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Abstract: As databases become more pervasive through the biological
sciences, various data quality concerns are emerging. Biological databases tend
to develop data quality issues regarding data legacy, data uniformity and data
duplication. Due to the nature of this data, each of these problems is non-trivial
and can cause many problems for the database. For biological data to be
corrected and standardised, methods and frameworks must be developed to
handle both structural and traditional data. This paper discusses issues
concerning biological data quality with respect to data cleaning. It presents
BIO-AJAX, a framework developed to address these issues. It finally
describes BIO-JAX for TreeBASE and BIO-AJAX for Lineage Path, two
implementations of BIO-AJAX on phylogenetic data sets.
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1 Introduction

When most databases are designed, the schema is perfected and issues concerning the
data are taken into account. However, once a database becomes active, a number of
situations can occur that may necessitate additional tools to either improve or maintain
the integrity of the data. If knowledge about the data changes quickly, this can result in
legacy data not conforming to the knowledge contained in more recent data. Moreover, if
databases are transferred into data warehouses or if it becomes a part of a federated
database system, the data within the system must be integrated to conform to one schema.

The areas of data quality, cleaning and integration discuss the aforementioned issues
concerning databases. Data quality primarily concerns itself with issues concerning the
characteristics of a database’s data and schema. It then analyses whether the actual
database conform to the expected view of the data from the conceptual model.
Data quality usually addresses where or not the records within the database are accurate,
timely, complete and consistent (Wang et al., 1995). Three methods for managing
data quality are data cleaning (Rahm and Do, 2000), data quality monitoring
and data integration (Lenzerini, 2002). Primarily, data cleaning addresses the issues of
“detecting and removing errors and inconsistencies from data in order to improve the
quality of the data” (Lenzerini, 2002).

This paper will discuss the need for biological data cleaning and present framework
for performing data cleaning on biological databases. It will demonstrate how this
framework, BIO-AJAX (Herbert et al., 2004), has been applied effectively to
phylogenetic data, a heterogeneous and complex data set containing both structural and
traditional text data through BIO-AJAX for TreeBASE and BIO-AJAX for Lineage
Paths. While the process has been addressed in the general case theoretically and
analysed for specific databases, there has been very little work regarding data cleaning
when referring to biological and evolutionary databases. Finally, it will address some
open research questions and conclude with describing future work.

1.1 Motivations for biological data cleaning

Biological data is rich with issues that can be addressed with data cleaning and
integration methodologies. Data cleaning in biological data is an important function
necessary for the analysis of biological data. It can standardise the data for further
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computation and improve the quality of the data for searching. The very core purpose for
most biological databases is to create repository, integrating work from numerous
scientists. Phylogenetic data encapsulates these problems. Using phylogenetic data to
demonstrate these problems, data cleaning and integration can be used to solve the
following problems:

e standardising the format of phylogenetic data when performing operations
upon them

e cleaning and modifying legacy data

e standardising nomenclature

e finding duplicate structural data (trees) and records within the dataset
e removing duplicates, if necessary

e clustering similar structural data (trees) and records

e merging similar records

e finding anomalous structural data (trees) and data.

Each of these problems can pose serious problems for phylogenetic databases.
First, many databases have standardisation issues. If the data is manually entered into the
database, variations in how the user inputs the data can cause problems. If the database
contains legacy data, there can also be standardisation problems. With phylogenetic and
biological data, innovations and discoveries within the field occur rapidly. Therefore the
knowledge about the data, as well as how different data affects other data can change just
as quickly. To reflect these changes, data may be stored differently, with the data that did
not benefit from these new discoveries, kept in its same format. With data now in at least
two, possibly multiple formats, it becomes harder to apply any computational tools to this
data or even perform effective retrieval. Therefore, it becomes imperative to integrate the
data in these various formats.

Another large problem facing phylogenetic databases is the nomenclature issue.
There are various types of nomenclature systems, but with phylogenetic data, the primary
nomenclature issues concern the naming schemes related to how the species are
classified. Currently, the pervasive nomenclature methodology within biology for
species is the Linnaean Hierarchy. Many phylogenetic researchers find this system of
classification inadequate and have proposed other nomenclature methods (Soares, 2004).
The Linnaean Hierarchy primarily depends upon naming species based on the
observations. With the advent of computation biology and more quantitative methods for
determining the relationships between species, differences in how to classify species have
arisen. Since the Linnaean Hierarchy is dependent upon the hierarchical classification for
naming, and since there are now multiple methods for creating the hierarchy, many
phylogenetic researchers feel the hierarchy is inadequate. This has resulted in the
creation and debate over a number of mechanisms for naming species. Many of
these nomenclature systems are in development. Moreover, concerning legacy
data, nomenclature rules were not followed perfectly while naming species. While
better-known species such as Homo sapiens (human) have standard nomenclature, many
obscure species, such as species within the botanical fields, can have nomenclature
issues. Synonymy occurs since many of the botanical species were named through visual
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inspection rather than using modern computational methods. Therefore, a species can
have two distinct Linnaean names. By using Linnaean names exclusively, this can limit
the users of a phylogenetic database tool. Many potential users, possibly students or
recreational users, may be unfamiliar with the various scientific names associated with an
species. This creates the problem of standardising nomenclature for performing database
operations such as searching while also needing to maintain flexibility with the database
by allowing the user to specify the nomenclature of choice. It also creates interesting
cleaning problems for matching (Harlin, 2003).

Issues can also exist in phylogenetic databases regarding duplicate structure or
text-based data. In this type of database, duplicates need to be handled very carefully.
A duplicate tree may not indicate a duplicate record. It can indicate duplicate findings by
two different studies or a continuation of a previous study. This type of information can
be of interest to both the database curator and the user since it does give information
about related trees. By detecting duplicates or trees that are extremely similar, the
database can then give this information to the user. The user can then possibly learn about
the differences in the trees or the records containing the trees. These differences can be of
importance. For example, if two trees are similar but were developed by two different
research teams using two different methods for constructing the trees, this could
be of importance since it shows similar results by two separate methods. If two records
are deemed duplication errors, then duplicate detection can also eliminate the
duplicate record.

