-
ical servers, if the virtualization system permits.

A virtual data center does have some countervailing defenses. It
is likely to have a professional security staff, unlike a laboratory.
Where a cloud provides an application framework with limited
interfaces (e.g., just web service calls), it is easier to secure against
outside attacks. For comparison, laboratories’ conventional infra-
structure—operating systems, DBMSs, and web servers—already
have many, many known vulnerabilities. The key, then, is to esti-
mate the incremental risk.
978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003
U
N

C
O

R
R6.2.2. Protections at virtual machine boundaries

Security professionals traditionally recommend partitioning a
system as a means of protection. One can put a firewall on any lab-
oratory server, wherever the server is hosted. The ease of creating
new virtual machines provides ways to improve the security of vir-
tually-hosted data by creating new boundaries. In this section, we
examine the utility of partitioning resources into separate areas,
conferring protections against those attacks that do not break the
hypervisor to intrude into other virtual machines.

Consider that if two data items are on the same system, then
that system must be accessible to anyone who accesses either
item. For sake of example, suppose item D1 is to be shared with se-
lected collaborators, and D2 is to be made publicly accessible. Now
suppose we place D1 and D2 on the laboratory’s server. Due to our
desire to share, especially for D2, we have vastly increased the set
of people who can access the laboratory server. There is increased
risk for all the other data on that server. Avoiding this phenomenon
may be the greatest security benefit of hosting in a cloud.

If instead one hosted the shared resources on a cloud, there is
less risk to the laboratory’s other resources. Next, one might be
able to partition the resources so that D1 and D2 reside on separate
virtual machines, each with a more restrictive firewall and fewer
user accounts. Now an attacker who reaches D2 does not threaten
D1. Further, the VM in the cloud is not acting as a general purpose
machine, so one can create a firewall that rejects unneeded types
Please cite this article in press as: Rosenthal A et al. Cloud computing: A new
(2009), doi:10.1016/j.jbi.2009.08.014
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of access (ports, protocols, services, etc.); it need only provide for
the intended sharing arrangements.

An intermediate approach is to outsource to a new virtual ma-
chine in your institution’s virtualized data center, proceeding as
above. Now the laboratory obtains the benefits, but the institu-
tion’s risks actually increase, as more users have accounts on its
data center virtual machines. Also, the institution’s firewall may
cause difficulties (as discussed in Section 3.4) while providing only
modest protection—that firewall may allow traffic for often-hacked
applications (e.g., email) and there are thousands of potentially
malicious or playful employees or students inside. The institutional
firewall’s net security effect can even be negative if the illusion of
protection encourages laboratories to neglect their own security
measures.

6.3. Nontechnical outsourcing risks

To round out the picture, we now describe nontechnical risks to
cloud-based systems, and the risks’ common sense ameliorations.
The ideas here constitute conventional wisdom, not novelty, but
are important to consider. Further anecdotes and in depth discus-
sions appear in [42]. Our aim is to show organizations nontechnical
threats they need to address, and that these threats can be
overcome.

When a laboratory outsources hosting, it (or its consortium)
still ‘‘owns” its virtual machines and the resources at the cloud
or data center. Permissions, resource limits, and priorities must
be administered by lab or consortium administrators who can rec-
ognize legitimate usage, and have a human network that enables
rapid resolution of ambiguities. Still, outsourcing implies loss of
control in several ways.

When the cloud provider is a separate company, behavior may
become very adversarial. Agreements must be more carefully for-
malized, especially with respect to business disputes and closure.
Until the legal environment matures and standard practices
emerge, experience with commercial software provides some use-
ful analogies and practices. First, as a primary protection, choose a
cloud provider with a strong reputation and business, not an un-
known startup (except perhaps for short term usage). Beyond that,
choose suppliers whose contract language suits your needs, in
areas such as how they may use your data and request logs, protec-
tion from them freezing your data and applications in a business
dispute, and a structure that lets them guarantee advance warning
before cutting off service (even if they are sued by their suppliers,
or go bankrupt). Also, require your provider to provide sufficient
documentation so you can port your system to an alternative, if
the provider cannot meet their obligations, or if competitors be-
come more attractive.

