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ABSTRACT
Entity Resolution (ER) is the problem of identifying which
records in a database refer to the same real-world entity. An
exhaustive ER process involves computing the similarities
between pairs of records, which can be very expensive for
large datasets. Various blocking techniques can be used to
enhance the performance of ER by dividing the records into
blocks in multiple ways and only comparing records within
the same block. However, most blocking techniques pro-
cess blocks separately and do not exploit the results of other
blocks. In this paper, we propose an iterative blocking frame-
work where the ER results of blocks are reflected to subse-
quently processed blocks. Blocks are now iteratively pro-
cessed until no block contains any more matching records.
Compared to simple blocking, iterative blocking may achieve
higher accuracy because reflecting the ER results of blocks to
other blocks may generate additional record matches. Iter-
ative blocking may also be more efficient because processing
a block now saves the processing time for other blocks. We
implement a scalable iterative blocking system and demon-
strate that iterative blocking can be more accurate and effi-
cient than blocking for large datasets.

Categories and Subject Descriptors
H.2.m [Database Management]: Miscellaneous—data clean-
ing ; D.2.8 [Information Storage and Retrieval]: Infor-
mation Search and Retrieval—clustering ; H.2.8 [Database
Management]: Database Applications—data mining

General Terms
Algorithms

Keywords
entity resolution, blocking, iterative blocking

1. INTRODUCTION
Entity resolution (ER) is the problem of matching records

that represent the same real-world entity and then merging
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the matching records. ER is a well known problem that
arises in many applications. For example, mailing lists may
contain multiple entries representing the same physical ad-
dress, but each record may be slightly different, e.g., con-
taining different spellings or missing some information. As
a second example, two companies that merge may want to
combine their customer records: for a given customer that
dealt with the two companies they create a composite record
that combines the known information. An exhaustive ER
process involves comparing all the pairs of records, which
can be very expensive for large datasets.

Various blocking techniques [19, 24, 5, 16, 13, 11, 15, 2, 10]
have been proposed to make ER scalable. Blocking divides
the data into (possibly overlapping) blocks and only com-
pares records within the same block, assuming that records
in different blocks are unlikely to match. For example, we
might partition a set of people records according to the zip
codes in address fields. We then only need to compare the
records with the same zip code. Since a single blocking cri-
terion may miss matches (e.g., a person may have moved
to places with different zip codes), several blocking criteria
(i.e., dividing the data in several ways) are typically used
to ensure that all the likely matching records are compared,
improving the accuracy of the result.

Although the previous works above focus on finding the
best blocking criteria, most of them assume that all the
blocks are processed separately one at a time. In many cases,
however, it is useful to exploit an ER result of a previously
processed block. First, when two records match and merge
in one block, their composite may match with records in
other blocks. Second, an ER result of a block can be used
to reduce the time of processing another block. That is, the
same pair of records may occur in multiple blocks, so once
the pair is compared in one block, we can avoid comparing
it in other blocks. To address these two points, we propose
an iterative blocking framework where the ER result of a
block is immediately reflected to other blocks. Unlike previ-
ous blocking techniques, there is an additional stage where
newly created records of a block are distributed to other
blocks. Since the propagation of ER results can generate
new record matches in other blocks, the entire operation be-
comes iterative in the sense that we are processing blocks
(possibly the same block multiple times) until we arrive at
a state where we cannot find any more matching records.
Our work is thus focused on effectively processing the blocks
given a blocking criteria.
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Record Name Address(zip) Email
r John Doe 02139 jdoe@yahoo
s John Doe 94305
t J. Foe 94305 jdoe@yahoo
u Bobbie Brown 12345 bob@google
v Bobbie Brown 12345 bob@google

Figure 1: Customer records

Criterion Partitions by b−,1 b−,2 b−,3

SC1 zip code r s, t u, v
SC2 1st char of last name r, s t u, v

Figure 2: Multiple blocking

Motivating Example: Consider the four people records
shown in Figure 1, that are to be resolved. We would like
to merge records that actually refer to the same person.
Suppose that records r and s match with each other be-
cause their names are the same, but do not match with t
because the strings differ too much. However, once r and s
are merged into a new record 〈r, s〉, the combination of the
address and email information of r and s may lead us to
discover a new match with t, therefore yielding an initially
unforeseen merge 〈r, s, t〉. Notice that, in order to find this
new merge, we need to compare the merged result of r and
s with all the other records again.

In reality, our dataset can be very large, and it may not be
feasible to compare all pairs of the dataset. Hence, we divide
the customer records in Figure 1 into blocks. We start by
dividing the records by their zip codes. As a result, we only
need to compare customers that are in the same geographical
region. In Figure 2, the first blocking criterion SC1 uses zip
codes to divide the records. Records s and t have the same
zip code and are assigned to the block 2 (denoted as b1,2)
and records u and v are assigned to b1,3 while r is assigned
to b1,1. Since we may miss matches for people who have
moved to several places with different zip codes, say we also
divide the customer records according to the first characters
of their last names. Hence, even if two records referring
to the same person have different zip codes, we will have a
better chance of comparing them because their last names
might be similar. In Figure 2, the matching records r and s
can be compared because, although they have different zip
codes, they have the same last name. After processing all
the blocks, the final result of blocking is {〈r, s〉,t,〈u, v〉}.

Although the blocking of Figure 2 reduces the number of
records to compare, it misses the iterative match between
〈r, s〉 and t. Iterative blocking can find this match by dis-
tributing the newly created 〈r, s〉 (found in block b2,1) to the
other blocks. Assuming that 〈r, s〉 contains the zip codes of
both r and s (i.e., 02139 and 94305), 〈r, s〉 is then assigned
to both blocks of SC1. In b1,2, 〈r, s〉 can then be compared
with t, generating the record 〈r, s, t〉. Eventually, the final
iterative blocking solution becomes {〈r, s, t〉, 〈u, v〉} (see Sec-
tion 2.4.3 for details). Thus, the iterative blocking frame-
work helps find more record matches compared to simple
blocking.

Iterative blocking also provides fast convergence. For ex-
ample, once the records u and v are merged in b1,3, they do
not have to be compared in b2,3. While the blocks in Figure 2
are too small to show any improvements in runtime, we will
later demonstrate in our experiments that iterative block-
ing can actually run faster than blocking for large datasets
when the runtime savings exceed the overhead of iterative

blocking. Intuitively, the more work we do for each block,
the runtime savings for other blocks become significant.

Our example has illustrated the two potential advantages
of iterative blocking. The first is improved accuracy, as each
iteration may find additional record matches. The second
potential advantage is improved runtime performance. By
using the ER result of a previous block, we can reduce the
time to process other blocks, by avoiding comparisons that
were already made.

In summary, we make the following contributions.

• We formalize the iterative blocking model (I-BlockER).
Unlike blocking, the ER results of blocks are now re-
flected to subsequent blocks. The blocks are iteratively
processed until no blocks contain any more matching
records. I-BlockER can accommodate any “core” ER al-
gorithm that resolves records within a single block.

• We present I-BlockER algorithms for two scenarios:

• Lego: An in-memory algorithm that efficiently pro-
cesses blocks within memory.

• Duplo: A scalable disk-based algorithm that processes
blocks from the disk.

• We experimentally evaluate Lego and Duplo using actual
comparison shopping data from Yahoo! Shopping and
hotel information data from Yahoo! Travel. Our results
show that iterative blocking can improve over blocking
both in accuracy and runtime. We evaluate our algo-
rithms using two different core ER algorithms, demon-
strating the generality of our iterative blocking frame-
work.

2. FRAMEWORK
In this section, we define the framework for iterative block-

ing. We first define a general model for entity resolution,
enabling any core ER algorithm that resolves one block of
records to fit in the framework. Next, we formalize blocking
by defining single and multiple blocking criteria. Finally, we
define the iterative blocking process and discuss the design
choices that arise.