Clustering phylogenetic data, like any other data, can be very useful. Generally,
clustering data allows for patterns within the data to be found. Based on the measure used
for clustering, similar records (or in this case phylogenetic trees) can be grouped together.
This leads to interesting possibilities concerning the analysis of the clusters. First, the
clusters can give information on what trees are similar. Clustering can be based on
structure, method of creation of the tree, similar species within the tree as well as other
possible parameters. This information can be of use to both the curators and the users.
The curators can use this information to study the behaviour of the database. It can also
be used as a method of detecting errors, since if a tree is an outlier within the clustering,
and after analysis it is found the tree should be within a specific cluster, the curator can
then examine the specific tree for possible errors or other automated tools can be applied
to the outliers to confirm it should be an outlier. Also, clusters can also create preliminary
groupings of trees so that data can be merged.

Each of these cleaning and integration issues has long reaching effects in
phylogenetic research. Since the quality of the data is improved through the data
cleaning, recall and precision can be improved upon the database. Also, any other
computational tool applied to the data within the database performs better. Since the data
is clean, the tool’s performance is based more on the content of the data. Without the
cleaned data, the tool’s results can be skewed and reflect the errors and abnormalities
within the database.

All of these problems, while specifically belonging to phylogenetic data, particularly
data housed in TreeBASE, http://www.treebase.org (Piel et al., 2000), a manually curated
phylogenetic tree repository, can be generalised to biological databases. The BIO-AJAX
framework was developed and applied to many of the issues observed within TreeBASE.
While this framework is primarily applied to phylogenetic data, it can also be applied to
other biological data sets. For example, while TreeBASE does not automatically
exchange data with other databases, a biological data cleaning scheme can help clean
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problems associated with that type of database operation through mapping
schema properly or standardising the nomenclature between the two databases.
Moreover, mapping can be interpreted in terms of data integration. Also, it can help a
stand alone database address its nomenclature problems. Nomenclature problems are
pervasive among biological data sets. Some other nomenclature problems are a result of
nucleotide research while others discuss protein data (Greer et al., 2002). A data cleaning
framework can also address specific error detection issues inherent to a particular
biological data set. It can also cluster the data on metrics specifically associated with the
data to perform error detection and preprocessing for merging.

This article discusses the aforementioned problems and introduces new methods to
help preserve biological data quality. Section 3 reviews the state of the art in data
cleaning, a key component of data quality. Section 4 introduces BIO-AJAX and
formalises the conceptual framework. Section 5 demonstrate practical implementations
of BIO-AJAX. It exhibits BIO-AJAX for TreeBASE, a phylogenetic nomenclature
cleaning tool that employs mediator integration. It also presents BIO-AJAX for Lineage
Paths, a data quality tool that uses data warehousing techniques to allow users to
manipulate taxonomic lineage paths from the NCBI Taxonomy Database and the
Integrated Taxonomic Information Server. Finally, Section 6 discusses the implications
these biological data quality methods will have for data repositories and their information
retrieval and knowledge discovery tools. It will also discuss possible future projects
concerning data quality especially concerning BIO-AJAX.

2 General data cleaning

As mentioned previously, data cleaning methods address the issues concerning the
quality of data (Dasu and Johnson, 2002, 2003). It is also sometimes referred to as the
process of taking data that is ‘noisy’, sometimes also referred to as ‘dirty’, or otherwise in
a format where computational tools have difficulty processing it and transforming it into
a more accessible format. This process maintains the integrity of the data while removing
aspects of this data that can be considered ‘dirty’ (Dasu and Johnson, 2002, 2003).

Data cleaning, which is a part of a larger research area called ‘data quality’, is a very
large field that encompasses a number of research areas within database. In data cleaning,
there are three categories of problems that need to be dealt with. First, there is erroneous
data detection. Problems from erroneous data usually stem from, but are not limited to,
user input errors, inconsistency in input, missing values, misspellings, improper
generation of data, and legacy data difference (Dasu and Johnson, 2002, 2003).

Next, there is duplicate detection. Figure 1 demonstrates a simplified version of this
method. At first, duplicate detection was applied to very large databases where
duplication control was not very strong. The first algorithms were essentially string
detection and record detection algorithms for relational databases. However, as data and
schemas grew more complex, duplication detection became harder. Also the questions
concerning whether two similar documents were actually duplicated became a pressing
question. With simple similarity detection through sorting and joining records within a
database, more complex duplication errors became evident. Duplication can occur, but
not be detected, through data errors. Also, as data becomes more complex, synonymy can
occur. Synonymy occurs when two records are not identical syntactically, but are
identical semantically (Rahm and Do, 2000).
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Figure 1 Data cleaning through duplicate detection. ‘A’ represents the unclean database. ‘B’
shows the database after sorting and detecting duplicates. ‘C’ presents the final database

A LName | FName| Address
Smith | Mark | 123 Main Street
Jones Steven| 40 Raymond Blvd.
Smith Marc | 123 Main St.
Jones Steven| 40 Raymond Boulevard
C LName | FName | Address
¢ Jones Steven | 40 Raymond Blvd.

LName | FNamel Address Smith Mark 123 Main Street

Jones Steven| 40 Raymond Blvd.

Jones Steven| 40 Raymond Boulevard /
Smith | Marc | 123 Main St.

Smith Mark | 123 Main Street

Finally, there is schema errors and schema and data integration. Schema errors result
from improperly formed schema or schema that need to change frequently. Schema and
data integration occurs when the database is part of a federated system or needs to be
synchronised with other databases. With interoperability being facilitated through the
World Wide Web, many databases tend to need to synchronise with other databases.
This process of synchronisation includes communicating both data and schema between
databases and updating the database accordingly. Therefore, proper schema becomes
essential for communicating with other database. Moreover, for rapidly changing data,
schemas sometimes need to be modified to reflect these changes in data. Without
properly mapping previous data, the database can have trouble with legacy data
interacting with new data (Rahm and Do, 2000).

Data cleaning problems have been observed throughout the history of databases, with
the first documented cases stemming from the US Census information during the 1950s.
Since then, there have been many developments within the data-cleaning field.
Commonly, a data cleaning system should fulfil the following conditions. First, it should
remove errors within the data. This includes errors within the data as well as schema
integration issues for federated databases. Second, the cleaning should be done
through automated tools rather than manual inspection. Third, data cleaning should
not be done in isolation but rather with respect to the entire database and its schema
(Rahm and Do, 2000). Table 1 summarises data cleaning methods and gives an example
for each method.