Multi-tenancy causes several nontechnical risks, in addition to
the hacking vulnerabilities discussed earlier. First, it is not yet clear
whether the legal system prohibits law enforcers or litigants from
seizing a multi-tenant system (by analogy, an apartment building)
to punish one of the tenants. We also need to hope that spam filters
and other site-reputation services are extended so they can distin-
guish among tenants and blackball only specific ones that have
been alleged to engage in malfeasance.

Next, laboratories may also need to restrict where the cloud will
physically host their data and applications. For example, they may
wish to avoid countries whose governments are intrusive or whose
intellectual property laws seem inadequate. Amazon and others
have begun providing such controls for their cloud environments.

Finally, academic researchers have argued that before hosting
sensitive data externally, one should encrypt it for fear that the
data will be stolen or modified by the cloud provider (as a business
strategy or rogue staff). The cost of doing so is high—strong encryp-
tion makes it difficult to index the data, multiplying access costs.
business paradigm for biomedical information sharing. J Biomed Inform

http://dx.doi.org/10.1016/j.jbi.2009.08.014


1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

10 A. Rosenthal et al. / Journal of Biomedical Informatics xxx (2009) xxx–xxx

YJBIN 1585 No. of Pages 12, Model 5G

4 September 2009
ARTICLE IN PRESS
Encryption resists some technical attacks (stealing files), but
attackers can still come in the front door, by subverting a legiti-
mate requestor or the access control system. The nontechnical rea-
sons for distrust seem exaggerated. We trust banks not to dip into
individual customers’ accounts. Analogously, if a cloud vendor
were found to be violating their customers’ data as a matter of cor-
porate policy, they would instantly lose their business. Their staff
may have individual miscreants, but the same is true of a univer-
sity, hospital, or consortium. Furthermore, the cloud vendor is
likely to have better monitoring in place to prevent such activity.
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6.4. Summarizing the security tradeoffs

Moving data to a cloud improves security for the systems that
remain inside a laboratory or institution. At a cloud, both data
and server backups can be arranged easily; if high availability is re-
quired (e.g., for 24/7 sensor data feeds), recovery to a second cloud
might be desired. The move also provides strong physical protec-
tion of the machines, and enables creation of separate virtual ma-
chines and firewalls for each independent laboratory application
(or honey pot). The cloud will also firmly separate system admin-
istration from data and application administration, and make avail-
able a security staff and tools. A virtualized institutional data
center will provide all but the first advantage, to some extent.
Disaster recovery becomes easier to manage (once one decides
how much protection to pay for).

On the other hand, remote administrators may understand less
of the local situation, and clouds present large attractive targets.
On a public cloud, any attacker with a credit card can establish
an account on some virtual machine in the cloud, to begin hacking
through the hypervisor, a risk that does not apply in conventional
systems. The contractual and legal issues become worse with a
cloud. Some leading vendors, e.g., Amazon, have not yet demon-
strated (or, to be fair, promised) high availability.

Neither approach seems uniformly superior, and experiences
are still sparse, but we can highlight a few observations. Risks need
to be assessed against the ‘‘background” risks: any Internet-con-
nected machine is vulnerable to many attacks, and authorized
recipients may fail to protect data. If a laboratory is not sharing
its data, replacing an internal server by one on a cloud seems to in-
crease the hacker risk to data confidentiality and integrity—the
threat of hypervisor attacks probably outweighs extra security
staff. However, if partners already access the laboratory machines,
then the benefits of good fences (Section 6.2.2) may outweigh the
cloud risks. Overall, the extra risks seem moderate, and may not
dominate the cost and convenience issues.
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The subsections below, respectively, consider what makes a
good target application for cloud computing, identify some poor
targets, and discuss difficulties in the transition process.
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U7.1. Good targets for near-term cloud initiatives

Clouds tends to be preferable when service demands are vari-
able or demand is unknown in advance, and where the cloud ven-
dor passes on large economies of scale in procuring servers, power,
and space, and in supplying specialized staff and tools. However,
even with favorable winds, one also needs to consider issues of
technology insertion. Informed by the above analyses, we identify
some promising areas for initial exploitation of cloud technology
for bioinformatics (these recommendations assume the conclusion
of Section 6, i.e., that security should not be a show-stopper). The
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following factors make a project an attractive candidate for cloud
computing in the near term:

� The project has high costs for computing, administration, space,
and electric power in its current or envisioned state.