2.1 ER Model
Intuitively, an ER algorithm takes as input a set of records

R and groups together records that represent the same real
world entity. We represent the output of the ER process
as a partition of the input. In our motivating example, the
input was a set of records R={r, s, t, u, v} and the output
was {〈r, s, t〉, 〈u, v〉}, where the angle brackets denote the
clusters in the partition.

Since records in an output cluster represent some real
world entity, the cluster can be considered a “composite”
new record. In some cases we may apply a merge function to
actually generate the composite records, but in other cases
ER just outputs the cluster. Even if the records are merged,
the lineage of the new record will most likely identify the
original records in the cluster. In our model, we do not ex-
plicitly represent the merging of records, but instead leave
the ER output as a set of clusters.

Since we may want to run ER on the output of a previous
resolution (as we shall see in Section 2.3), we generalize our
model so that the input itself may be a partition. We refer
to the original records in R as the base records, and say that
both the ER input and output are partitions of these base
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records. In our example, we then view the initial input as
the partition {〈r〉, 〈s〉, 〈t〉, 〈u〉, 〈v〉}. If we run a second ER
on the first output {〈r, s, t〉, 〈u, v〉}, we may obtain the par-
tition {〈r, s, t, u, v〉}. In this case, 〈r, s, t〉 contains enough
information to merge with 〈u, v〉.

Since the clusters in an input partition are analogous to
records, we will refer to clusters of records as records. Thus,
〈r, s, t〉 is an input record to the second ER above. For
simplicity, we omit the cluster brackets for singleton clusters.
For example, we write {〈r, s, t〉, 〈u〉} as {〈r, s, t〉, u}.

We assume that ER never undoes the groupings done ear-
lier. Hence, the output partition Po always dominates the
input partition Pi.

Definition 2.1. A partition Po dominates another par-
tition Pi (denoted as Pi � Po) when the following condition
holds:

• ∀r ∈ Pi, ∃s ∈ Po s.t. r ⊆ s.

We now formally define an ER algorithm.

Definition 2.2. We say an ER algorithm is valid if, given
an input partition Pi of R, the algorithm returns an output
partition Po of R such that Pi � Po.

We say that two input records in Pi match if they repre-
sent the same entity and are placed in the same cluster in
Po.

2.2 Blocking Model
Consider an ER algorithm whose input is a set of records

Pi. In general, a given r ∈ Pi may be included with any
other s ∈ Pi in an output partition. Thus, the ER algorithm
must somehow“compare” r and s to see if they belong in the
same partition, for every r, s pair. This quadratic process
is expensive in general.

A single blocking criterion is a heuristic that prunes the
number of records that must be compared with r, i.e., it
reduces the number of candidates that may join r in an
output cluster.

Records are placed in blocks and only the records that
share a block are candidates for placement in an output
cluster. Let bj,k be a block where subscript j identifies the
single blocking criterion used for record placement, and k
identifies the block within the single blocking criterion. For
a single blocking criterion j, function SCj maps a record r to
one or more of the available bj,k blocks. Two records r and s
should be compared if and only if SCj(r) ∩ SCj(s) 	= ∅. We
refer to the contents of block bj,k by IN(bj,k). Initially for
an input partition Pi, IN(bj,k) = {r|r ∈ Pi, bj,k ∈ SCj(r)}.
When it is clear from context, we will refer to the contents
of block bj,k simply by bj,k.

A multiple blocking criteria MC uses a set of single cri-
teria SC1, SC2, . . . , SCN . A record is mapped to all blocks
mapped to by the individual single blocking criteria, i.e.,
MC(r)=

S
j=1,2,...,N SCj(r). Hence, records r and s are

compared only if MC(r) ∩ MC(s) 	= ∅.
Notice that SCj(r) may place r in more than one block,

enabling blocks to overlap. This added flexibility is useful
when a record has several values for an attribute. For ex-
ample, consider a base record r with zip code 94305 and a
record s with zip code 12345. Say in a first ER pass the
records are merged into one record 〈r, s〉, and 〈r, s〉 contains
both zip codes. Hence, in a second pass, it is natural for

a zip code criterion to map 〈r, s〉 to two zip code blocks,
i.e., the block for zip code 94305 and the block for zip code
12345.

Our example illustrates how many blocking criteria oper-
ate on records that are clusters of base records. That is,
a blocking criterion determines the blocks by simply seeing
where each base record in the cluster would be placed. We
say that a multiple blocking criterion MC has the cover-
age property if all of its constituent single blocking criteria
operate in this way.

Definition 2.3. A multiple blocking criterion MC sat-
isfies the coverage property if ∀j = 1, 2, . . . , N, SCj(r) =S

z∈r SCj(〈z〉).

2.3 Iterative Blocking Model
Given an ER algorithm and a multiple blocking criteria

function, an iterative blocking process identifies matching
records by running a core ER algorithm (which satisfies Defi-
nition 2.2) on each block and reflecting the resolution results
to other blocks, possibly generating more record matches.
The above process is repeated until no blocks contain any
more matching records. The final “fixed-point state” pro-
duces the solution for iterative blocking.

We now formally define iterative blocking.

Definition 2.4. (I-BlockER Model) Given a set of records
R, a core entity resolution algorithm CER, and a multiple
blocking criteria function MC, a valid iterative blocking re-
sult J = I-BlockER(R) satisfies the following conditions.

1.
S

r∈J r = R

2. ∀r, s ∈ J s.t. r 	= s, r ∩ s = ∅
3. ∀ block b, IN(b) = CER(IN(b)) where IN(b)={r|r ∈

J, b ∈MC(r)}
Conditions 1) and 2) guarantee that J partitions R, mak-

ing any algorithm that satisfies the I-BlockER model also
a valid ER algorithm. Condition 3) states that no records
match within any block in the final state. Returning to our
example in Figure 2, the iterative blocking solution J={〈r, s, t〉,
〈u, v〉} satisfies Definition 2.4 because J is a partition of R,
and applying the CER algorithm to any of the blocks (which
contain either {〈r, s, t〉} or {〈u, v〉}; Figure 6 in Section 2.4.3
shows the final state of the blocks for J) results in the same
block. However, the blocking solution J={〈r, s〉,t,〈u, v〉},
does not satisfy condition 3) because IN(b1,2) 	= CER(IN(b1,2))
where IN(b1,2) = {〈r, s〉, t}. (We assume the coverage prop-
erty holds and that 〈r, s〉 is assigned to b1,2.)

2.4 Iterative Blocking Algorithm
Algorithm 1 shows how an iterative blocking solution can

be generated to satisfy Definition 2.4. For each block, we
preprocess the block and run the CER algorithm (Steps
9∼10). In Steps 13∼17, we distribute newly created records
to other blocks. We repeat until no blocks have any more
matching records. Finally, in Step 22, we gather the records
of all the blocks to derive our final solution. We discuss
the issues that arise in Algorithm 1 and propose reasonable
design choices that guarantee the algorithm terminates and
satisfies Definition 2.4.
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1: input: a partition Pi of R and a core entity resolution algo-
rithm CER

2: output: a partition Po of R such that Pi � Po

3: for each block bj,k do
4: IN(bj,k) ← {r|r ∈ Pi, bj,k ∈ SCj(r)}
5: end for
6: repeat
7: NewRec← false
8: for each block bj,k do
9: Ri ← Preprocess IN(bj,k) into a partition of base

records
10: Ro ← CER(Ri)
11: if Ro − IN(bj,k) �= ∅ then
12: NewRec← true
13: for each r ∈ Ro − IN(bj,k) do
14: for each b ∈MC(r) do
15: IN(b) ← IN(b) ∪ {r} /* Distribute r to b */
16: end for
17: end for
18: end if
19: IN(bj,k) ← Ro

20: end for
21: until NewRec = false /* No new records created */
22: return Union of all blocks

Algorithm 1: Iterative Blocking

2.4.1 Processing blocks
Processing the blocks in Algorithm 1 (Steps 9∼10) in-

volves preprocessing and then running the CER algorithm.
Before the CER algorithm is applied, a block needs to be
preprocessed to ensure that the CER input Ri is a parti-
tion of base records. A block can contain records that over-
lap in base records because of the distribution stage (Steps
13∼17) where newly created records are distributed to other
blocks. For example, a block that contains the record 〈r,s〉
may receive an overlapping record 〈s,t〉 from another block.
Records that overlap in base records can be viewed as “con-
flicting” advice from different heuristics (i.e., blocking cri-
teria). For example, suppose that one blocking criterion
placed r, s in one block and t in another. In the first block,
suppose that r, s were merged into 〈r, s〉. Also, suppose that
the second blocking criterion placed r apart from s, t, and
the latter records were merged into 〈s, t〉. Record 〈r, s〉 can
be viewed as an advice that r and s match, but not with t.
Similarly 〈s, t〉 implies that s and t match, but not with r.
Preprocessing a block into a partition of base records is thus
a process of resolving the conflicts. One may argue that the
CER algorithm can simply be run on the conflicting records.
However, if Ri is not a partition of base records, then the
CER algorithm is not guaranteed to return a partition of
base records for the output either.