2.1 Duplicate elimination

One of the earliest methods for cleaning data was duplicate detection and elimination.
One of the most popular method for duplicate detection was introduced by Bitton and
DeWitt (1983). At the time, for most database management systems, trivial duplicates
could be found through sorting and then performing a join procedure. The join would
then find the duplicates and they could be eliminated. However, this was a time-intensive
procedure. Many database management systems chose not to sort in favour of speed.
The method developed by Bitton and DeWitt (1983) modifies the sort procedure so that it
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ran somewhat faster than the sort procedure provided by the relational databases of the
time. Also, this sort procedure, upon detecting a duplicate, immediately removed
the duplicate, thereby eliminating the need for the join procedure. The sorting algorithm
can be any efficient sorting algorithm that allows for external sorting. Some of these
algorithms include two-way merge sort and the use of hash tables (Bitton and
DeWitt, 1983).

Since the Bitton method has been introduced, extensive work has been done to detect
duplicates and approximate duplicates within databases. One of the major advancements
in this type of approach to duplicate detection is the sorted neighbourhood approach to
detecting duplicates. In the sorted neighbourhood approach, a key is extracted from
the data. This key, while being a unique identifier for the data, also represents the
minimum set of elements from which similarity can be determined. This key is usually a
combination of the elements within the given set of attributes rather than all of the data
within the attributes. This increases the speed of the sorting as well and gives a smaller
string for comparison. Records are then sorted based on this key. From this sorted list of
records, similarity can be measured through the use of a ‘window’. This window W
represents W records from the sorted set. Any record R within  is then compared with
the W —1 record before R and W — 1 records after R in sorted order. If the records then
are judged to be similar, the duplicates are eliminated (Hernandez and Stolfo, 1995, 1998;
Low et al., 2001).

While the sorted neighbourhood method detects many duplicates, it does have its
limitations. For example, it only detects duplicates within the given window size.
Moreover, duplicate detection is highly depended upon the key selected for sorting the
records. Based on these observations, Hernandez and Stolfo (1995, 1998) developed a
modified sorted neighbourhood method that tries to improve performance based on the
above problem. In their method, they perform the sorting through multiple iterations.
During each sort, the key is modified so that the sort results will be different. After each
sort, the records are compared, with duplicates being deleted and similar records being
merged. However, since there is multiple passes through this sort and merge algorithm,
more record that are similar can be detected. Also, relating records that are not obviously
similar becomes easier by taking the union of the set of results obtained by each sort and
obtaining the transitive closure of the union (Hernandez and Stolfo, 1995, 1998).

There is also an incremental method to cleaning databases based on this multiple-sort
sorted neighbourhood algorithm. In this algorithm, the objective is to not clean previously
cleaned data, but to clean new data within the database as well as adjust the records about
the previously cleaned data to reflect this new cleaning. In the incremental sorted
neighbourhood algorithm, new data is compared against keys that are ‘representative’ of
the database. These representative keys are obtained from the previous cleanings. In each
of the previous cleanings, similar records are grouped together or clustered. Then, from
these clusters, a key describing the common attributes from the cluster is developed.
When performing a new cleaning, the dirty records are compared against the
representatives through the multi-pass version of the sorted neighbourhood method.
If duplicates are detected during this phase, they are then merged or eliminated. Once the
various sorts finish, based on the knowledge gained from the sorts, the record is placed
into the most similar cluster. The representative is then modified to reflect the new record
(Hernandez and Stolfo, 1995, 1998).
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2.2 Knowledge-based methods

Besides using methods with various applications of sorting, there are a number of
machine learning methods for performing data cleaning (Cochinwala et al., 2001;
Low et al., 2001). One popular method is to incorporate knowledge bases into data
cleaning tools. Knowledge bases provide domain dependent information that can be used
to improve error detection techniques and detect duplicates. A good example of a
knowledge base data cleaning tool is Intelliclean by Low et al. (2001). Intelliclean first
‘scrubs’ the data for irregularities that can be detected easily. For example, it standardises
abbreviations. Therefore, if one record abbreviates the word street as ‘St.” and another
abbreviates it as ‘Str.” while another record uses the full word, all three records
can be standardised to the same abbreviation. Once the data has been scrubbed,
it is then cleaned using a set of domain-specific rules that work with a knowledge base.
These rules detect duplicates, merge appropriate records and create various alerts for any
other anomalies. Finally, the cleaning is then validated through user interaction and
inspection (Low et al., 2001).

While many data cleaning tools are automated, there are also other tools that require
human expert interaction. The tool Potter’s Wheel, developed by Raman and Hellerstein
(2001) at the University of Berkeley in California, is an example of such a system. With
interactive tools, an expert can use these tools to clean the data, exploiting the subtly of
the expert’s needs. Potter’s Wheel is a domain independent tool. The interface allows the
user to view the various cleaning rules being employed on the data set. From this view,
the user can then modify the rules so that cleaning becomes more precise. The actual
operation to clean the data is then done without the user needing to interact with the
system (Raman and Hellerstein, 2001).

Another method, proposed by Caruso et al. (2000) uses data reconciliation techniques
to match and combine duplicate records within a give database. In the tool they created,
the use an extensible platform that uses machine-learning techniques to decide how to
eliminate duplicate entries within a database. The tool uses a training set of data from a
database it will eventually be applied to. From this training set, the tool can develop a set
of rules for matching data to find duplications. Once the training set is selected,
preprocessing of the data occurs. This pre-processing can include removing common
words within the data set or reducing white space. Next, a set of measures of similarity is
selected for the data. The tool is the trained on the selected data to obtain the rules for
detecting duplication. It is then applied to the entire data set (Caruso et al., 2000).

2.3 ETL method

Currently, the most popular method for data cleaning is the ETL method. The ETL
method performs data cleaning through an extraction, translation and loading process.
During this process, two types of cleaning occur: on the instance-level and on the
schema-level. Instance-level cleaning refers to errors within the data itself, such as
misspellings. Schema-level cleaning usually concerns integrating the database into a new
schema, a data warchouse or a federated database. In the ETL process, the data and
schema are extracted, various operations are performed on the data and schema to
clean them, and then the new schema in put into the database with the cleaned data
(Rahm and Do, 2000). ETL’s primary tools are data flow graphs, which tracks
the transformation of the dirty data into the cleaned data (Rahm and Do, 2000).
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The ARKTOS system, a data cleaning system that implements the ETL structure is an
example of a system that uses this structure (Vassiliadis et al., 2001).

