
The Merge/Purge Problem for Large Databases *

Abstract

Mauricio A. Hern&ndezt Salvatore J. Stolfo

{nrauricio, sal}@cs. columbi.a. edu

Department of Computer Science, Columbia University, New York, NY 10027

Many commercial organizations routinely gather large num-

bers of databases for various marketing and business analysis

functions. The task is to correlate information from different

databases by identifying distinct individuals that appear in

a number of different databases typically in an inconsistent

and oft en incorrect fashion. The problem we study here is

the task of merging data from multiple sources in as efficient

manner as possible, while maximizing the accuracy of the re-

sult. We call this the merge/purge problem. In this paper we

detail the sorted neighborhood method that is used by some

to solve merge/purge and present experimental results that

demonstrates this approach may work well in practice but at

great expense. An alternative method based upon clustering

is also presented with a comparative evaluation to the sorted

neighborhood method. We show a means of improving the

accuracy of the results based upon a multi-pass approach

that succeeds by computing the Transitive Closure over the

results of independent runs considering alternative primary

key attributes in each pass.

1 Introduction

In this paper we study a familiar instance of the se-

mantic integration problem[lO] or the instance identi-

fication problem[14], called the merge/purge problem.

Here we consider the problem over very large databases

of information that need to be processed as quickly, ef-

ficiently, and accurately as possible. For instance, one

month is a typical business cycle in certain direct mar-

keting operations. This means that sources of data need

to be identified, acquired, conditioned, and then corre-

“This work has been supported in part by the NYS Science

and Technology Foundation through the Center for Advanced

Technology in Telecommunicationsat PolytechnicU niversity,by

NSFunder grant IRI-94-13847, and by Citicorp.

tThisauthor’s work wassupported byan AT&T Cooperative

Research Program Fellowship.

Permission to copy without fee all or part of this material is
9ranted provided that the copies are not made or distributed for
direct commercial advantaqe, the ACM copyright notice and the
title of the publication and k date appear, and notice is given
that copyin is by permission of the Association of Computing

fMachinery. o copy otherwise, or to republish, requires
a fee and/or specific permission.
SIGMOD’95,San Jose, CA USA
Q 1995 ACM 0-89791-731 -6/95/0005..$3.50

lated or merged within a small portion of a month in

order to prepare mailings and response analyses. For

example, it is common that many magazine subscrip-

tion databases are purchased for the specific purpose of

identifying characteristic interests of people for directed

marketing purposes. It is not uncommon for large busi-

nesses to acquire scores of databases each month, with

a total size of hundreds of millions to over a billion

records, that need to be analyzed within a few days.

Merge/purge is ubiquitous in modern commercial

organizations, and is typically solved today by expensive

mainframe computing solutions. Here we consider the

opportunity to solve merge/purge on low cost shared-

nothing multiprocessor architectures. Such approaches

are expected to grow in importance with the coming

age of very large network computing architectures

where many more distributed databases containing

information on a variety of topics will be generally

available for public and commercial scrutiny.

The merge/purge problem is closely related to a

multi-way join over a plurality of large database rela-

tions, The naive means of implementing joins is to com-

pute the Cartesian product, a quadratic time process,

and select relevant tuples. The obvious optimizations,

as well as parallel variants, for join computation are

well known: sort-merge and hash partitioning. These

strategies assume a total ordering over the domain of the

join attributes (an index is thus easily computable) or

a ‘(near perfect” hash function that provides the means

of inspecting small partitions of tuples when computing

the join. In the case we study here, we cannot assume

there exists a total ordering, nor a perfect hash distri-

bution that would lead to a completely accurate result,

meaning even slight errors in the data imply all possible

“matches” of common data about the same entity may

not be found. However, the techniques we study and

have implemented are based upon these two strategies

for fast execution, with the particular desire to improve

their accuracy.