There are two approaches for resolving conflicts in Step 9:

• Unmerge Conflicting Records: Unmerge all the conflict-
ing records into base records and perform a union. For
example, if we have the records {〈r, s〉,〈s, t〉,〈u, v〉}, we
return {r,s,t,〈u, v〉} because 〈r, s〉 and 〈s, t〉 conflict.

• Connected Component: Merge all the records that con-
flict. In the above example, we return {〈r, s, t〉,〈u, v〉}.
The connected component operation is equivalent to a
transitive closure of matching records.

The first strategy, unmerging conflicting records, is a safe
way to resolve conflicts by unmerging any record that con-
flicts. However, unmerging records may also be inefficient
because we might need to redo many redundant record com-

parisons as a result. In the worst case, Algorithm 1 may not
terminate if the same records repeatedly merge in one block
and unmerge in another. Hence, we may need to enforce
certain properties on the preprocessing stage or CER algo-
rithm to guarantee the termination of Algorithm 1 (see our
extended report [22] for a full discussion on supporting the
unmerge conflicting records strategy). On the other hand,
the connected component strategy considers the conflicts to
be a result of the “incompleteness” of the heuristics to iden-
tify more record matches and thus resolves the conflicts by
preserving all the record matches that were found.

In our work, we choose the connected component strategy
to resolve conflicts for two reasons. First, merging conflict-
ing records is a common technique used to generate groups
of matching records (e.g., most previous works [7, 11, 17]
assume that their matching is precise and run a transitive
closure on all the matching pairs of records to produce an
ER result). Second, the management of merged records can
be done efficiently (see Section 2.5).

2.4.2 Distributing records
Distributing newly created records of a block to other

blocks (Steps 13∼17) can help find additional record matches
and reduce the processing time for the other blocks. We
can invoke MC to distribute the records to blocks. In Sec-
tion 2.5, we will see that, if the coverage property holds for
MC and the connected component strategy is used, the dis-
tribution of records does not have to be done on the blocks
directly, but can be managed efficiently using a single data
structure (e.g., a hash table in memory or a log structure on
disk) without modifying the blocks.

2.4.3 Gathering results
Once there are no blocks that have matching records, we

can union the records of all the blocks to arrive at a final
solution (Step 22). In fact, if the coverage property and
connected component strategy are used, we only need to
union the blocks of any single blocking criterion because
any of them contains all the final records in their blocks at
the end of the algorithm. (See Lemma 2.7 below.)

Example. We illustrate Algorithm 1 assuming the cover-
age property and connected component strategy. We use
our motivating example in Figure 1. The first step is to dis-
tribute all the base records into blocks as shown in Figure 3.
Again, SC denotes the blocking criterion while b denotes
the block. For example, the records s and t are located to-
gether in b1,2, which is the second block of the first blocking
criterion SC1.

Criterion b−,1 b−,2 b−,3

SC1 r s, t u, v
SC2 r, s t u, v

Figure 3: After initial distribution

Next, we start processing all the blocks. Suppose that we
repeatedly process blocks in the order of increasing subscript
order (i.e., b1,1,b1,2,. . .,b2,3). The first block that has match-
ing records is b1,3 where we merge u and v into 〈u, v〉. Since
we assume the coverage property, 〈u, v〉 is then distributed
to all the blocks containing either u or v and is thus assigned
to b2,3. We next process b2,1 which contains the matching
records r and s. This time, we distribute the merged record
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〈r, s〉 to b1,1 and b1,2. The next block b2,2 does not produce
any record matches. Next, block b2,3, which at this point
contains {u, v, 〈u, v〉}, is preprocessed into {〈u, v〉}. Then
CER is run on b2,3, but it does not generate any record
matches. The intermediate result after the first iteration is
shown in Figure 4.

Criterion b−,1 b−,2 b−,3

SC1 r, 〈r, s〉 s, t, 〈r, s〉 〈u, v〉
SC2 〈r, s〉 t 〈u, v〉

Figure 4: Intermediate result after first iteration

We now repeat the entire loop again. Block b1,1 is prepro-
cessed into {〈r, s〉}, but does not generate any new records
after the CER algorithm is applied. Block b1,2, however,
is preprocessed into {〈r, s〉,t} and generates the new record
〈r, s, t〉 by merging 〈r, s〉 and t. Record 〈r, s, t〉 is then dis-
tributed to b1,1, b2,1, and b2,2. Block b1,3 does not generate
any record merges while blocks b2,1 and b2,2 are both pre-
processed to {〈r, s, t〉}, but do not generate record matches.
Finally, block b2,3 also does not generate record merges.
Hence, the intermediate result after the second iteration is
shown in Figure 5.

Criterion b−,1 b−,2 b−,3

SC1 〈r, s〉,〈r, s, t〉 〈r, s, t〉 〈u, v〉
SC2 〈r, s, t〉 〈r, s, t〉 〈u, v〉

Figure 5: Intermediate result after second iteration

After one more iteration, we arrive at the final state in
Figure 6. We then union the records of any blocking criterion
(SC1 or SC2) to get the final answer {〈r, s, t〉,〈u, v〉}. In
total, we have processed 18 blocks (6 for each of the three
iterations) to derive the final solution.

Criterion b−,1 b−,2 b−,3

SC1 〈r, s, t〉 〈r, s, t〉 〈u, v〉
SC2 〈r, s, t〉 〈r, s, t〉 〈u, v〉

Figure 6: Final blocking result

We show that, given the coverage property and connected
component strategy for MC, Algorithm 1 both terminates
and returns a partition of R (see our extended paper [22] for
all the proofs in this paper).

Lemma 2.5. If the coverage property holds for MC and
the connected component strategy is used, Algorithm 1 ter-
minates and outputs a partition of R.

Proposition 2.6. If the coverage property holds for MC
and the connected component strategy is used, the result of
Algorithm 1 satisfies Definition 2.4.

Lemma 2.7. If the coverage property holds for MC and
the connected component strategy is used, Step 22 of Algo-
rithm 1 can be replaced by 22: return

S
k IN(bj,k) for any

j.

Although not presented here, one can also show that, if
the connected component strategy is not used, Algorithm 1
may not terminate. In addition, if either the connected com-
ponent strategy is not used or the coverage property does

not hold for MC, Algorithm 1 may not output a partition
of R.

The result of Algorithm 1 is unique as long as the CER
algorithm is a “monotonic” process where merged records
never unmerge, and the CER result is independent of the
order in which records are processed. (Benjelloun et al. [3]
shows how these properties can be achieved.) However, if the
CER algorithm is order dependent, the result of Algorithm 1
also depends on the order in which blocks are processed.

To derive the worst case complexity of Algorithm 1, as-
sume that each of N blocking criteria generates exactly B
blocks. Then the time to process our set R of initial records

is O(N × B × |R|2
B2 × (|R| − 1)) = O(N×|R|3

B
). Here we as-

sume that the CER algorithm does pairwise comparisons

between |R|
B

records for each block processed. The complex-
ity is based on the worst-case scenario where exactly one
record merge occurs per iteration (the maximum number of
record merges possible being |R| − 1). In practice, however,
most of the record merges occur during the first iteration
and decrease in number for subsequent iterations at an ex-
ponential rate. In Section 4, we show that iterative blocking
may be faster than blocking because the work that is saved
by exploiting the ER results of previously processed blocks
exceeds the additional work done by multiple iterations.