While each of aforementioned methods is interesting, they do have their drawbacks.
The ETL method tends to be database-specific. The tools designed to perform the
extraction, translation and loading tend to apply to only one database. The tool proposed
by Caruso et al. (2000) only considers the need for matching and deleting duplicates.
Also, the pre-processing phase where a set of data is selected for training has some
disadvantages. First, it requires prior knowledge of what instances in the database
might be problematic. Second, in the preprocessing field, the data also needs to be
standardised before the learning algorithms are applied. The method that will be used for
this project is the declarative method. In this method, various operators for data cleaning
is conceptually defined. Then, tools are developed to implement these operators,
depending upon the definition of the concept with respect to the data. For example, a
match in a dictionary would be defined differently then a match for a protein
in a biological database. This method has been implemented into the tool AJAX
(Galahardas et al., 2001a, 2001b).

2.4 Disambiguation methods

Recently, many data cleaning efforts have learned toward methods that center on
disambiguation. Popular fuzzy methods include the method created by Chauhuri et al.
(2003) for approximate string matching to generate an Error Tolerant Index (ETI).
Kalashnikov and Mehrotra have introduced a data-independent method for reference
disambiguation using entity-relationship graphs (Kalashnikov and Mehrotra, 2006).
Fuxman et al. (1978) have introduced “ConQuer, a tool which rewrites SQL queries to
help resolve data inconsistencies that can occur while ordinary sequel queries”. Chu et al.
(2005) use belief propagation with Hidden Markov Models to disambiguate data.

Table 1 Table of popular data cleaning methodologies

Methodology Example system

ETL Artos (Vassiliadis et al., 2001)

Extensible machine learning techniques Telcordia’s database reconciliation and data quality
analysis tool (Caruso et al., 2000)

Declarative model AJAX (Galahardas et al., 2001a, 2001b)

Knowledge-base technique Intelliclean (Low et al., 2001)

Duplicate detection through sorting Bitton’s pre-sorting (Bitton and DeWitt, 1983)

Multi-pass sorted neighbourhood Merge/Purge (Hernandez and Stolfo, 1995, 1998)

User interaction Potter’s Wheel (Raman and Hellerstein, 2001)

Disambiguation methods ConQuer (Fuxman et al., 2005)

2.5 Declarative data cleaning

Declarative data cleaning, as described by Galahardas et al. (2001a, 2001b) involves two
processes: logical processes to perform data transformations on dirty data and
performance processes to improve these transformations without sacrificing accuracy.
This approach necessitates the creation of five conceptual operators which interact with
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each other to perform data cleaning. These operators are as follows: MAP, VIEW,
MATCH, CLUSTER and MERGE. The mapping operator would specify how to
transform one relation into a second relation (Galahardas et al., 2001a, 2001b).
This operator allows for schema transformations and schema integrations. The view
operation is similar to an SQL query with modifications that can help with exception
handling and integrity constraints (Galahardas et al., 2001a, 2001b). The matching
operator computes the difference between two input tuples to determine the degree of
similarity between the two tuples. This function can be used to detect duplicates within
the database as well as detect errors against a knowledge base. Also, it can be modified so
that degree of similarity can be computed. The cluster operation takes a relation that
defines a set of elements from the database as input and returns one relation as output.
This operation allows for the definition of that output relation to be a description of some
distance within the initial set of elements. The merge operation defines a method for
combining similar tuples into a defining relation. In merging, a single relation defining a
set of elements is taken as input and one relation is returned as output. This relation
groups and collapse the set of elements within the input relation based on some matching
criteria (Galahardas et al., 2001a, 2001b). Based on this framework, data cleaning
systems can be built that optimally address cleaning problems from a given data set.

Galahardas extended this framework into the tool AJAX. AJAX is a data cleaning
system for publication and citation information. The cleaning operations are applied to
this data, which is in a relational database format (Galahardas et al., 2001a, 2001b).
They operations present an approach to perform various data cleaning on most data sets.
Since they are not instantiated precisely, but rather can be instantiated into whatever data
cleaning system a group wants to develop, they can be instantiated based on the data set.
This preserves the concepts of the operations needed to perform data cleaning while also
allowing flexibility in the way the specific data set needs from a particular operation.
Therefore, these data cleaning operations can be applied to biological and evolutionary
data. Moreover, the operations can also be applied regardless of whatever type of data
model or schema is used to create the database (Galahardas et al., 2001a, 2001b).

3 BIO-AJAX: a case study

BIO-AJAX (Herbert et al., 2004) is a proposed data cleaning framework for biological
databases that is designed to clean both schema level and data level data quality problems
based on a declarative data cleaning framework. It uses the conceptual operations
presented by Galahardas et al. (2001a, 2001b) that ultimately developed the AJAX
system as well as adding a new operation to process outlier data from clustering.
BIO-AJAX preserves conceptually the operations while modifying the cleaning
operations so that they specifically apply to biological databases needs. These cleaning
operations will help to reduce a number of the problems mentioned previously that are
inherent to biological databases.

To illustrate BIO-AJAX best, phylogenetic data, specifically phylogenetic trees were
chosen. There are a number of reasons for this choice. First, phylogenetic data tends to be
a heterogeneous dataset. The main components of this data set are structures in the form
of phylogenetic trees modelled in various ways. For a standard keyword database, the
problem of data quality and data cleaning has been well explored. However, the problem
of cleaning databases containing structural data has not been researched. Moreover, most
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phylogenetic databases have other data associated with it. Therefore, this also motivates
the problem of how does a data cleaning tool operate upon databases with different data.
With heterogeneous data come the issues concerning how does the tool measure
similarity as well as cluster or merge that data. With heterogeneous data come the issues
concerning how does the tool measure similarity as well as cluster or merge that data.
Therefore, phylogenetic data can demonstrate both of these problems as well as provide
an interesting data set to perform cleaning on.

To clean biological data, some modifications are needed of the aforementioned
framework. While the framework is powerful for many data cleaning problems, there are
some extensions that biological data, particular phylogenetic data need so that the data is
fully cleaned. For phylogenetic data, each of the five operators would need to be
extended specifically for the data set. Moreover, there can be multiple extensions of these
operators. For example, there are a number of algorithms that can perform matching in
any data set, let alone phylogenetic data. Also, for the framework, a sixth operator has
been added. This operator, CLASSIFY, will perform classifications within the database
and clean it accordingly.