The fundamental problem is that the data supplied

by various sources typically include identifiers or string

data, that are either different among different datasets

127

or simply erroneous due to a variety of reasons (includ-

ing typographical or transcription errors, or purpose-

ful fraudulent activity (aliases) in the case of names).

Hence, the equality of two values over the domain of

the common join attribute is not specified as a “sim-

ple” arithmetic predicate, but rather by a set of equa-

tional axioms that define equivalence, i.e., by an equa-

ttonai theory. Determining that two records from two

databases provide information about the same entity

can be highly complex. We use a rule-based knowledge

base to implement an equational theory, as detailed in

section 2.3.

Since we are dealing with large databases, we seek to

partition the database into partitions or clusters in such

a way that the potentially matching records are assigned

to the same cluster. (Here we use the term cluster in

line with the common terminology of statistical pattern

recognition.) In this paper we first discuss a solution to

merge/purge in which sorting of the entire data-set is

used to bring the matching records close together in a

bounded neighborhood in a linear list. We then explore

the approach of partitioning the data into meaningful

clusters and then bringing the matching records on each

individual cluster close together by sorting. In the

second algorithm we need not compute an entire sort of

the full data-set, but rather a number of substantially

smaller, independent and concurrent sorts that can

be performed more efficiently on reduced datasets.

However, we demonstrate that, as one may expect,

neither of these basic approaches alone can guarantee

high accuracy without substantially decreasing the size

of the search neighborhood.

The contributions of this paper are as follows. We

detail a system we have implemented that performs a

generic merge/purge process that includes a declarative

rule language for specifying an equational theory mak-

ing it easier to experiment and modify the criteria for

equivalence. Alternative algorithms that were imple-

mented for the fundamental merge process are compar-

atively evaluated and demonstrate that no single pass

over the data using one particular scheme as a key per-

forms as well as computing the transitive closure over

several independent runs each using a different key for

ordering data. We show, for example, that multiple

passes followed by the computation of the closure consis-

tently dominates in accuracy for ordy a modest perfor-

mance penalty. Finally, we discuss the computational

costs of these alternative approaches and demonstrate

fully implemented parallel solutions to speed up the pro-

cess over a serial solution. The moral is simply that

several distinct “cheap” passes over the data produces

more accurate results than one “expensive” pass over

the data.

The rest of this paper is organized as follows. In the

next section, we will describe the specific details of the

mergefpurge problem we study, and two solutions based

upon sorted neighborhood searching and clustering.

Section 3 presents experimental results for our solution

method. Finally, parallel processing of these solutions

are briefly explored in section 4.

2 The Merge/Purge Problem

2.1 Problem description

Since we are faced with the task of merging very large

databases, we presume a pure quadratic time process

(i e., comparing each pair of records) is infeasible under

strict time constraints and limited capital budgets for

hardware. For pedagogical reasons we assume that each

record of the database represents information about

“employees” and thus contains fields for a social security

number, a name, and an address and other significant

information that may be utilized in determining equiv-

alence. Numerous errors in the contents of the records

are possible, and frequently encountered. For example,

names are routinely misspelled, parts are missing, salu-

tations are at times included as well as nicknames in

the same field. In addition, our employees may move

or marry thus increasing the variability of their asso-

ciated records. (Indeed, poor implementations of the

merge/purge task by commercial organizations typically

lead to several pieces of the same junk mail being mailed

at obviously greater expense to the same household, as

nearly everyone has experienced.)

There are two fundamental problems with performing

merge/purge. First, the size of the data sets involved

may be so large that only a relatively small portion of

the total available data can reside in main memory at

any point in time. Thus, the total database primarily

resides on external store and any algorithm employed

must be efficient, requiring as few passes over the data

set as possible.

Second, the incoming new data is corrupted, either

purposefully or accidentally, and thus the identification

of matching data requires complex tests to identify

matching data. The inference that two data items

represent the same domain entity may depend upon

considerable statistical, logical and empirical knowledge

of the task domain. “Faulty” inferences can be in some

cases worse than missing some matching data. The

“accuracy” of the result (maximizing the number of

correct matches while minimizing the number of false

positives) is therefore of paramount importance. It is

common that much of the engineering of a merge/purge

process is devoted to experiment and comparative

evaluation of the accuracy of the overall process, and

in particular alternative criteria for matching records.