2.5 The Lego Algorithm
The Lego algorithm (Algorithm 2) improves Algorithm 1

by efficiently managing merged records using the “maximal”
records of base records. A maximal record of a base record
r is denoted as max(r) and is defined as the “largest” record
containing r (see Definition 2.8 below). To illustrate, sup-
pose there are two blocks b1 and b2 where b1 contains two
matching base records r and s while b2 contains the two base
records s and t. If b1 is processed first, records r and s merge
into 〈r, s〉, and we have max(r) = max(s) = 〈r, s〉. Before
we process the second block, we now replace s by max(s)
before comparing the record with t.

Definition 2.8. The maximal record max(r) of base record
r is a record where max(r) ∈ S

j,k bj,k and ∀r′ ∈ S
j,k bj,k

s.t. r ⊆ r′, then r′ ⊆ max(r).

Lemma 2.9. The maximal records in the Lego Algorithm
satisfy Definition 2.8

The second improvement is that the blocks are no longer
processed sequentially, but are managed by the block queue
Q. Initially, all the blocks are inserted into Q (Step 10)
because they need to be processed. However, for each newly
merged record r, we only re-insert the blocks in MC(r) that
are not already in Q (Steps 19∼23). We say that the blocks
in MC(r) are “hit” by r. Hence, only the blocks that have
a possibility of generating new record merges are processed
again. In addition, Q does not necessarily have to process
the blocks in the order they were inserted, and can use any
policy to choose which blocks to process first. (Our default
policy is to process the blocks in the order of insertion.)
When the same block is processed several times in Step 14,
we can also save processing time if the CER algorithm is
“incremental” and previously resolved records do not have
to be processed again. In this case, the input Ri can then
be given in two parts: Ra, which are the records that have
already been compared, and Rb, which are the new records
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1: input: A partition Pi of R and a core entity resolution algo-
rithm CER

2: output: A partition Po of R such that Pi � Po

3: Q← ∅
4: for each r ∈ Pi do
5: for each rb ∈{Base records of r} do
6: max(rb) = r
7: end for
8: end for
9: Create blocks
10: Push all blocks onto Q
11: while Q �= ∅ do
12: bj,k ← Q.pop()
13: Ri ← Update(bj,k)
14: Ro ← CER(Ri)
15: for each r ∈ Ro −Ri do
16: for each rb ∈{Base records of r} do
17: max(rb) = r
18: end for
19: for each b ∈MC(r) do
20: if b �∈ Q then
21: Q.push(b)
22: end if
23: end for
24: end for
25: end while
26: return

S
k Update(b0,k)

27:
28: function Update(bj,k):
29: b← ∅
30: for each r ∈ IN(bj,k) do
31: for each rb ∈{Base records of r} do
32: b← b ∪max(rb)
33: end for
34: end for
35: return b

Algorithm 2: The Lego Algorithm

that need to be compared with all the records. (Note that
Ra ∪ Rb = Ri.) In this case, Step 14 can be replaced by
“Ro ← CER(Ra, Rb).”

To illustrate the operation of Lego, we revisit the exam-
ple of Figure 3. We show how each block is processed and
how the contents of Q changes in Figure 7. After the ini-
tialization in Steps 9∼10, Q = {b1,1,b1,2,b1,3,b2,1,b2,2,b2,3}
(we assume Q processes the blocks in the order they came
in). We then process each block as in Algorithm 1, except
that after we process block b1,3, we do not distribute 〈u, v〉
to the other blocks but instead update max(u) and max(v)
to 〈u, v〉 (Step 17). The maximal record information can
be stored in a hash table that maps each base record to
its maximal record. Since b2,3 is already in Q, we do not
push any block into Q. After we process block b2,1, max(r)
and max(s) are updated to 〈r, s〉. This time, we push the
blocks b1,1 and b1,2 back onto the queue Q (Step 21) because
MC(〈r, s〉) = {b1,1,b1,2,b2,1}, and b2,1 is currently being pro-
cessed. The queue Q then becomes {b2,2,b2,3,b1,1,b1,2}. Af-
ter we process b2,2 and b2,3, we process b1,1 again. In Step
13, we now directly update r with max(r)=〈r, s〉, which is
equivalent to the distribution and preprocessing steps of Al-
gorithm 1. When preprocessing b1,2, we update the block
to {〈r, s〉,t}. Once 〈r, s〉 and t merge to 〈r, s, t〉, we update
max(r), max(s), and max(t) to 〈r, s, t〉. Since MC(〈r, s, t〉)
= {b1,1, b1,2, b2,1, b2,2}, blocks b1,1,b2,1,b2,2 are pushed back
onto Q. While processing the remaining blocks in Q, there
are no new record matches, and Q becomes empty. Hence,
we arrive at the final result shown in Figure 6.

Lego processes fewer blocks than Algorithm 1. While Al-
gorithm 1 processes 18 blocks (6 blocks processed for each
of the 3 iterations), Lego only processes 11 blocks (see Fig-
ure 7). Also, Lego does not directly update the blocks
with new merged records but instead manages the maximal
record of each base record.

The following proposition establishes the correctness of
the Lego algorithm.

Proposition 2.10. If the coverage property holds for MC
and the connected component strategy is used, the Lego al-
gorithm returns a valid I-BlockER result of R.

3. DISK-BASED ITERATIVE BLOCKING
An important requirement for iterative blocking is to scale

ER to large datasets. In real applications, we may have mil-
lions of records that do not necessarily fit in the memory
and need to be stored on disk. The Lego algorithm (Algo-
rithm 2) is not scalable because it assumes that the blocks
are not stored on the disk. Moreover, for large datasets, even
managing the maximal records using a hash table could ex-
ceed the memory.

In this section we introduce a disk-based iterative block-
ing system that efficiently manages blocks on the disk. Our
system improves Lego in two ways. First, the blocks are now
saved in fixed-sized extents called segments on the disk. A
segment is the unit of transfer to memory and has the advan-
tage of evening out blocks of different sizes. Intuitively, we
are now processing “N blocks at at time” in memory, assum-
ing each segment contains N records on average. Second,
we use a merge log for managing maximal records. A merge
log keeps track of record merges and can be sequentially ac-
cessed from the disk to update the blocks. The merge log has
the advantages of using a small amount of memory and of re-
quiring sequential I/O. We discuss segments and the merge
log in detail in the following sections. We then propose a
disk-based algorithm (called Duplo) that uses segments and
the merge log, and satisfies the I-BlockER model.

3.1 Segments
We use fixed-sized extents called segments to store the

blocks on disk. A segment acts as a unit of transfer for read-
ing blocks into memory and thus cannot exceed the memory
size. For each blocking criterion, we allocate a fixed num-
ber of segments consecutively on disk. We then allocate the
segments for the next blocking criterion consecutively and
so on. Hence, each segment belongs to one blocking cri-
terion and contains the blocks of that criterion. For each
blocking criterion, the blocks are randomly assigned to seg-
ments for even distribution. Figure 8 shows a possible as-
signment of blocks to segments for Figure 2. For example,
segment s1,1 contains the blocks b1,1 and b1,3. The segments
s1,1, s1,2, s2,1, s2,2 are stored on the disk consecutively. In-
ternally, a segment stores the union of the records of its
blocks. This strategy saves space for storing the blocks be-
cause the blocks may contain overlapping records. Each
block can later be extracted from the segment by applying
MC to each record. A segment is thus a set of records, and
we denote the set of records inside segment s as IN(s).