� The members wish to share with outsiders, but find that institu-
tional policies block outsiders’ access to their local system.

� The project requires highly variable amounts of processing and
storage resources. For example, some workloads spike when
new data arrives; other sites may suddenly become highly pop-
ular (e.g., in the event of an epidemic). In addition, a system that
is being reengineered may need extra capacity during develop-
ment and testing, and later to run the existing and the replace-
ment system simultaneously.

� The system requires off-site backups for data and for processing.
� The applications have easily parallelized code (contrasting with

Section 7.2).
� One wants long-term repositories to outlive the laboratory that

now hosts the data.
E
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General software management criteria apply as well. For exam-
ple, it is easier to introduce new technology (e.g., a cloud) packaged
within a new capability that benefits the biomedical community,
such as more secure and rapid data sharing across a consortium.
In contrast, users and business managers resist technology-driven
replacements of systems they see as running smoothly.

Informed by the above analyses, we identify some promising
areas for initial exploitation of cloud technology for bioinformatics.
With new technologies, one usually wants to implement new capa-
bilities or solve major existing difficulties. If a system already
serves its users satisfactorily and is not being reengineered, the
net payoff (after cost of change) will tend to be lower, while resis-
tance may be high. Therefore, below we look at new functionality.

Archiving, backup, and fault tolerance: Whether data are private
to a laboratory or shared in a consortium, they need long-term
archiving (possibly outliving project funding or the Principal Inves-
tigator’s career), and protection from permanent failure (e.g., disk
crashes) and natural disasters. Even in more routine circumstances,
important resources such as catalogs should be able to run in two
places, to avoid temporary outages.

Sharing data and tools across a consortium: As discussed above,
clouds seem able to support cost-effective storage, access, and tool
execution, with suitable enforcement of access policies, and easier
management.

High performance computing (HPC): Some biomedical applica-
tions require extensive computation, often with uneven workloads
(e.g., submitting a batch of images). Good candidates for clouds in-
clude applications with many small, independent requests where
cost is a major driver (‘‘capacity computing”), plus some large prob-
lems where one wants faster response (‘‘capability computing”).
For example, distributed BLAST [1]—and in general, computations
where the Hadoop model is appropriate (significant data parallel-
ism and reduction phases with relatively few stages)—are candi-
dates for a cloud. Also, even if the raw computation is unsuitable,
one might wish to use a cloud for sharing results, subject to the
usual cost and security tradeoffs.
7.2. Less suitable targets

For comparison with the highly suitable targets above, this sec-
tion identifies criteria that make a system a poor candidate for
transition to cloud. The last items refer to the environment rather
than the system itself.

First, some HPC applications (e.g., protein folding and high-end
image processing) exploit detailed physical characteristics of the
business paradigm for biomedical information sharing. J Biomed Inform
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underlying hardware and require substantial data movement
among processors. In a cloud, the physical characteristics of the
hardware are not revealed by the vendor. HPC applications that
rely on such detailed knowledge are therefore likely to perform
poorly.

Second, if one gets unfavorable results from the cost comparison
(e.g., with Amazon today, due to heavy network traffic) or the secu-
rity comparison (e.g., your local staff is highly skilled and trustwor-
thy, and you expect determined attacks on the virtualization
software), then clouds are unsuitable. Also, the legal barriers to
allowing a third party to manage the data may be insuperable in
some situations, at least for now. For very large users, such as a gov-
ernment agency, a private cloud may be an attractive alternative.

Third, if communications fail, the cloud becomes unavailable.
For applications that must be highly available and that need only
local data, a local solution seems better.