3.1 The MAP and VIEW operators

The mapping operation can help with a number of problems inherent within these
databases. Mapping is key to both biological schema cleaning and biological data
cleaning. First, the mapping operation can help with transferring legacy data into new
schemas. Second, it can help populate the database with data from other databases by
transforming the second database’s data schema into the first database’s schema. Finally,
if there is a schema level problem, mapping can map the data in the dirty schema into a
better schema. The view operation should be standard with respect to what has already
been said since it is a method for querying the database. For example, the view operator
can be used to display the tables generated with mapping operator.

Figure 2 The BIO-AJAX framework

/U MAP | | VIEW D\
P

| MATCH | |CLUSTER|

Clean
Schema &
Data

Dirty
Schema &
Data

| MERGE | |CLASSIFY| J
g

3.2 Mapping and viewing phylogenetic trees

One common problem with phylogenetic trees within databases is that the trees can be
stored in various formats. Therefore, one possible purpose for mapping a data set of trees
is to map them into the same format. If the trees are in different formats, a number of
problems can occur. First, to perform any knowledge discovery or even comparison
operations on the data set, ideally the data should be in the same format. If not, any tool
written to process the data will need to be able to process all formats of the data.
However, this method does not manage possible future cases. If the database modifies the
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format even slightly, any new data will be lost. Mapping the format of the trees helps to
accomplish a number of data cleaning objectives. First, it allows for legacy formats
within the database to be standardised. This will then allow for all data to be available for
any knowledge discovery tool written for that specific format. Second, any data that is
not in a needed specific format can then be mapped onto that format. Third, if
phylogenetic databases exchange data, mapping can help integrate new data into the
pervasive format within the database. Finally, if a database needs to change or update to a
new format, the legacy data can be easily updated as well. The view operation should be
standard with what has already been said since it is a method for querying the database.
For example, the view operator can be used to display the tables generated with mapping
operator.

3.3 The MATCH operator

The matching operator has many purposes that can help facilitate data cleaning. First and
foremost, it is an excellent tool for detecting duplicates or records whose semantic
contents are extremely similar, that in essence the records are duplicates. For many of the
biological fields that have readily accessible databases, exact matching and similarity
matching are well-explored research areas. For example, for a database containing
nucleotide or amino acid sequences, sequence alignment algorithms such as BLAST,
FASTA and CLUSTAL-W can tell a user how similar two sequences or a set of
sequences are. Moreover, while these areas are well explored, most of these areas so do
not have similarity measures that can be considered perfect for every comparison.

However, a large problem within biological research is the idea of detecting
synonymous data. Since biological data can be complex, incorporating structures and
well as text, detecting entries that are not identical syntactically but are identical
semantically is a large problem. For example, it is common for the more heavily research
species to have multiple identification names. Most species at least have their scientific
name and their language-specific vernacular name (e.g., Human and homo sapien, fruit
fly and drosophila melanogaster). This problem can be compounded by a number of
factors. First, the scientific or Linnaean names for organisms can be inadequate for
describing a species. Many species were classified before genetic sequencing and other
more quantitative methods were developed to classify a species. With the use of the more
qualitative methods, it has been the case where that separately classified species
ultimately were variations within the same species. Since many phylogenetic databases
have legacy data, and there are many sources for phylogenetic information, both
standardising nomenclature, or the naming mechanisms used to identify a species
throughout a set of data, through trees as well as checking nomenclature within a
knowledge base can help clean the data significantly. By standardising nomenclature,
comparisons and other knowledge extraction tasks can be performed much more
effectively and efficiently.

Besides nomenclature, matching can also use used for error detection. In biological
data, there are a number of causes for errors. Like any other database, biological
databases can easily suffer the same problems of improper input, spelling mistakes and
non-standard abbreviations. However, if used with a knowledge base, matching can be a
very effective method for detecting errors (Lacroix and Critchlow, 2003).

A knowledge base for species can be preliminarily developed from readily available
web databases. For example, NCBI provides a taxonomy tool that could be exploited into
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a knowledge base. The NCBI taxonomy tool, located at http://www.ncbi.nlm.nih.gov/
Taxonomy/taxonomyhome.html/ gives a great amount of information about any given
species. By querying these tools with a given species name, the various nomenclature
about the species can be extracted from the resulting web pages. Once the nomenclature
is extracted from the Web pages, it can be used to standardise the nomenclature in the
phylogenetic trees.

Also, duplicate or similarity detection is very important in phylogenetic studies.
When a duplicate is detected, this could mean that one of many different events have
occurred within the database. First, there could be a duplicate record within the database.
In that case, the record should be removed. Another case may be that there exists two
identical trees by the same author is two different studies.

The curator of the database may want to decide then how to handle this duplicate
information. Next, there may exist duplicate trees within the database by different author
using different reconstruction algorithms. This could be a potentially important find since
most algorithms that create phylogenetic trees do not perform the exact same operations
as any other reconstruction algorithm. This information could also be helpful to the users
of the database, if they want to see similar trees. The matching operator can incorporate a
number of matching algorithms that are native to either biological data sets or specifically
phylogenetic tree data sets. Also, there are also a set of matching algorithms, while not
native to biological databases, are customarily used on keyword databases that can be
used to process phylogenetic trees, especially the metadata associated with the trees.
However, these algorithms must be used so that a match can be detected on the biological
or phylogenetic data. For example, the matching operator can include sequence
alignment, structure comparison as well as a thesaurus to handle the species synonymy
problem. With the various terminology as well as the different methods for analysing the
structures involved within biological data sets, it is very possible to have duplicate
records, based on a given biological measure that is not evident through keyword
comparison.

3.4 The CLUSTER operation

The clustering operation can perform similar duplicate detection functionalities that the
matching operator can perform. Conceptually, the cluster operation organises a set of
elements in a relation by either their value or their distance from one another.
Both ‘value’ and ‘distance’ can be defined for any given database set, especially
biological data, so that this operation can be performed. For example, for protein data,
this can be performed for proteins that have similar structures or amino acid sequences.
For nucleic databases, clustering can occur on sequences that have a specific gene or
protein or segment of DNA that is similar. For phylogenetic data, this can be performed
on the set of phylogenetic trees that have a similar structure.