The advantage of using segments is that the different block
sizes are evened out when they are randomly assigned to the
segments. As a result, we can approximately do the same
amount of work for each segment processed. One problem
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Nth block Block processed Records before CER Records after CER Q after CER
1 b1,1 r r {b1,2,b1,3,b2,1,b2,2,b2,3}
2 b1,2 s, t s, t {b1,3,b2,1,b2,2,b2,3}
3 b1,3 u, v 〈u, v〉 {b2,1,b2,2,b2,3}
4 b2,1 r, s 〈r, s〉 {b2,2,b2,3,b1,1,b1,2}
5 b2,2 t t {b2,3,b1,1,b1,2}
6 b2,3 〈u, v〉 〈u, v〉 {b1,1,b1,2}
7 b1,1 〈r, s〉 〈r, s〉 {b1,2}
8 b1,2 〈r, s〉,t 〈r, s, t〉 {b1,1,b2,1,b2,2}
9 b1,1 〈r, s, t〉 〈r, s, t〉 {b2,1,b2,2}
10 b2,1 〈r, s, t〉 〈r, s, t〉 {b2,2}
11 b2,2 〈r, s, t〉 〈r, s, t〉 {}

Figure 7: Processing blocks with the Lego algorithm

Criterion s−,1 s−,2

SC1 b1,1, b1,3 b1,2

SC2 b2,1 b2,2, b2,3

Figure 8: Assigning blocks to segments for Figure 2

with fixed-sized segments is that they may overflow during
the iterative blocking process. For example, segment s1,1

of Figure 8 starts with the records {r,u,v} and ends with
{〈r, s, t〉,〈u, v〉} where 〈r, s, t〉 could be larger than r while
〈u, v〉 has a similar size as u and v combined. To prevent
overflows, we leave some extra space for each segment in
case the blocks grow in size. Although we could dynamically
extend the segment size during runtime, a fixed extension of
space is also reasonable and works well in practice.

3.2 Merge Log
The merge log is used to update the records in a block

to their maximal records. The merge log is required when
we cannot manage the maximal records in memory for large
datasets. While we could also implement a hash table on
disk, updating a block would clearly involve many random
I/Os for looking up the maximal records. Instead, the merge
log keeps track of record merges and can be read sequentially
to update a block. For example, if two records r and s
merge into 〈r, s〉, then we add to the merge log the entries
r → 〈r, s〉 and s → 〈r, s〉. Later on when we process a
segment containing r, we seek the “appropriate” region of
the log to find the entry r → 〈r, s〉 and update r to 〈r, s〉.

The advantage of the merge log is that a single sequential
scan of the merge log is sufficient to update a block. Al-
though the number of entries in the merge log could grow
to 2*|R|-2 (in the case where all the records merge into a
single record), the number of records that merge is typically
much smaller than |R|, making the merge log size reason-
ably small. Algorithm 3 shows how to update a block by
scanning the merge log once. Notice that each block b has a
“timestamp,” that can be used to skip L entries that have al-
ready been applied. Hence, we only need to read the merge
log from the entry with the next largest timestamp. In the
next section, we also use a function called UpdateSegment,
which is identical to UpdateBlock except that a segment is
updated instead of a block.

3.3 The Duplo Algorithm
The Duplo algorithm (Algorithm 4) uses segments and the

merge log to scale iterative blocking. The idea of Duplo is to
process “N blocks at a time,” assuming a segment contains
N blocks on average. Hence, the iterative blocking is now

1: UpdateBlock(b,L):
2: Skip L entries with timestamps less than or equal to the times-

tamp of b
3: while L has more entries do
4: 〈r → s〉 ← L.nextEntry()
5: if r ∈ IN(b) then
6: IN(b)← IN(b)−{r}+{s}
7: end if
8: end while
9: return IN(b)

Algorithm 3: Updating a block using the merge log

done in two levels: processing a segment and then processing
the blocks within that segment.

We maintain two queues and two merge logs for managing
the segments and the blocks within each segment. In order
to process segments, we use a segment queue Q1 that deter-
mines which segment to process next and a “global” merge
log L1 that keeps track of all the record merges done until
now. Next, in order to process the blocks of a single seg-
ment, we use a block queue Q2 that determines which block
to process next (just like Q in Lego) and a “local” merge
log L2 that keeps track of the record merges done within
the current segment. Both segments and blocks have times-
tamps indicating which point of the log they are up-to-date
for L1 and L2, respectively. Merge log L1 is located on disk
and is accessed once for each segment processed while L2 is
in memory and is accessed once for each block processed.

To illustrate the Duplo algorithm, suppose that we create
the segments of Figure 8. The actual contents of the seg-
ments are shown in Figure 9 (i.e., each segment contains a
union of records of its blocks). We show how each segment
is processed in Figure 10.

Criterion s−,1 s−,2

SC1 r, u, v s, t
SC2 r, s t, u, v

Figure 9: Initial segments of Duplo

Initially, all four segments are placed in the segment queue
Q1 (i.e., Q1 ={s1,1, s1,2, s2,1, s2,2}). When we first pro-
cess segment s1,1, we extract the two blocks b1,1 ={r} and
b1,3 ={u, v}, and process them with the CER algorithm.
Since u and v merge into 〈u, v〉, the merge logs L1 and L2

are both set to {u → 〈u, v〉,v → 〈u, v〉}. Although s2,2 is
hit by 〈u, v〉, we do not insert the segment into Q1 because
Q1 already contains s2,2. We then continue with processing
segment s1,2, which does not have matching records. When
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Nth segment Segment processed Records before CER Records after CER Q1 after CER
1 s1,1 r, u, v r, 〈u, v〉 {s1,2,s2,1,s2,2}
2 s1,2 s, t s, t {s2,1,s2,2}
3 s2,1 r, s 〈r, s〉 {s2,2, s1,1, s1,2}
4 s2,2 t, 〈u, v〉 t, 〈u, v〉 {s1,1, s1,2}
5 s1,1 〈r, s〉, 〈u, v〉 〈r, s〉, 〈u, v〉 {s1,2}
6 s1,2 〈r, s〉, t 〈r, s, t〉 {s1,1,s2,1,s2,2}
7 s1,1 〈r, s, t〉,〈u, v〉 〈r, s, t〉,〈u, v〉 {s2,1,s2,2}
8 s2,1 〈r, s, t〉 〈r, s, t〉 {s2,2}
9 s2,2 〈r, s, t〉, 〈u, v〉 〈r, s, t〉, 〈u, v〉 {}

Figure 10: Processing segments with the Duplo algorithm

1: input: a partition Pi of R and a core entity resolution algo-
rithm CER

2: output: a partition Po of R such that Pi � Po

3: L1 ← ∅ /* Disk merge log for segments */
4: Q1 ← ∅ /* Segment queue */
5: Create segments
6: Push all segments into Q1

7: while Q1 is not empty do
8: s← Q1.P op()
9: IN(s)← UpdateSegment(s, L1)
10: L2 ← ∅ /* In-memory merge log for blocks */
11: Q2 ← ∅
12: Push all blocks in s into Q2