2.2 The sorted neighborhood method

We consider two approaches to obtaining efficient

execution of any solution: partition the data to reduce

128

the combinatorics of matching large data sets, and

utilize parallel processing. We require a means of

effectively partitioning the data set in such a way as

to restrict our attention to a number of small sets of

candidates for matching. Consequently, we can process

the candidate sets in parallel. Furthermore, if the

candidate sets can be restricted to a very small subset

of the data, quadratic time algorithms applied to each

candidate set may indeed be feasible in the allotted time

frame for processing, leading to perhaps better accuracy

of the merge task.

One obvious method for bringing matching records

close together is sorting the records over the most

important discriminating key attribute of the data.

After the sort, the comparison of records is then

restricted to a small neighborhood within the sorted list.

We call this method the sorted neighborhood method.

The effectiveness of this approach is based on the quality

of the chosen keys used in the sort. Poorly chosen keys

will result in a poor quality merge, i.e., data that should

be merged will be spread out far apart after the sort and

hence will not be discovered. Keys should be chosen so

that the attributes with the most discriminatory power

should be the principal field inspected during the sort.

This means that similar and matching records should

have nearly equal key values. However, since we assume

the data is corrupted and keys are extracted directly

from the data, then the keys will also be corrupted.

Thus, we may expect that a substantial number of

matching records will not be caught. Our experimental

results, presented in section 3, demonstrate this to be

the case.

Given a collection of two or more databases, we first

concatenate them into one sequential list of N records

(after conditioning the records) and then apply the

sorted neighborhood method. The sorted neighborhood

method for solving the merge/purge problem can be

summarized in three phases:

1

2<

3.

Create Keys : Compute a key for each record in

the list by extracting relevant fields or portions of

fields.

Sort Data : Sort the records in the data list using

the key of step 1.

Merge : Move a fixed size window through the

sequential list of records limiting the comparisons for

matching records to those records in the window. If

the size of the window is w records, then every new

record entering the window is compared with the

previous w – 1 records to find “matching” records.

The first record in the window slides out of the

window (see figure 1).

Sorting and then merging within a window is the

essential approach of a Sort Merge Band Join as

Current window
of records

.

.
●

❛❞

r~...
w

11
w.

.,

------ ---

.

.

)Next window
of recordx

J

Figure 1: Window Scan during the Merge Phase

described by DeWitt [5]. As described in that paper, the

sort and merge phase can be combined in one pass. The

differences from this previous work and ours in the use of

a complex function (the equational theory) to determine

if records under consideration ‘(match”, and our concern

for the accuracy of the computed result since matching

records may not appear within a common “band”.

In [9], we describe the sorted-neighborhood method as a

generalization of band joins and provide an alternative

algorithm for the sorted-neighborhood method based

on the dupltcate ehmtnatton algorithm described in [3].

This duplicate elimination algorithms takes advantage

of the fact that ‘(matching” records will come together

during different phases of the Sort phase. Due to space

limitations, we will not describe this alternative solution

here.

When this procedure is executed serially as a main-

memory based process, the create keys phase is an O(N)

operation, the sorting phase is O(N log N), and the

merging phase is O(WN), where N is the number of

records in the database. Thus, the total time complexity

of this method is O(Nlog N) if w < [log Nl, O(WN)

otherwise. However, the constants in the equations

differ greatly. It could be relatively expensive to extract

relevant key values from a record during the create

key phase. Sorting requires a few machine instructions

to compare the keys. The merge phase requires the

application of a potentially large number of rules to

compare two records, and thus has the potential for the

largest constant factor.