Clustering phylogenetic data has been an important function within the field for a
very long time. By clustering phylogenetic data, relationships between species can be
discovered. Also, through clustering phylogenetic trees, comparisons of various
reconstruction algorithms can be made. By clustering phylogenetic trees specifically,
methods for creating the trees, or reconstruction algorithms, can be compared. Clustering
allows for scientists as well as the database manager to see what data can be considered
similar and what is possibly an aberration within the database. This can help with error
detection since clustering can highlight outliers. Outliers can then be analysed and
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cleaned appropriately. Moreover, through these comparisons, various identifying aspects
of the trees can be learned. For example, by clustering similar trees, scientists can learn
how closely species or groups of species are related to each other. Reconstruction
algorithms can also be evaluated. It can demonstrate the effectiveness of an algorithm as
well as its flaws. For example, give a given set of peer-reviewed trees, clustering can find
the commonality structure between two trees. Moreover, if a user would like to compare
his or her tree against similar trees, clustering can help the user see what trees his or her
tree should be compared against. If the tree is then compared to the database, and the new
tree is not included within the cluster, this could indicate a problem with the
reconstruction algorithm or tool that created the tree (Stockham et al., 2002).

Clustering phylogenetic trees is a complicated topic. Currently, the most popular
approaches use a combination of popular clustering methods and consensus trees.
In these phylogenetic tree clustering algorithms, standard clustering algorithms such as
K-means and agglomerative clustering can be applied to the phylogenetic trees.
Then, once the trees are in clusters, consensus trees can be formed from these clusters to
represent the clusters. A consensus tree is a tree 7" where, given a set S of trees, all edges
in T are contained within every member of S. The formation of a consensus tree creates a
representative for a clustering of phylogenetic trees. Consensus trees can be used without
first clustering through the standard algorithms, however this creates one tree for the
entire data set (Stockham et al., 2002).

3.5 The outlier operator as a part of the CLUSTER operator

While the aforementioned operators, it is possible to detect and correct a number of
instances where data is considered ‘dirty’. However, errors within the data can still pass
unnoticed. Moreover, with clustering and merging operators, it becomes important
to analyse the results of the clustering operation in a more in-depth manner.
While clustering can help detect possibly similar or duplicate records, outlier records can
also indicate errors in the data.

An outlier is a data point that is different than the rest of the data within a database for
some given measure. Outliers can be detected easily within a data set that has been
clusters, since the data will not be contained in any cluster. For the data point not to
belong to any cluster, this means that the data this specific data point represents is not
similar to any other data within the clustering based on.

Concerning phylogenetic data, outlier detection can yield a great amount of
information. First, concerning data cleaning, outlier detection can indicate a problem with
the data. If a given tree T created with a set of taxon S and a reconstruction algorithm R
does not behave in an expected manner, such as fall into clusters with other trees
mapping S with R, then there could be an error with the data. This error can be the result
of a number of problems. Some of these possible errors are: input errors by the creators,
improper instantiation of the reconstruction algorithm, improper application of a
reconstruction algorithm, and faulty data used to create the tree.

3.6 The MERGE operator

The merge operation can act similarly to match and cluster. Since merging occurs based
on ‘value’ or ‘distance’ with respect to a given attribute, the operations that can be
performed are very similar to those in clustering. However, since the data is grouped and
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collapsed, this might be a useful method for creating consensus trees, supertrees or
superstrings. Also, if duplicates are detected within the match phase, merge can be used
to reduce a set of elements that are identical into one element.

Merging phylogenetic trees is commonly done in various application of phylogenetic
research. Usually trees are merged through the use of supertrees (Sanderson et al., 1998).
Supertrees are a pervasive method throughout the study of phylogenetics for relating
phylogenetic subtrees to each other. The purpose of the supertree is to take a set of
phylogenetic subtrees, which may or may not contain the some of the same species,
and for one tree. This one tree preserves as best as possible the evolutionary
relationships between the species within all of the trees (Sanderson et al., 1998; Sharkey
and Leathers, 2001).

Since scientists studying phylogenetics theorise life originated with once species, and
all other species evolved from that one, the super tree models a possible pattern for this
evolution. It specifies the relationship between speciess, and with supertrees, it also
specifies the relationship between trees. While supertrees can be used to merge any set of
trees, it offers an interesting capacity for phylogenetic data cleaning in that it can act as a
merge function for phylogenetic data. If two tree records are detected to be similar
enough for merging, the supertree algorithms can be used to merge the trees within the
phylogenetic records (Sanderson et al., 1998; Sharkey and Leathers, 2001).

3.7 The CLASSIFY operator

The final operator for the BIO-AJAX framework is the CLASSIFY operator. In working
with biological data, performing classifications is a routine procedure. Classification aids
biologists and database curators alike. First, classification offers the ability to discover
patterns within the data if no known patterns already exist. Moreover, it also allows
us to explore known patterns deeper as well as possibly discovering more patterns.
Next, classification also helps with the data item has any of a variety of data quality
issues concerning it.

Due to the nature of the biological data, especially due to the enormous size and
complexity of it, pattern recognition within the data set becomes extremely important.
Through classifying the data, previous observations can be confirmed and enriched.
First, if the new data item fits the classification model within given parameters, it adds
credence to the classification model. Moreover, if it does not fit the model, it can indicate
that there is an error either in the data or in the classification model. By adding to the
knowledge of the patterns within a given data set, it helps biologists to better understand
the underlying mechanisms within biology as well as model the data better with respect
to these mechanisms.

Also, classification can help with a number of data quality issues. For example,
within protein data, often a protein will be researched without fully understanding its
function. Through classifying the protein, the protein that is most similar to it can be
found. If the proteins are very similar, some aspects of the information stored about the
known protein may be also connected to this unknown protein, helping to improve the
consistency of the data. Moreover, it helps to disseminate metadata, which is currently a
key concern for all biological databases.
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Concerning phylogenetic data, there are many instances where classification may be
needed. Concerning nomenclature problems, classification can offer the ability to
standardise a set of nomenclature to a specific format by classifying whether or not it
already exists in a certain format.

Also, classification can help in analysing phylogenetic tree structures. If a
reconstruction method is unknown or if there is inconsistent data, classification can aid in
improving these problems. It can also identify characteristics of reconstructions as well as
any abnormalities within a construction.