13: while Q2 is not empty do
14: b← Q2.P op()
15: Ri ← UpdateBlock(b, L2)
16: Ro ← CER(Ri)
17: Add to L2 the new record merges in b
18: Add to L1 the new record merges in b
19: for each record r ∈ Ro − Ri do
20: for each block b′ ∈MC(r) do
21: s′ ← BlockToSegment(b′) /* Returns the seg-

ment where b′ is */
22: if s = s′ then /* Hit the same segment */
23: if b �= b′ and b′ �∈ Q2 then
24: Q2.Push(b′)
25: end if
26: else /* Hit a different segment */
27: if s′ �∈ Q1 then
28: Q1.Push(s′)
29: end if
30: end if
31: end for
32: end for
33: end while
34: Write s back to disk
35: end while
36: J ← ∅
37: J ←{Records in R that were never merged}
38: J ← J ∪ {Records in L1 that are not contained by any other

record in L1}
39: return J

Algorithm 4: The Duplo algorithm

we process segment s2,1, we extract b2,2 ={r, s} and merge
r and s into 〈r, s〉. The global merge log L1 is then up-
dated to {u → 〈u, v〉, v → 〈u, v〉, r → 〈r, s〉, s → 〈r, s〉}
while L2 is updated to {r → 〈r, s〉, s→ 〈r, s〉}. (Notice that
L1 and L2 are now different because L2 only keeps track
of the local merges within s1,2.) Since 〈r, s〉 hits the seg-
ments s1,1 and s1,2, we push s1,1 and s1,2 back into Q1 (i.e.,
Q1 ={s2,2, s1,1, s1,2}). The next segment s2,2 is updated to
{t, 〈u, v〉}, but does not generate any record matches. Sim-
ilarly, the next segment s1,1 is updated to {〈r, s〉, 〈u, v〉},
but does not generate record matches. We then process

s1,2. This time, after we update the segment to {〈r, s〉, t}
and extract the block b1,2 ={〈r, s〉, t}, we merge 〈r, s〉 and t
into 〈r, s, t〉. The global merge log L1 is updated to {u →
〈u, v〉,v → 〈u, v〉,r → 〈r, s〉, s → 〈r, s〉, 〈r, s〉 → 〈r, s, t〉, t →
〈r, s, t〉}while L2 is updated to {〈r, s〉 → 〈r, s, t〉, t→ 〈r, s, t〉}.
Since 〈r, s, t〉 hits all four segments, we insert s1,1, s1,2, and
s2,1 back into Q1. After processing all the segments in Q1,
we arrive at the final state of Figure 11.

Criterion s−,1 s−,2

SC1 〈r, s, t〉, 〈u, v〉 〈r, s, t〉
SC2 〈r, s, t〉 〈r, s, t〉, 〈u, v〉

Figure 11: Final state of Duplo

The correctness of the Duplo algorithm is shown in Propo-
sition 3.1.

Proposition 3.1. If the coverage property holds for MC
and the connected component strategy is used, the Duplo al-
gorithm returns a valid I-BlockER result of R.

Segment queue policy. The policy for determining which
segment to process from Q1 significantly affects the runtime
of Duplo. The following list shows various policies Q1 might
have.

• Hits: Sorts the segments in decreasing number of hits
they receive from newly merged records of other seg-
ments. Segments with the highest number of hits are
processed first. Initially, all segments have an infinite
number of hits. The hit count for a segment is set to
zero after the segment is processed.

• First-Come-First-Serve (FCFS): Processes the segments
in the order they were pushed into the segment queue.

• Random: Randomly processes segments.

• Inverse Hits: Sorts the segments in increasing number
of hits, so that the segments with the fewest hits are
processed first.

Later in Section 4.3, we compare the policies and show
which policy makes Duplo efficient.

4. EXPERIMENTAL EVALUATION
In this section, we evaluate iterative blocking on real datasets

and show how iterative blocking outperforms blocking both
in accuracy and runtime. Our algorithms were implemented
in Java, and our experiments were run on a 2.4GHz Intel(R)
Core 2 processor with 4 GB of RAM. We also used a raw
disk without a file system for storing the blocks in order to
avoid caching and accurately measure the I/O cost.
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Real Dataset. The comparison shopping dataset we use
was provided by Yahoo! Shopping and contains millions of
records that arrive on a regular basis from different online
stores and must be resolved before they are used to answer
customer queries. Each record contains various attributes
including the title, price, and category of an item. We exper-
imented on a set of 2 million records randomly chosen from
the entire dataset. We also experimented on a hotel dataset
provided by Yahoo! Travel (see Section 4.4) where tens
of thousands of records arrive from different travel sources
(e.g., Orbitz.com), and must be resolved before they are
shown to the users.

CER Algorithm. For our evaluation we use two different
CER algorithms. Our primary CER algorithm is the R-
Swoosh algorithm of Benjelloun et al. [3], and the main body
of our results are generated with this algorithm. However,
to illustrate that our Lego and Duplo algorithms can be
used with any CER algorithm, in Section 4.5 we study a
different algorithm, and show how the accuracy-performance
tradeoffs vary. For both algorithms we use the products and
travel data sets.

R-Swoosh uses a Boolean pairwise match function to com-
pare records and a pairwise merge function to merge two
records that match into a composite record. The match
function for the shopping data compares the title, price, and
category values of two records. (Details on the match and
merge functions can be found in Benjelloun et al. [3].) For
the hotel dataset, we compared the names and addresses
of hotels. R-Swoosh returns a partition of R by merging
records and thus satisfies our ER model.

Blocking Criteria. We use minhash signatures [14] for dis-
tributing the records into blocks. A minhash signature is
used to estimate the Jaccard similarity between two strings
(i.e., the portion of n-grams of the strings shared). Records
with the same minhash signature are assigned to the same
block. Also, merged records are assigned to all of its base
record blocks, satisfying the coverage property. For our
datasets, we extract 3-grams from the titles of the shopping
records. Similarly, we extracted 3-grams from the names of
the hotel records. Throughout our experiments, we do not
vary the n-gram length and fix it to 3. We then generate
a minhash signature that is an array of integers where each
integer is generated by applying a random hash function to
the 3-gram set of the record. We can produce several min-
hash signatures of a record for each blocking criterion using
different sets of random hash functions.

The advantage of using minhash signatures is that we can
easily adjust the number of blocking criteria and signature
length to produce reasonable accuracy and performance. Al-
though there are many other ways to produce blocking cri-
teria (e.g., manually creating blocking criteria instead of us-
ing minhash signatures), we believe our approach is ideal
in showing the trends of accuracy and performance against
different “qualities” of blocking criteria.

Metrics. We used accuracy and runtime metrics to evaluate
iterative blocking. To evaluate accuracy, we compare our al-
gorithm results with a “Gold Standard,” which is the result
of running CER on the entire dataset (i.e., CER(R)). Notice
that we are not measuring the correctness of the CER algo-
rithm itself, but instead determining how “close” the block-

ing or iterative blocking results are to the exhaustive result.
We consider all the input records that merged into an output
record to be identical to each other. For instance, if records
r and s merged into 〈r, s〉 and then merged with t, all three
records r, s, t are considered to be the same. Suppose that
the Gold Standard G contains the set of record pairs that
match for the exhaustive solution while set S contains the
matching pairs for our algorithm. Then the precision Pr is
|G∩S|
|S| while the recall Re is |G∩S|

|G| . Using Pr and Re, we

compute the F1-measure, which is defined as 2×Pr×Re
Pr+Re

, and
use it as our accuracy metric. For runtime, we measured the
wall-clock runtime for each algorithm.

4.1 Accuracy
We compare the accuracy (F1-measure) of the Lego algo-

rithm with the following techniques:

• Blocking: Runs CER on each block separately. The an-
swer is produced by simply collecting the final records
from all the blocks.

• Blocking-CC: Runs CER on each block, and then per-
forms a connected component operation on all the records.
For example, if the final records 〈r, s〉 and 〈s, t〉 are in dif-
ferent blocks, they are merged to 〈r, s, t〉.

We use a relatively small dataset of 50,000 records in order
to be able to compare our results with the Gold Standard,
which takes a long time to produce. The accuracy and run-
time values are the average of five test results on distinct
random subsets with the same 50,000 base records.

Varying the Average Block Size. In Figure 12, we com-
pare the accuracy results of Lego, Blocking, and Blocking-
CC using different average block sizes. Varying the minhash
signature length affects the average block size. In our exper-
iments, we varied the minhash signature length from 14 to
1 integers (the shorter the minhash signature, the larger the
average block size becomes) and fixed the number of block-
ing criteria to 5. However, instead of plotting all graphs
with the signature length as the horizontal axis, we plotted
against the average block size (i.e., the average number of
records in a block), which is the average size of all the blocks
produced by MC. We believe that the average block size is
a more intuitive parameter, one that captures the number
of records that are compared with each other. If the signa-
ture length decreases, more records are likely to be assigned
to the same block, increasing the average block size. If the
average block size increases, we find more record matches,
but also perform more record comparisons.