Note, however, that it may be the case, that for very

large databases the dominant cost will be disk 1/0,

i.e., the number of passes over the data set. In this

case, at least three passes would be needed, one pass

for conditioning the data and preparing keys, at least

a second pass, likely more, for a high speed sort like,

for example, the AlphaSort [13], and a final pass for

window processing and application of the rule program

for each record entering the sliding window. Depending

upon the complexity of the rule program, the last pass

may indeed be the dominant cost. Later we consider the

means of improving this phase by processing “parallel

129

windows” in the sorted list.

2.2.1 Clustering the data first

Although sorting the data may not be the dominant

cost of merge/purge, we consider here an alternative to

sorting based upon first partitioning the dataset into

independent clusters using a key extracted from the

data. Observe that we do not need a completely sorted

database, but rather we desire a means of partitioning

the data into independent subsets of data in such a

fashion that we are assured as much as possible that

matching records appear in each cluster. Then we apply

the sorted-neighborhood method to each individual

cluster independently and in parallel ideally as a main-

memory based process. We call this approach the

clustering method.

Given a group of two or more databases, we first

concatenate them into one sequential list of N records.

The clustering method can be summarized as the

following two phase process:

1.

2.

Cluster Data: We scan the records in sequence

and for each record we extract an n-attribute key

and map it into an n-dimensional cluster space. For

instance, the first three letters of the last name could

be mapped into a 3D cluster space from our example

database of names.

Sorted-Neighborhood Method: We now apply

the sorted-neighborhood method independently on

each cluster. We do not need, however, to recompute

a key (step 1 of the sorted neighborhood method).

We can use the key extracted above for sorting.

Furthermore, we desire a cluster to be main memory-

based when analyzed.

When this procedure is executed serially, the cluster

data phase is an O(N) operation, and assuming we

partition the data into C equal sized clusters, the sorted-

neighborhood phase is O(N log ~).

Clustering data as described above raises the issue of

how well partitioned the data is after clustering. We use

an approach that closely resembles the multidimensional

partitioning strategy of [7]. If the data from which

the n-attribute key is extracted is distributed uniformly

over its domain, then we can expect all clusters to have

approximately the same number of records in them.

But real-world data is very unlikely to be uniformly

distributed, i.e. skew elements and other hot spots will

be prevalent, and thus, we must expect to compute very

large clusters and some empty clusters.

Sometimes the distribution of some fields in the data

is known, or can be computed as the data is inserted into

the database. For instance, from a directory database

we may compute the distribution of the first three letters

of every namel. If we do not have access to such a list,

we can randomly sample the name field of our database

to have an approximation of the distribution of the first

three letters. This information can be gathered off-line

before applying the clustering method.

Now let us assume we want to divide our data into

C clusters using a key extracted from a particular field.

Given a frequency distribution histogram with B bins

for that field (C < B), we want to divide those B

bins (each bin represents a particular range of the field

domain) into C subranges. Let bi be the normalized

frequency for bin i of the histogram (~~=1 bi = 1).

Then for each of the C subranges we must expect the

sum of the frequencies over the subrange to be close to ~

(e.g., if bins s to e, 1< s < e < B, are assigned to one

cluster then we expect ~~=~ bi = &). Each subrange

will become one of our clusters and, given a record, we

extract the key from the selected field, and map the key

into the corresponding subrange of the histogram. The

complexity of this mapping is, at worst, log B.

2.3 Equational theory

The comparison of records, during the merge phase,

to determine their equivalence is a complex inferential

process that considers much more information in the

compared records than the keys used for sorting. For

examplej suppose two person names are spelled nearly

(but not) identically, and have the exact same address.

We might infer they are the same person. On the

other hand, suppose two records have exactly the same

social security numbers, but the names and addresses

are completely different. We could either assume the

records represent the same person who changed his

name and moved, or the records represent different

persons, and the social security number field is incorrect

for one of them. Without any further information, we

may perhaps assume the later. The more information

there is in the records, the better inferences can be

made. For example, Michael Smith and Michele Smith

could have the same address, and their names are

“reasonably close”. If gender and age information is

available in some field of the data, we could perhaps

infer that Michael and Michele are either married or

siblings, rather than a misspelling.