Next, cloud advocates may oversell, promoting a vision of per-
fectly shared data, workflows and repositories, displays, reports,
tools, etc. Merely changing how data is hosted will not improve inte-
gration among your databases, create new applications, or make
investigators (who retain ultimate control) more willing to share
data. Achieving all the promised features will take considerable time
and management resources and is therefore high-risk. It may be wi-
ser to begin with simple data sharing using off the shelf tools.

Finally, existing projects will have inertia, and will require a
major cost advantage to motivate a transition to a cloud. Costs al-
ready incurred, ranging from hardware purchase to building a staff,
will not be recovered.

7.3. Transition obstacles

The first big obstacle is the discomfort of stakeholders (scien-
tists and institutional review boards) as two changes are proposed
simultaneously: allowing more external sharing and using a cloud
as the host. A biomedical researcher does not surrender control of
his data by placing them in a cloud—but managing this control will
require considerable work, as described in Section 5. Nevertheless,
these changes are likely to intertwine in stakeholders’ minds, and
the separation may need to be explained repeatedly. Other techni-
cal obstacles include:

� Software portability: Before one switches to a new environment,
one needs to ensure that critical applications (biomedical and
security) will continue to run, despite technical and licensing
issues. This is part of traditional transition planning and cannot
be ignored when moving to a cloud. For example, some cloud
offerings offer a non-standard programming environment or
lack persistent storage. While applications designed natively
for a cloud may not have difficulties, existing ones may. Thus,
most laboratories and consortia should seek a vendor who offers
a close match to conventional UNIX, Linux, or Windows servers.

� Cloud unfamiliarity and immaturity: Virtualized data centers,
including clouds, require additional skills to maintain security.
For example, when virtualizing existing servers, one must not
deploy sensitive data on the same virtual machine as widely-
accessible data [44]. The products are immature, have experi-
enced outages, and lack some desirable capabilities (e.g., as of
mid-2008, Amazon’s S3 product does not support firewall con-
figuration based on IP address). However, cloud offerings are
improving rapidly; for example, GoGrid claims very high reli-
ability [34]. One will need to identify one’s needs and evaluate
vendors’ track records.

Clouds simplify some management tasks (load projections and
capital budgeting) but do require some new management practices:
Please cite this article in press as: Rosenthal A et al. Cloud computing: A new
(2009), doi:10.1016/j.jbi.2009.08.014
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� Transitioning to a cloud will change the ways in which biomedical
systems are built, managed, and funded: This change may require
that project or consortium PIs expand their skills in contracting
effectively, including service-level guarantees and help facilities
for developers.

� The models used for costing computational acquisitions need to be
changed, to better reflect true costs: When doing cost compari-
sons, PIs will need to assess the cost of hosting a system in a
cloud, and also to expand conventional systems’ cost analysis
to include oft-omitted costs such as systems administration
and facilities (space, electric power, and cooling equipment).
Institution-level accounting will also need to change, to account
for facilities costs. However, the move to clouds need not await
all these developments—in many settings, the cost benefits are
sufficient that even a rough analysis will point toward clouds.
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O8. Conclusion

We introduced cloud architectures for biomedical informati-
cists who may wish to build applications using a cloud, and for
investigators who want to share data with collaborators. The pre-
vious sections demonstrated that hosting on clouds sometimes of-
fers large financial benefits, significant flexibility and ease-of-
administration benefits, and comparable security.

While not definitive, the case seems strong enough to justify
management attention from consortium leads, laboratory direc-
tors, and university CIOs. It seems desirable to begin funding pilot
efforts in which organizations examine the most current cloud
offerings. Decision criteria need to go beyond straightforward dol-
lar costs, to include risk reduction (e.g., of data loss or service
unavailability), increased flexibility and scalability, and protection
of an institution’s other systems. We reiterate that the biomedical
organization retains the right to set and enforce its own sharing
policy.

Many observers believe that clouds represent the next genera-
tion of server computing. While one must be cautious with matur-
ing technologies, we expect that clouds will soon be suitable for
many biomedical research needs.