As the average block size increases, Lego shows the most
rapid increase in accuracy (see Figure 12). For example,
when the average block size is about 13, Lego has 88% ac-
curacy while Blocking has 76% accuracy. Blocking-CC has
a higher accuracy than Blocking, but still has a lower ac-
curacy than Lego because, although it finds more matching
records, it also finds many false positives by merging records
unnecessarily, which lowers the precision. Notice that, for
the largest average block size 32, Blocking has almost the
same accuracy as Lego because enough records are compared
with each other. However, increasing the average block also
increases the runtime as we shall see in Section 4.2.

Varying the Number of Blocking Criteria. We also com-
pared the accuracies of Lego, Blocking, and Blocking-CC
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Figure 12: Average block size impact on accuracy,
50K records

while fixing the minhash signature length to 10 (making the
average block size 7.3, the fifth smallest block size in Fig-
ure 12) and increasing the number of blocking criteria from
1 to 15 as shown in Figure 13. As the number of blocking
criteria increases, the accuracy of Lego increases faster than
the other approaches. When the number of blocking criteria
is 15, Lego achieves 78% accuracy while Blocking achieves
55% accuracy. All the algorithms will eventually achieve
high accuracy as the number of blocking criteria increases
further, but Lego can achieve a high accuracy using many
fewer blocking criteria than the other approaches.
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Figure 13: Number of Blocking Criteria impact on
accuracy, 50K records

4.2 Lego Runtime
We compare the runtimes of Lego, Blocking, and Blocking-

CC with the Gold Standard (i.e., running ER on the entire
dataset). In all cases, all data was memory resident. Fig-
ure 14 shows the runtimes (on a log scale) while fixing the
number of blocking criteria to 5 and decreasing the minhash
signature length from 14 to 1 integers to generate different
average block sizes. The points of Figure 14 that have an
average block size of 7.3 (using a signature length of 10)
correspond to the points of Figure 13 that use 5 blocking
criteria. The runtime for the Gold Standard is 1641 seconds
while the runtime for Lego ranges from 10 to 289 seconds.

Lego also has a comparable performance with Blocking.
Lego is actually faster than Blocking for the average block
sizes of 16 and 20 because the time saved by reflecting the
CER results of blocks to other blocks is larger than the ad-
ditional time needed to iteratively process blocks. To illus-
trate how Lego can be faster than Blocking, suppose that

two blocks b1 and b2 contain the same two matching records
r and s. While Blocking compares r and s twice, Lego can
process b1 and reflect the merged record 〈r, s〉 on b2, saving
the next record comparison. Finally, Blocking-CC is slower
than Lego and Blocking because of the additional overhead
of connecting components.
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Figure 14: Average block size impact on runtime,
50K records

We omit the plot for the runtime versus number of block-
ing criteria due to space and because it shows a similar trend
as Figure 14.

4.3 Duplo Performance
We now compare the performances of the Duplo algorithm

and Blocking on large datasets that may not fit in memory.
For Blocking, we simply read all the blocks from disk and
run ER on each block. For the Duplo algorithm, we now
use segments and the merge log to iteratively process blocks
from the disk. We also test on a variant of Duplo (called
Duplo Memory), which uses segments but not the global
merge log L1 (i.e., Duplo Memory keeps an in-memory hash
table for managing maximal records just like in Lego). While
having a hash table in memory enhances the performance
of Duplo, we must tradeoff that gain against the requested
larger amount of memory.

Before comparing the three techniques, we first evaluate
several segment queue policies that determine which seg-
ment to process from Q1 first. Once we have found the best
segment queue policy, we then compare the scalability re-
sults of Duplo, Duplo Memory, and Blocking. We show that
both Duplo and Duplo Memory outperform Blocking when
producing accurate ER results of large datasets. Through-
out the experiments for Duplo and Duplo Memory, we use
160 segments per blocking criterion for 5 blocking criteria
and allocate 30MB 1 of disk space per segment.

Segment Queue Policy. The segment queue policy signifi-
cantly affects the number of segments that need to be pro-
cessed as well as the overall runtime. We compare the four
policies mentioned in Section 3.3: Hits, FCFS, Random, and
Inverse Hits. Figure 15 shows the runtime results of using
the four policies on 1 million random shopping records where
the minhash signature length is 10.

Both Hits and FCFS have excellent performance where
Hits is slightly faster than FCFS. The Hits policy works well

1While a segment size of 30MB may seem small, additional
memory is needed to process the records in the segment by
the CER algorithm and the local merge log L2.
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because segments that have many hits are likely to gener-
ate many record merges each time they are processed. The
FCFS policy also works well because segments stay in the
queue as long as possible and thus tend to generate more
record merges when they are processed. The Inverse Hits
policy is the worst strategy and is even slower than the Ran-
dom policy because segments that are least likely to generate
record matches are processed first, resulting in repeated pro-
cessing of the same segments. Having a good segment queue
strategy is thus very important for efficiency. For the rest of
our experiments for Duplo and Duplo Memory, we use Hits
as our default policy.

Strategy Runtime (hrs)
Hits 2.0

FCFS 2.1
Random 7.5

Inverse Hits 11.7

Figure 15: Runtimes for different segment queue
strategies, 1M records

Scalability. Using the Hits policy, we compare the scala-
bility results of Duplo, Duplo Memory, and Blocking. Fig-
ure 16 shows the result of running the three algorithms on
0.5 to 2 million random shopping records where the min-
hash signature length is 4 (the average block sizes being 75,
130, 232 for 0.5, 1, 2 million records, respectively). We set
the maximum java heap size to 3.5G for Duplo Memory and
1.5G for Duplo in order to demonstrate that Duplo uses
a small amount of memory (Duplo Memory actually slows
down significantly when using 1.5G of memory). Both Du-
plo and Duplo Memory scale better than Blocking (by 15%
and 43% for 2 million records, respectively) because Duplo
and Duplo Memory save processing time by reflecting the
ER results of blocks to other blocks. Duplo Memory is 33%
faster than Duplo for 2 million records. The runtime im-
provements will of course depend on the number of blocking
criteria and average block size used.
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Figure 16: Scalability, 2M records

Figure 17 shows the runtimes needed for Duplo, Duplo
Memory, and Blocking to achieve certain accuracy results
on 2 million records. We generated the figure by running
a series of scenarios with different minhash signatures. For
each scenario we obtained an accuracy and runtime pair,
and plotted it in Figure 17. We could not directly calculate
the accuracy because the dataset was too large to compute
the Gold Standard using the CER algorithm. Instead, we

exploited the fact that the accuracy is only dependent on the
number of blocking criteria and minhash signature length,
and not on the size of the random dataset. Hence, by using
the same number of blocking criteria and minhash signature
length, we could use the accuracy results on 50,000 records
in Figure 12 to estimate the accuracy results on 2 million
records. We can see in the figure that both Duplo and Duplo
Memory significantly outperform Blocking for highly accu-
rate results. For example, Duplo Memory and Duplo takes
14 and 17 hours to achieve 91% accuracy while Blocking
takes 26 hours to achieve 90% accuracy.
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Figure 17: Runtime needed to achieve given accu-
racy, 2M records

In summary, Duplo and Duplo Memory outperform Block-
ing when producing accurate ER results on large datasets.
The key idea is that ER results of blocks are reflected on
other blocks, saving a lot of processing time. Although Du-
plo Memory is faster than Duplo, it requires a large amount
of memory to use the in-memory hash table. Duplo should
be used instead of Duplo Memory when the main memory
size is too small to hold the hash table.

4.4 Other Datasets
In our shopping application, there are many iterative record

matches where merged records generate additional record
matches. However, in other applications there may be fewer
iterative matches. For example, suppose that there are two
blocks b1 ={r, s} and b2 ={s, t}. If r and s merge into
〈r, s〉 in b1, but never match with t, then we cannot gen-
erate any new record matches by reflecting 〈r, s〉 to b2. In
order to investigate how iterative blocking works for differ-
ent types of datasets, we also tested on a hotel dataset pro-
vided by Yahoo! Travel. The records in the hotel dataset
mostly come from two datasources that do not have dupli-
cates within themselves. As a result, we rarely have more
than two records matching with each other.