What we need to specify for these inferences is an

equational theory that dictates the logic of domain

equivalence, not simply value or string equivalence.

Users of a general purpose merge/purge facility benefit

from higher level formalisms and languages permitting

ease of experimentation and modification. For these

reasons, a natural approach to specifying an equational

theory and making it practical would be the use of a

declarative rule language. Rule languages have been

1That is, we have a cluster space of 27 x 27 x 27 bins (26 letters

plus the space).

130

effectively used in a wide range of applications requiring

inference over large data sets. Much research has

been conducted to provide efficient means for their

compilation and evaluation, and this technology can

be exploited here for purposes of solving merge/purge

efficiently.

As an example, here is a simplified rule in English that

exemplifies one axiom of our equational theory relevant

to merge/purge applied to our idealized employee

database:

Given two records , rl and r2

IF the last name of rl equals the last name of r2 ,

AND the first names differ slightly,

AED the address of rl equals the address of r2

THEE

rl is equivalent. to r2.

The implementation of “differ slightly” specified

here in English is based upon the computation of a

distance function applied to the first name fields of two

records, and the comparison of its results to a threshold

to capture obvious typographical errors that may occur

in the data. The selection of a distance function

and a proper threshold is also a knowledge intensive

activity that demands experimental evaluation. An

improperly chosen threshold will lead to either an

increase in the number of falsely matched records or

to a decrease in the number of matching records that

should be merged. A number of alternative distance

functions for typographical mistakes were implemented

and tested in the experiments reported below including

distances based upon edit dwtance, phonetic distance

and “typewriter” distance. The results displayed in

section 3 are based upon edit distance computation

since the outcome of the program did not vary much

among the different distance functions for the particular

databases used in our study.

For the purpose of experimental study, we wrote an

OPS5[6] rule program consisting of 26 rules for this

particular domain of employee records and was tested

repeatedly over relatively small databases of records.

Once we were satisfied with the performance of our

rules, distance functions, and thresholds, we recoded

the rules directly in C to obtain speed-up over the 0PS5

implementation2.

It is important to note that the essence of the ap-

proach proposed here permits a wide range of “equa-

tional theories” on various data types. We chose to

use string data in this study (e.g., names, addresses)

for pedagogical reasons (after all everyone gets “faulty”

2At the time the system was built, the public dOmain Ops 5

compiler was simply t 00 slow for our experimental purposes.

Another 0PS5C compiler [12] was not available to us in time
for these studies. The 0PS5C compiler produces code that
is reportedly many times faster than previous compilers. We

captured thk speed advantage for our study hereby hand recoding

our rules in C.

junk mail). We could equally as well demonstrate the

concepts using alternative databases of different typed

objects and correspondingly different rule sets.

2.4 Computing the transitive closure over

the results of independent runs

The effectiveness of the sorted neighborhood method

highly depends on the key selected to sort the records. A

key is defined to be a sequence of a subset of attributes,

or substrings within the attributes, chosen from the

record. For example, we may choose a key as the last

name of the employee record, followed by the first non

blank character of the first name sub-field followed by

the first six digits of the social security field, and so

forth.

In general, no single key will be sufficient to catch all

matching records. Attributes that appear first in the

key have a higher priority than those appearing after

them. If the error in a record occurs in the particular

field or portion of the field that is the most important

part of the key, there may be little chance a record will

end up close to a matching record after sorting. For

instance, if an employee has two records in the database,

one with social security number 193456782 and another

with social security number 913456782 (the first two

numbers were transposed), and if the social security

number is used as the principal field of the key, then

it is very unlikely both records will fall under the same

window, i.e. the two records with transposed social

security numbers will be far apart in the sorted list and

hence they may not be merged. As we will show in the

next section, the number of matching records missed

by one run of the sorted neighborhood method can be

large.