Acknowledgments

The paper has benefited greatly from the reviewers’ suggestions,
which were unusually detailed and insightful. A portion of this
work was supported by the National Center for Research Resources
of the National Institutes of Health, under Contract No. TIRNO-99-
D-00005 Task Order No. 20188.

References

[1] Schatz MC. BlastReduce: high performance short read mapping with MapReduce.
Available at: http://www.cbcb.umd.edu/software/blastreduce/ and http://www.
umiacs.umd.edu/~jimmylin/cloud-computing/speakers/project-presentations.
html.

[2] Markram H. Industrializing neuroscience. Nature 2007;445:160–1.
[3] Anderson NR, Lee ES, Brockenbrough JS, Minie ME, Fuller S, Brinkley J, et al.

Issues in biomedical research data management and analysis: needs and
barriers. JAMIA 2007;14:478–88.

[4] Special issue on life science grids for biomedicine and bioinformatics. Future
Gener Comput Syst 2007:27.

[5] Szolovits P. What Is a Grid? JAMIA 2007;14:386.
[6] Ross JW, Westerman G. Preparing for utility computing: The role of IT

architecture and relationship management. IBM Syst J 2004;43:5–19.
[7] Krasnogor N, Shah A, Barthel D, Lukasiak P, Blazewicz J. Web and grid

technologies in bioinformatics, computational, and systems biology: a review.
Curr Bioinf 2008;3:10–31.

[8] Special issue on grid technology in biomedical research. IEEE Trans Inf Technol
Biomed 2008;12.

[9] Buyya R, Ranjan R, guest editors. Special issue on federated resource
management in grid and cloud computing systems. International journal of
business paradigm for biomedical information sharing. J Biomed Inform

http://www.cbcb.umd.edu/software/blastreduce/
http://www.umiacs.umd.edu/~jimmylin/cloud-computing/speakers/project-presentations.html
http://www.umiacs.umd.edu/~jimmylin/cloud-computing/speakers/project-presentations.html
http://www.umiacs.umd.edu/~jimmylin/cloud-computing/speakers/project-presentations.html
http://dx.doi.org/10.1016/j.jbi.2009.08.014


T

1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299

1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346

1347

12 A. Rosenthal et al. / Journal of Biomedical Informatics xxx (2009) xxx–xxx

YJBIN 1585 No. of Pages 12, Model 5G

4 September 2009
ARTICLE IN PRESS
C

grid computing: theory, methods, and applications (FGCS), Elsevier Press;
2009.

[10] Vijay SP, Baker I, Chapman J, Elmer S, Larson SM, Rhee YM, et al. Atomistic
protein folding simulations on the submillisecond time scale using worldwide
distributed computing. Biopolymers 2002;68:91–109.

[11] Anderson DP, Cobb J, Korpela E, Lebofsky M, Werthimer D. SETI@home: an
experiment in public-resource computing. Comm ACM 2002;45:56–61.

[12] Krefting D. Medigrid: towards a user friendly secured grid infrastructure.
Future Gener Comput Syst 2009;25:326–36.

[13] Foster I, Kesselman C. Globus: a metacomputing infrastructure toolkit. Int J
Supercomput Appl 1998;11:115–29.

[14] Moore R, Sheau-Yen C, Schroeder W, Rajasekar A, Wan M, Jagatheesan A.
Production storage resource broker data grids. Second IEEE international
conference on e-science and grid computing, Dec., 2006. p. 147.

[15] Moore RW, Rajasekar A, Wan M. Data grids, digital libraries, and persistent
archives: an integrated approach to sharing, publishing, and archiving data.
Proc. IEEE 2005;93:578–88.

[16] Altschul SF, Gish W, Miller W. Basic local alignment search tool. J. Mol. Biol.
1990;215:403–10.

[17] Sharma A, Pan T, Cambazoglu BB, Gurcan M, Kurc T, Saltz J. VirtualPACS – a
federating gateway to access remote image data resources over the grid. J Digit
Imaging 2009;22:1–10.