In this case, iterative blocking does not significantly im-
prove accuracy over blocking. However, its blocks still have
a performance gain because ER processing in one block saves
processing time for subsequent blocks. Figure 18 shows the
runtimes for Duplo Memory and Blocking on hotel records.
The hotel dataset was only 27,049 records, so we generated
larger datasets by simply replicating the same dataset 16, 32,
and 64 times (resulting in 0.43, 0.86, 1.73 million records,
respectively). Duplo Memory improves Blocking by 48% for
1.73 million records. We omit the data for Duplo because
replicating the data was producing too many record merges,
significantly increasing the time to read the merge log for
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each segment. In practice, the number of merging records is
much smaller.

Algorithm Runtimes for 0.43M / 0.86M / 1.73M
records (hrs)

Blocking 0.27 / 0.73 / 2.27
Duplo Memory 0.18 / 0.41 / 1.18

Figure 18: Runtimes on the hotel dataset, 1.7M
records

4.5 Other CER Algorithms
In this section, we experiment with a CER algorithm

based on Monge and Elkan [17] (we call it the ME algo-
rithm) where records are sorted using an application-specific
key and then clustered with a sequential scan. Each clus-
ter has a representative record that can be compared with
other records. The representative record contains values of
recently added records to the cluster, but only those that
were “far away enough” from the representative record when
added to the cluster. During the sequential scan, a priority
queue is used to contain the most recently updated clusters.
(While the size of the priority queue in [17] is constant,
we use a size proportional to the number of records pro-
cessed.) Each new record is compared to all the clusters in
the priority queue. If there is a matching cluster, the record
is combined with the cluster, and the cluster is moved to
the head of the priority queue. If there is no match, a new
singleton cluster is created and pushed into the head of the
priority queue. The final result is a set of clusters. The ME
algorithm can also start from a set of clusters (using the
representative records) and thus satisfies Definition 2.2.

We used the Yahoo! Shopping dataset and compared the
records with the same match function used in R-Swoosh. We
also used the same blocking criteria that uses minhash signa-
tures generated from the titles of the records. Throughout
our experiments, we used 5 blocking criteria and a minhash
signature length of 3.

Figure 19 shows that Lego has a higher accuracy than
Blocking or Blocking-CC for 50,000 shopping records. To
correctly measure the accuracy values, we constructed the
Gold Standard by repeatedly running the ME algorithm on
the entire dataset until the clusters no longer merged. Al-
though both Lego and Blocking-CC have lower precision val-
ues than Blocking, they have much higher recall and accu-
racy values.

Algorithm Precision Recall Accuracy
Lego 0.93 0.74 0.82

Blocking 0.99 0.38 0.55
Blocking-CC 0.93 0.69 0.79

Figure 19: Accuracy for the ME algorithm, 50K
records

Figure 20 shows that Duplo Memory is 42∼76% slower
than Blocking while Duplo Disk is 101∼109% slower than
Blocking for 0.5 to 2 million shopping records (the average
block sizes being 165, 309, 577 for 0.5, 1, 2 million records,
respectively). This result contrasts with that of Figure 16
where Blocking is the slowest algorithm. The reason is that
ME was not finding all the matching records for each block
(notice the low recall for Blocking in Figure 19) because
the shopping data required iterative comparisons to be com-
pletely resolved. As a result, we could not exploit the ER

results of previously processed blocks as much as we did
before in Figure 16. In addition, more blocks had to be it-
eratively processed until there were no matching records in
any of the blocks. Hence, the ME algorithm illustrates the
case where we are trading off runtime (i.e., the overhead of
managing the blocks and merge logs) for better accuracy.

Algorithm Runtimes for 0.5M / 1M / 2M
records (hrs)

Blocking 0.83 / 2.95 / 10.46
Duplo Memory 1.18 / 4.75 / 18.37

Duplo Disk 1.67 / 6.02 / 21.9

Figure 20: Scalability for the ME algorithm, 2M
records

In summary, both Duplo Memory and Duplo Disk are
better than Blocking in accuracy, but are worse in runtime
when the ME algorithm is used as the CER algorithm. It is
important to understand that we are not comparing the per-
formances of R-Swoosh and ME through these experiments.
ME is designed to be an efficient algorithm for data that
can easily be clustered (which is not the case here) while
R-Swoosh is a more exhaustive algorithm that can find sub-
tle record matches. The key observations here are that any
CER algorithm can be plugged into the iterative blocking
framework and that there is a different runtime/accuracy
tradeoff when using the ME algorithm.

5. RELATED WORK
Entity Resolution has been studied under various names

including record linkage [19], merge/purge [12], deduplica-
tion [20], reference reconciliation [7], object identification [21],
and others (see [8, 23, 9] for recent surveys). Entity Reso-
lution involves comparing records and determining if they
refer to the same entity or not. Many exhaustive ER algo-
rithms [17, 1, 4, 6, 3] can be used as the core ER algorithm
of our iterative blocking framework.

Various blocking techniques that focus on ER accuracy
have been proposed. Early works [19, 18] manually gen-
erate blocking criteria based on the characteristics of the
data. Learning techniques [5, 16] produce blocking crite-
ria based on training data so that the number of match-
ing record pairs found is maximized while the number of
non-matching record pairs in the same block is minimized.
Estimation techniques [24, 13] can be used to estimate the
number of matching record pairs missed by each blocking
criterion. Most of the works above use several blocking cri-
teria to increase the chance of similar records to be compared
within the same block. Our iterative blocking framework can
use any blocking criteria produced from the works above as
its MC function.

Another line of research is blocking techniques that fo-
cus on ER performance [2]. The Canopy Clustering [15]
technique uses a cheap, approximate distance measure to
efficiently divide the data into overlapping subsets called
canopies and then processes each canopy using exact dis-
tances. The notion of canopies fits into our model of overlap-
ping blocks. In addition, iterative blocking can use several
blocking criteria instead of one. Most importantly, itera-
tive blocking exploits the ER results of previously processed
blocks. The Sorted Neighborhood method [11] sorts records
based on a sorting key and moves a fixed-sized window se-
quentially over the sorted records. Several passes can be
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done using different sorting keys. A transitive closure is then
performed on all the matching record pairs. In comparison,
the iterative blocking framework takes a generic approach
and does not assume sorting keys. Nevertheless, the Sorted
Neighborhood technique also fits into our iterative block-
ing framework where windows of records can be viewed as
blocks. While the Sorted Neighborhood enhances the pro-
cessing of blocks within the same blocking criterion, it does
not exploit the ER results of blocks in different blocking cri-
teria. Hence, although the works above fit into our iterative
blocking framework, they do not fully exploit the ER results
of different blocks, as we do.

To the best of our knowledge, the only work that takes a
generic approach in efficiently processing blocks is the Big-
Match [25] algorithm. BigMatch compares a large file of
records on disk with a smaller file of records in memory
without having to sort the larger file. For each record from
the larger file, BigMatch uses the blocking criteria to search
all the records in the smaller file that are in the same block
for at least one blocking criteria. In contrast, iterative block-
ing is designed to resolve a single large set of records and
has the additional feature of iteratively processing blocks.

6. CONCLUSION
We have proposed a novel framework for iterative block-

ing where the ER results of blocks are reflected to other
blocks, possibly generating new record matches. Blocks are
processed in an iterative fashion (possibly more than once)
until no blocks contain any matching records. Our approach
can be used with any “core” ER algorithm that processes a
block of records. The potential advantage of iterative block-
ing is twofold. First, we achieve high accuracy because re-
flecting the ER results can generate new record matches in
subsequent blocks. Second, we have fast convergence be-
cause the ER results of blocks save the processing time for
other blocks. We have implemented an in-memory algorithm
called Lego and a disk-based algorithm called Duplo, which
uses segments and a merge log to process blocks from the
disk. We experimentally showed that Duplo can largely out-
perform blocking while producing highly accurate ER results
on large datasets.
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