To increase the number of similar records merged, two

options were explored, The first is simply widening the

scanning window size by increasing w. Clearly this in-

creases the computational complexity, and, as discussed

in the next section, does not increase dramatically the

number of similar records merged in the test cases we

ran until w becomes excessively large.

The alternative strategy we implemented is to execute

several independent runs of the sorted neighborhood

method, each time using a different key and a relative~y

small window. We call this strategy the multi-pass

approach. For instance, in one run, we use the address

as the principal part of the key while in another run we

use the last name as the principal part of the key. Each

independent run will produce a set of pairs of records

which can be merged. We then apply the transitive

closure to those pairs of records. The results will be a

union of all pairs discovered by all independent runs,

with no duplicates, plus all those pairs that can be

inferred by transitivity of equality.

The reason this approach works for the test cases

explored here has much to do with the nature of the

131

errors in the data. Transposing the first two digits of

the social security number leads to unmergeable records

as we noted. However, in such records, the variability

or error appearing in another field of the records may

indeed not be so large. Therefore, although the social

security numbers in two records are grossly in error,

the name fields may not be. Hence, first sorting on

the name fields as the primary key will bring these two

records closer together lessening the negative effects of

a gross error in the social security field.

It is clear that the utility of this approach is therefore

driven by the nature and occurrences of the errors

appearing in the data. Once again, the choice of

keys for sorting, their order, and the extraction of

relevant information from a key field is a knowledge

intensive activity that must be explored prior to running

a merge/purge process.

In the next section we will show how the multi-pass

approach can drastically improve the accuracy of the

results of only one run of the sorted neighborhood

method with varying large windows. Of particular

interest is the observation that only a small search

window was needed for the multi-pass approach to

obtain high accuracy while no individual run with a

single key for sorting produced comparable accuracy

results with a large window (other than

approaching the size of the full database).

were found consistently over a variety

databases with variable errors introduced

3 Experimental Results

3.1 Generating the databases

window sizes

These results

of generated

in all fields.

All databases used to test the sorted neighborhood

method and the clustering method were generated

automatically by a database generator that allow us to

perform controlled studies and to establish the accuracy

of the solution method. This database generator

provides a large number of parameters including, the

size of the database, the percentage of duplicate records

in the database, and the amount of error to be

introduced in the duplicated records in any of the

attribute fields. Each record generated consists of the

following fields, some of which can be empty: social

security number, first name, initial, last name, address,

apartment, city, state, and zip code. The names were

chomn randomly from a list of 6300(1 real names. The

cities, states, and zip codes (all from the U.S .A) come

from publicly available lists.

The errors introduced in the duplicate records range

from small typographical changes, to complete change

of last names and addresses. When setting the pa-

rameters for the kind of typographical errors, we used

known frequencies from studies in spelling correction

algorithms [11]. For this study, the generator selected

from 10% to 50% of the generated records for duplica-

tion with errors, where the error was controlled accord-

ing to published statistics found for common real world

datasets.

3.2 Pre-processing the database

Pre-processing and conditioning the records in the

database prior to the merge/purge operation might

increase the chance of finding two duplicate records.

For example, names like Joseph and Gius eppe match

in only three characters, but are the same name in two

different languages, English and Italian. A nicknames

database or name equivalence database is used to

assign a common name to records containing identified

nicknames.

Since misspellings are introduced by the database

generator, we explored the possibility of improving

the results by running a spelling correction program

over some fields. Spelling correction algorithms have

received a large amount of attention for decades [1 I].

Most of the spelling correction algorithms we considered

use a corpus of correctly spelled words from which the

correct spelling is selected. Since we only have a corpus

for the names of the cities in the U.S.A. (18670 different

names), we only attempted correcting the spelling of the

city field. We chose the algorithm described by Bickel

in [2] for its simplicity and speed. Although not shown

in the results presented in this paper, the use of spell

corrector over the city field improved the percent of

correctly found duplicated records by only 1.570-2 .OYO.