[18] BIRN – Biomedical Research Network. Available at: http://www.nbirn.net/.
[19] Oster S. CaGrid 1.0: an enterprise grid infrastructure for biomedical research.

JAMIA 2008;15:138–49.
[20] Shah A, Barthell D, Lukasiak P, Blacewicz J, Krasnogor N. Web & grid

technologies in bioinformatics, computational biology and systems biology:
a review. Curr Bioinform 2008;3:10–31.

[21] Armbrust M, Fox A, Griffith R, Joseph AD, Katz RH, Konwinski A, et al. Above
the clouds: a berkeley view of cloud computing. EECS Department, University
of California, Berkeley Technical Report No. UCB/EECS-2009-28.

[22] Amazon Web Services Simple Monthly Calculator. Available at: http://
calculator.s3.amazonaws.com/calc5.html.

[23] Amazon Simple Queuing Service (SQS). Available at: http://www.amazon.com/
Simple-Queue-Service-home-page/b?node=13584001.

[24] Amazon SimpleDB. Available at: http://www.amazon.com/SimpleDB-AWS-
Service-Pricing/b?node=342335011.

[25] Amazon Web services. Available at: http://www.amazon.com/Web-Services-
AWS-home-page/b?node=15763381.

[26] Google App Engine. Available at: http://code.google.com/appengine/.
[27] Yahoo! and computational research laboratories collaborate on cloud

computing research. Available at: http://www.901am.com/2008/yahoo-and-
computational-research-laboratories-collaborate-on-cloud-computing-resea-
rch.html.

[28] Parastatidis S. The Web as the Platform for Research, Grid Computing
Environments (GCE) workshop, SuperComputing 07. Available at: http://
savas.parastatidis.name/web/talks/2007.11.12%20-%20SC07%20-%20Grid%20-
Computing%20Environments%20(GCE)%20workshop%20-%20The%20Web%20-
as%20the%20Platform%20for%20Research.pdf.
U
N

C
O

R
R

E

Please cite this article in press as: Rosenthal A et al. Cloud computing: A new
(2009), doi:10.1016/j.jbi.2009.08.014
E
D

P
R

O
O

F

[29] Iskold A. Reaching for the sky through the compute clouds. Available at: http://
www.readwriteweb.com/archives/
reaching_for_the_sky_through_compute_clouds.php.

[30] Brygider, J. DISA’s race to the cloud, defense information services agency.
Available at: http://www.disa.mil/news/stories/cloud_computing.html.

[31] 3tera. Available at: http://www.3tera.com/.
[32] Brantner M, Florescu D, Graf D, Kossman D, Kraska T. Building a database on

S3. In: ACM SIGMOD International conference on management of data. New
York: ACM; 2008. p. 251–264.

[33] Hamilton J. Cost of power in large-scale data centers [online]. November 2008.
Available at: http://perspectives.mvdirona.com/2008/11/28/CostOfPowerIn-
LargeScaleDataCenters.aspx.

[34] Brodkin J. 10 cloud computing companies to watch. Network World, May 18,
2009. Available at: http://www.networkworld.com/supp/2009/ndc3/051809-
cloud-companies-to-
watch.html?netht=rn_051809&nladname=051809dailynewspmal.

[35] Hamilton J. Internet-scale service efficiency. In: Large-Scale Distributed
Systems and Middleware (LADIS) Workshop, September 2008. Available at:
http://mvdirona.com/jrh/TalksAndPapers/JamesRH_Ladis2008.pdf.

[36] Evdemon J, Liptaak C. Internet Scale Computing: MSDN Blog, Oct 17, 2007.
Available at: http://blogs.msdn.com/jevdemon/archive/2007/10/24/internet-
scale-computing.aspx.

[37] Vogels W. Beyond Server Consolidation. Queue 2008;6:20–26. Available at:
http://portal.acm.org/citation.cfm?id=1348590&coll=
Portal&dl=ACM&CFID=78225754&CFTOKEN=19192256&ret=1#Fulltext.