4 Implementation and experimental results

BIO-AJAX is implemented using Perl, JAVA, JSP, HTML, and placed over TreeBASE
as middleware to preserve data integrity. Figure 3 shows the interface of the system.
Due to the sensitive nature of biological data, specifically in this case phylogenetic trees,
BIO-AJAX has been designed to never alter original submission data, but rather to
interact with the original data and provide facilities to clean the interactions with the data.
This is necessary, especially in an archival biological database cleaning since the data is
associated with publications by the researchers.

To perform the nomenclature cleaning, first, all of the taxa are extracted from
TreeBASE. The taxa are extracted with the name of the experimental study file that
contains them. Once the taxa are extracted, they are organised lexicographically
according to taxon names. The extraction file then goes through a rudimentary cleaning
phase. This cleaning phase removes characters that could not possibly be a part of the
taxon names as well as formats the extraction file for interaction. These characters, such
as a forward slash before a taxon name, were determined to be extraneous characters
during the analysis phase in the BIO-AJAX implementation for TreeBASE. Next, the
file is formatted to become input for a prefix generation tool.

The prefixes are generated by producing all possible prefixes containing
the first word of the nomenclature. (Most nomenclature consists of more than one
word and the first word is an identifying term of a species.) For example, given the
taxon ‘Homo sapiens x’, the following prefixes would be generated: ‘Homo’, ‘Homo s’,
‘Homo sa’, ‘Homo sap’, ‘Homo sapi’, ‘Homo sapie’, ‘Homo sapien’, ‘Homo sapiens’,
‘Homo sapiens x’. If the taxon name is one word long, then the prefix containing only
that one word is created for that taxon ensuring every taxon in TreeBASE will be tested.
Once the prefix list has been created, this list is then automatically used as input for the
NCBI TaxBrowser query tool (Benson et al., 2000; Federhen et al., 2004).

The NCBI Taxonomy database (Benson et al., 2000; Federhen et al., 2004),
considered as an excellent resource within the field, is a repository of phylogenetic and
taxonomic data about various species. The NCBI Taxonomy database provides tools to
search and browse phylogenetic data about most species. This method can be
implemented upon any taxonomy reference, with modifications made to the wrapping
mechanisms for that repositorys data. BIO-AJAX for TreeBASE conglomerates data
from multiple resources about taxa and species. This data is dynamically updated as the
Taxonomy database is updated, representing a concise representation of peer reviewed
phylogenetic data. Therefore, it provides an ideal resource for solving the nomenclature
problem in TreeBASE. Due to the storage nature of phylogenetic databases, the
wrappers used to extract the data are database-dependent.
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The list of prefixes is queried against the NCBI Taxonomy database’s search tool
TaxBrowser. This tool offers the user a number of options for searching for taxa.
For BIO-AJAX’s purposes, the following four types of searches are used: Complete
Name search, Wild Card search, Token Set search and Phonetic Name search. The search
for each prefix yields one of three possible results. First, the prefix is exactly found
within the NCBI taxonomy database. If this is the case, the tool has found a ‘data page’
about the prefix. The prefix and all other nomenclature NCBI associates with that entry
are indexed. The results from each of these searches are then combined together.
For example, consider again 7 in Figure 2 where ‘Homo sapiens’ is a prefix of
‘Homo sapiens x’. When sending this prefix to the NCBI taxonomy database, we will get
‘human’, ‘man’ and ‘Homo sapiens’ returned, and therefore all the three taxon names
are linked with 7). Similarly, when sending the prefix ‘human’ (‘man’, respectively) of
‘human A’ (‘man 1°, respectively) in 7, (73, respectively) to the NCBI taxonomy
database, we will also get ‘human’, ‘man’, and ‘Homo sapiens’ returned. Thus, the three
taxon names will be linked to all the three trees 7', 7> and T5.

In the second case where the prefix does not return any match, then the prefix is
discarded. Finally, if the prefix returns a hierarchical listing of possible matches, then an
exact phrase search is performed within the list. If the exact prefix is found in the list,
then that link is explored and treated as a data page. Only the exact match is used since, if
each result in the list were used, then many taxa that are not related significantly enough
to the original TreeBASE taxon would be included. For example, if the original
TreeBASE taxon is ‘Homo sapiens’, the prefix ‘Homo’ would be generated from that
taxon. The query ‘Homo’ on TaxBrowser results in a list containing the taxa ‘Homo’,
‘Homo sapiens’, and ‘Homo sapiens neanderthalensis’. Only the taxon ‘Homo’ will be
explored. ‘Homo’ represents a genus that Homo sapiens belong to. Therefore, data about
this group may be of interest to a user. If all of the list were explored, ‘Homo sapiens
neanderthalensis” would have also been included as a possible association to
‘Homo sapiens’. Since these are two distinct species, this is a relationship that should be
eliminated when creating the associations.

Once the list is obtained from NCBI, it is indexed using hash tables. These tables
allow for the exploitation of both the original data from TreeBASE and the data obtained
from the prefix generation and querying. One index is comprised of the original taxa
obtained from TreeBASE. The other index is comprised of the prefixes and other
nomenclature obtained during the NCBI Taxonomy verification stage.

Now consider again the BIO-AJAX interface shown in Figure 3. This interface has
been modelled similarly to the TreeBASE interface. The user can enter a nomenclature
query in the top frame. This query is then formatted for interaction with the index.
The query is checked against both indices described above. If a match is found in the
index reflecting the original TreeBASE taxa, this match is considered an ‘Exact’ match
and any data linked to this match is highlighted as an exact match. If a match is found in
the index that contains the nomenclature obtained from NCBI and the prefixes, then these
matches are treated as ‘Related” matches. With each index, the matrix accession for its
related studies is also housed with it. Once the matches are found, the data is then
extracted from the TreeBASE database through using the matrix accession numbers
of the studies. The results are then formatted, with the exact matches listed first,
and displayed to the user similarly as to how the results are displayed on the
TreeBASE website.
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Figure 3 The BIO-AJAX interface implemented for TreeBASE
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When searching, if the user wants to search for the taxon with exact matches in
TreeBASE, he or she clicks on the ‘Exact’ button. If the user wishes to search for any
related matches to the taxon, he or she would click on the button ‘Related’. The results of
the search appear in the text box in the top frame. From there, the user can select one to
all studies to be displayed. Once the studies are selected, they can be displayed in the
bottom left frame. Data from these studies, including the phylogenetic trees, can be
displayed in the bottom right frame.