Most of the effort in matching resides in the equational

theory rule base.

3.3 Initial results on accuracy

The purpose of this first experiment was to determine

baseline accuracy of the sorted-neighborhood method.

We ran three independent runs of the sorted neighbor-

hood method over each database, and used a different

key during the sorting phase of each independent run.

On the first run the last name was the principal field

of the key. On the second run, the first name was the

principal field, while in the last run, the street address

was the principal field. Our selection of the attribute

ordering of the keys was purely arbitrary. We could

have used the social-security number instead of, say,

the street address. We assume all fields are noisy (and

under the control of our data generator to be made so)

and therefore it does not matter what field ordering we

select for purposes of this study.

Figure 2 shows the effect of varying the window size

from 2 to 50 records in a database with 1,000,000 records

and with an additional 1423644 duplicate records with

varying errors. A record may be duplicated more than

once. Notice that each independent run found from

50’%0 to 70~o of the duplicated pairs. Notice also that

increasing the window size does not help much and

taking in consideration that the time complexity of the

132

Sorted-Neighborhood Method (1 M records + 423644 duphcates)

‘:-

1
70

60 -

50 -
,s

d:

40
0 10 20 30 40 50 60

Window Size (records)

Sorted-Neighborhood Method (1 M records + 423644 duplicates)
02

Key #1 (Last Name) +
Key #2 (First Name) -+--

Key #3 (St Addr,) -SI-
Multi-pses over 3 keys -&-

/.
0,15 ./.

/

‘; “e-

0 10 20 30 40 50
Window Size (records)

(a) Percent of correctly detected duplicated pairs (b) Percent of incorrectly detected duplicated pairs

Figure 2: Accuracy results for a 1,000,000 records database

procedure goes up as the window size increases, it is

obviously fruitless at some point to use a large window.

The line marked as Multtpass over 3 keys in figure 2

shows our results when the program computes the

transitive closure over the pairs found by the three

independent runs. The percent of duplicates found goes

up to almost 90’ZO. A manual inspection of those records

not found as equivalent revealed that most of them are

pairs that would be hard for a human to identify without

further information.

As mentioned above, our equational theory is not

completely trustworthy. It can mark two records as

similar when they are not the same real-world entity

(false-positives). Figure 2 shows the percent of those

records incorrectly marked as duplicates as a function

of the window size. The percent of false positives is

almost insignificant for each independent run and grows

slowly as the window size increases. The percent of

false positives after the transitive closure is also very

small, but grows faster than each individual run alone.

This suggests that the transitive-closure may not be as

accurate if the window size of each constituent pass is

very large!

The number of independent runs needed to obtain

good results with the computation of the transitive

closure depends on how corrupt the data is and the

keys selected. The more corrupted the data, more runs

might be needed to capture the matching records. The

transitive closure, however, is executed on pairs of tuple

id’s, each at most 30 bits, and fast solutions to compute

transitive closure exist [1], From observing real world

scenarios, the size of the data set over which the closure

is computed is at least one order of magnitude smaller

than the

does not

corresponding database

contribute a large cost.

of rec-ords, and thus

But note we pay a

heavy price due to the number of sorts or clusterings

of the original large data set. We address this issue in

section 4.

3.4 The Clustering Method

To test the clustering method, we created a database

with 250,000 records of which 35’% of the records were

selected to add a maximum of 5 duplicates per selected

record. The resulting 468,730 records database was

analyzed using the sorted-neighborhood method and

the clustering method. We used the same three keys

used before for the sorted-neighborhood method and

ran three independent runs, one for each key. Then

the transitive closure over the results of all independent

runs was computed. Each run of the clustering method

initially divided the data into 32 clusters. This number

of clusters was chosen to match the “fan-out” of the

merge-sort algorithm. This way we guarantee each

cluster fits in memory. The results presented in this

section were obtained on a Sun’s Spare 5 ‘s, running

SunOS 5.3.