[38] Belady CL. In the data center, power and cooling costs more than the IT
equipment it supports. Electronics Cooling 2007. Available at: http://
electronics-cooling.com/articles/2007/feb/a3/.

[39] Who will build and test your BIRN rack. Available at: http://www.nbirn.net/
cyberinfrastructure/acquire_rack.shtm.

[40] Welch V, Mulmo O. Using the globus toolkit with firewalls. April 2006, Cluster
Monkey. Available at: http://www.clustermonkey.net//content/view/122/32/.

[41] Langella S, Hastings S, Oster S, Pan T, Sharma A, Permar J, et al. Sharing data
and analytical resources securely in a biomedical research grid environment.
JAMIA 2008;15:363–73.

[42] Cloud Security Alliance. Security Guidance for Critical Areas of Focus in Cloud
Computing. April 2009. Available at: http://www.cloudsecurityalliance.org/
guidance/csaguide.pdfhttp://www.cloudsecurityalliance.org/guidance/
csaguide.pdf.

[43] Shackleford D, Neal J, Elpers T. Virtualization security essentials [a
configuresoft white paper] 2008. Available at: http://www.configuresoft.
com/webparts/CMS/ViewDocument.aspx?ItemID=7e86ef55-c94c-476c-8597-
39694ec73560.

[44] Amazon Web Services. Overview of security processes. September 2008.
Available at: http://developer.amazonwebservices.com/connect/entry.jspa?
externalID=1697&categoryID=152.

[45] Creeger M. CTO virtualization roundtable, part II. Comm ACM 2008;51:43–9.
business paradigm for biomedical information sharing. J Biomed Inform