The results in Table 2 reflected how BIO-AJAX found a number of taxa related to the
TreeBASE taxa that were not previously detected. This has a number of implications for
the cleaning method as well as TreeBASE. First, within the studies archived in
TreeBASE, while efforts have been made to minimise the nomenclature problems, only
approximately 50% of the taxa in TreeBASE are recognisable by the standards within
the phylogenetic community stored in the NCBI Taxonomy database. Moreover,
since many data repositories link to TreeBASE, such as the NCBI Taxonomy database,
this has implications for them as well. Second, with the prefix generation technique, the
recognition of the taxa can be improved to approximately 88%. This helps to solve the
inconsistency and incompleteness problems concerning the nomenclature in TreeBASE
as well as any other tool that links to TreeBASE.
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Table 2 Results of taxa searches in NCBI TaxBrowser with TreeBASE nomenclature

Search option TreeBASE taxa With prefixes
Complete name 13,076 (49%) 23,493 (88%)
Wild card 13,079 (49%) 23,493 (88%)
Token set 13,172 (49%) 23,801 (89%)
Phonetic name 14,025 (52%) 24,633 (92%)

The current implementation for BIO-AJAX for Lineage Paths (Herbert et al., 2005)
uses the data warehousing technique for integrating the data and is accessible through a
World Wide Web interface (Hernandez and Kambhampati, 2004). Figure 4 displays the
interface for this tool. The lineage paths are extracted from both NCBI Taxonomy
Database and ITIS and stored locally. In previous version of the tool and previous
instantiations of BIO-AJAX, the mediator method was used to display the paths.
However, due to limitations in accessing each repository, this method had to be replaced
with the warehousing method. Moreover, since each lineage path needed to be
manipulated to get very specific data out of it, the mediator method became impractical.
For comparison purposes, the mediator method performed an adequate job. However, for
finding all ancestors and descendents, the lineage path strings needed to be parsed
creating a long lag time for the Web interface. Therefore, the platform was shifted from
using the mediator method to the data warehousing method.

Figure 4 The BIO-AJAX interface for showing an example output for an ancestor query
for the taxon ‘Homo’
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5 Conclusion

After discussing the possible operations that can be performed through data cleaning on
biological database, there are a number of effects on biological information retrieval and
data mining. Primarily, since the data has been processed to cater to the needs of a
particular database, the data is now in a standardised format for whatever processing the
users need. Since the data, after cleaning, has been organised and translated into a concise
format, many of the tools for information retrieval and data mining can perform better.

First, the data will necessarily be more organised from the cleaning operations.
Through the mapping, matching and merging operations, data will be transformed into
the schema that database can analyse most effectively. Moreover, hard to detect
duplicates should be merged into one entry. Also, errors are detected and dealt with
before a user can access the database. Since the occurrence of duplicates has been
minimised and the data has been transformed into a preferred schema helping to
eliminate errors, information retrieval tools can work more efficiently. The database
management system should perform better with respect to recall and precision, there
should be less need for complicated indexing algorithms such as stemming and, through
the clustering and match operations, similarity should be easier to detect.

Data cleaning also gives data mining algorithms more precise and standardised data.
With this standard data, common data mining techniques will run more effectively.
If there are errors within the data or if the data in not organised properly, data mining
algorithms can see these errors as interesting aberrations within the data rather than error
(Dasu and Johnson, 2002, 2003). Also, each of the operations within this declarative data
cleaning model can be seen to perform data mining tasks. Mapping translates one schema
into another schema. Matching, clustering and merging each act upon information
concerning the degree of similarity a set of data has with respect to a particular measure.
From this, especially from clustering and merging, patterns can be obtained. Also, since
data cleaning can ecliminate errors and duplicates, this helps to streamline the data.
This helps with the compression issues involved with data streams and data squashing
(Dasu and Johnson, 2002, 2003).

This framework offers many possibilities for future research in many different areas.
Possible research includes explaining the framework, specifying the algorithms that
govern the framework more precisely, exploring improvements on already existing
algorithms for the current framework and applying the framework to other biological data
besides phylogenetic data.

First, the framework needs to be further specified to be instantiated upon Tree-BASE.
This paper explains some possible operations that can be performed on the phylogenetic
data contained within the database TreeBASE. It cites some possible algorithms and
methods for performing the operations of BIO-AJAX. However, ultimately, only a few of
the operations can be performed to maintain consistency throughout the database.
For example, it might be beneficial to implement only one algorithm for matching trees.
Further research can include instantiating this tool to operate specifically upon
TreeBASE, working with its curators to find the various measures needed to perform the
aforementioned operations.

Next, while matching phylogenetic trees is a well-explored area, clustering, merging,
outlier detection and mapping are not. While there are algorithms that are available to
perform these functions in a simple manner, there are no algorithms that handle the more
pervasive complex methods needed to fully implement the generally accepted ideas of



80 K.G. Herbert and J.T.L. Wang

clustering, merging, outlier detection and mapping. Each of the operators, even with the
simple algorithms, also offers a great opportunity for improvement. For matching,
developing a knowledge base or interacting with previously established knowledge bases
for the sole purpose of nomenclature standardisation is not well research for phylogenetic
databases. This problem has been addressed for species concerning protein databases and
nucleotide databases. However, these databases usually do not act as a repository for
phylogenetic trees.

Also, by solving these problems, a number of curator and user interaction problems
develop. Issues concerning how involved the curator should be during the cleaning
process, especially concerning duplicate diction, elimination and merging. Also, within
the matching, clustering, merging and outlier operators, it was mentioned how the results
of those operations could help the user discover more knowledge about the data. How to
convey what cluster a particular tree is in or what trees it was merged with to the user
becomes an issue.

Data integration is key to helping biological databases facilitate the knowledge
discovery processes within biological research. Through integration, biological databases
are afforded the tools to solve some of their large problems. It allows these repositories
the freedom to integrate new data or data not held within their repository into a unified
view for a user. It also gives the curators the ability to use multiple database management
systems to help describe their data more completely. Moreover, integration allows the
user the freedom of querying in a unified interface, rather than needing to visit multiple
databases and then collate the results. In this paper we presented three areas of biological
databases that can be aided with integration technologies. By applying integration
techniques to these areas, some difficult problems facing biological databases can be
solved.

Finally, when this framework was developed, it was intended to be independent of a
specific database. Therefore, it would be interesting to apply this framework to possibly
other biological databases such as a nucleotide database or a protein database.
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