http://www.nbirn.net/
http://calculator.s3.amazonaws.com/calc5.html
http://calculator.s3.amazonaws.com/calc5.html
http://www.amazon.com/Simple-Queue-Service-home-page/b?node=13584001
http://www.amazon.com/Simple-Queue-Service-home-page/b?node=13584001
http://www.amazon.com/SimpleDB-AWS-Service-Pricing/b?node=342335011
http://www.amazon.com/SimpleDB-AWS-Service-Pricing/b?node=342335011
http://www.amazon.com/Web-Services-AWS-home-page/b?node=15763381
http://www.amazon.com/Web-Services-AWS-home-page/b?node=15763381
http://code.google.com/appengine/
http://www.901am.com/2008/yahoo-and-computational-research-laboratories-collaborate-on-cloud-computing-research.html
http://www.901am.com/2008/yahoo-and-computational-research-laboratories-collaborate-on-cloud-computing-research.html
http://www.901am.com/2008/yahoo-and-computational-research-laboratories-collaborate-on-cloud-computing-research.html
http://savas.parastatidis.name/web/talks/2007.11.12%20-%20SC07%20-%20Grid%20Computing%20Environments%20(GCE)%20workshop%20-%20The%20Web%20as%20the%20Platform%20for%20Research.pdf
http://savas.parastatidis.name/web/talks/2007.11.12%20-%20SC07%20-%20Grid%20Computing%20Environments%20(GCE)%20workshop%20-%20The%20Web%20as%20the%20Platform%20for%20Research.pdf
http://savas.parastatidis.name/web/talks/2007.11.12%20-%20SC07%20-%20Grid%20Computing%20Environments%20(GCE)%20workshop%20-%20The%20Web%20as%20the%20Platform%20for%20Research.pdf
http://savas.parastatidis.name/web/talks/2007.11.12%20-%20SC07%20-%20Grid%20Computing%20Environments%20(GCE)%20workshop%20-%20The%20Web%20as%20the%20Platform%20for%20Research.pdf
http://www.readwriteweb.com/archives/reaching_for_the_sky_through_compute_clouds.php
http://www.readwriteweb.com/archives/reaching_for_the_sky_through_compute_clouds.php
http://www.readwriteweb.com/archives/reaching_for_the_sky_through_compute_clouds.php
http://www.disa.mil/news/stories/cloud_computing.html
http://www.3tera.com/
http://perspectives.mvdirona.com/2008/11/28/CostOfPowerInLargeScaleDataCenters.aspx
http://perspectives.mvdirona.com/2008/11/28/CostOfPowerInLargeScaleDataCenters.aspx
http://www.networkworld.com/supp/2009/ndc3/051809-cloud-companies-to-watch.html?netht=rn_051809&amp;nladname=051809dailynewspmal
http://www.networkworld.com/supp/2009/ndc3/051809-cloud-companies-to-watch.html?netht=rn_051809&amp;nladname=051809dailynewspmal
http://www.networkworld.com/supp/2009/ndc3/051809-cloud-companies-to-watch.html?netht=rn_051809&amp;nladname=051809dailynewspmal
http://mvdirona.com/jrh/TalksAndPapers/JamesRH_Ladis2008.pdf
http://blogs.msdn.com/jevdemon/archive/2007/10/24/internet-scale-computing.aspx
http://blogs.msdn.com/jevdemon/archive/2007/10/24/internet-scale-computing.aspx
http://portal.acm.org/citation.cfm?id=1348590&amp;coll=Portal&amp;dl=ACM&amp;CFID=78225754&amp;CFTOKEN=19192256&amp;ret=1#Fulltext
http://portal.acm.org/citation.cfm?id=1348590&amp;coll=Portal&amp;dl=ACM&amp;CFID=78225754&amp;CFTOKEN=19192256&amp;ret=1#Fulltext
http://electronics-cooling.com/articles/2007/feb/a3/
http://electronics-cooling.com/articles/2007/feb/a3/
http://www.nbirn.net/cyberinfrastructure/acquire_rack.shtm
http://www.nbirn.net/cyberinfrastructure/acquire_rack.shtm
http://www.clustermonkey.net//content/view/122/32/
http://www.cloudsecurityalliance.org/guidance/csaguide.pdfhttp://www.cloudsecurityalliance.org/guidance/csaguide.pdf
http://www.cloudsecurityalliance.org/guidance/csaguide.pdfhttp://www.cloudsecurityalliance.org/guidance/csaguide.pdf
http://www.cloudsecurityalliance.org/guidance/csaguide.pdfhttp://www.cloudsecurityalliance.org/guidance/csaguide.pdf
http://www.configuresoft.com/webparts/CMS/ViewDocument.aspx?ItemID=7e86ef55-c94c-476c-8597-39694ec73560
http://www.configuresoft.com/webparts/CMS/ViewDocument.aspx?ItemID=7e86ef55-c94c-476c-8597-39694ec73560
http://www.configuresoft.com/webparts/CMS/ViewDocument.aspx?ItemID=7e86ef55-c94c-476c-8597-39694ec73560
http://developer.amazonwebservices.com/connect/entry.jspa?externalID=1697&amp;categoryID=152
http://developer.amazonwebservices.com/connect/entry.jspa?externalID=1697&amp;categoryID=152
http://dx.doi.org/10.1016/j.jbi.2009.08.014

	Cloud computing: A new business paradigm for biomedical information sharing
	Introduction
	Background
	Distributed system architectures
	Cloud features

	Consortium computing
	Laboratory infrastructure
	Biomedical research consortia
	Grid infrastructure for consortia
	Coping with institutional concerns
	Data privacy
	Protecting other systems
	Efficiency and standards


	Clouds
	Cloud infrastructure for biomedical consortia
	Sample cloud vendors

	Evaluating the tradeoffs of using clouds
	Capacity, often at low cost
	System administration
	Idle capacity
	Power usage and facilities
	Specimen cost comparison

	Qualitative benefits
	Less to manage
	Scalability
	Superior resiliency
	Homogeneity
	Fewer issues to negotiate with institutional authorities


	Security of data stored in a cloud
	Security management
	Risks due to hackers
	Multi-tenancy risks
	Protections at virtual machine boundaries

	Nontechnical outsourcing risks
	Summarizing the security tradeoffs

	Moving forward
	Good targets for near-term cloud initiatives
	Less suitable targets
	Transition obstacles

	Conclusion
	Acknowledgments
	References