Figure 3(a) compares the average time of all single-

pass runs of the sorted neighborhood and clustering

method. As expected, the time to execute an inde-

pendent run (and, thus, the multi-pass approach), is

lower when we partitioned the data first into indepen-

dent clusters.

The graph in figure 3(b) shows the accuracy results

of both methods for this experiment. In all cases the

accuracy of the sorted-neighborhood edged higher than

the accuracy of the clustering method. The principal

reason for this is the size of the key used on each

run. Even though the field used to produce the key

for each independent run was the same under each

method, the size of the key was not. As explained

133

3500 - Average single-pass time, SNM *
Average single-pass time, Clustering -t-

Total mulb-pass !Ime, SNM %
3000 Total multl-pass time, Clustering -x-

2500 -

2000 ~

./--’

1500 -

‘:+--5
OL I

2 34 6 78
Wl~dow size (records)

9 10

100, I

90 ... — —----+ 4 (

80
I i

70

-..e.._../.. &””-””””_””””_”-”””_””””_”
SNM, Key 1 +

50
SNM, Key 2 +

,--- SNM, Key 3 %=

[“-’ SNM, Multi-pass w ALL Keys ++-
Clustermg, Key 1 -4––

40 - Clustering, Key 2 -+=
Clustering, Key 3 -B–

Clustering, Mutti-pass w ALL Keys -K-–
30

2 4 6 8 10
Window SIZEI(records)

(a) Average Total Times (b) Accuracy of Results

Figure 3: Clustering Method vs. Sorted Neighborhood Method on 1 processor

in section 2.2.1, the clustering method uses the fixed-

sized key extracted during its clustering phase to later

sort each cluster independently. On the other hand, the

sorted-neighborhood method used the complete length

of the strings in the key field, making the size of the

key used variable. Records that should be merged are

expected to end closer together in a sorted list the larger

the size of the key used. Since, for the case of this

experiment, the average size of the key used by the

sorted-neighborhood method is larger that the one used

by the clustering method, we must expect the sorted-

neighborhood method to produce more accurate results.

Figure 3(b) also shows how the accuracy improves after

the multi-pass approach is applied to the independent

runs. As we saw in the previous section, when we

applied the closure to all pairs found to be similar with

the three independent runs, the accuracy jumped to over

90% for w >4.

3.5 Analysis

The natural question to pose is when is the muk

pass approach superior to the single-pass case? The

answer to this question lies in the complexity of the two

approaches for a fixed accuracy rate (for the moment we

consider the percentage of correctly found matches).

Here we consider this question in the context of a

main-memory based sequential process, The reason

being that, as we shall see, clustering provides the

opportunity to reduce the problem of sorting the

entire disk-resident database to a sequence of smaller,

main-memory based analysis tasks. The serial time

complexity of the multz-pass (rep) approach (with r

passes) is given by the time to create the keys, the time

to sort r times, the time to window scan r times (of

window size w) plus the time to compute the transitive

closure. In our experiments, the creation of the keys

was integrated into the sorting phase. Therefore, we

treat both phases as one in this analysis. Under the

simplifying assumption that all data is memory resident

(i.e., we are not 1/0 bound),

TmP = c, O,trN Iog N + cWscanrwN + Tclm,

where r is the number of passes and TCl~p is the time for

the transitive closure. The constants depict the costs for

comparison only and are related as cu~c~~ = ac~oTi, ,

where a > 1. From analyzing our experimental

program, the window scanning phase contributes a

constant, cv~can, which is at least a = 6 times as

large as the comparisons performed in sorting. We

replace the constants in terms of the single constant

c. The complexity of the closure is directly related to

the accuracy rate of each pass and depends upon the

duplication in the database. However, we assume the

time to compute the transitive closure on a database

that is orders of magnitude smaller than the input

database to be less than the time to scan the input

database once (i.e. it contributes a factor of cC(N < N).

Therefore,

T~P = crN log N + ~crwN + Tcim,,

for a window size of w. The complexity of the single pass

(sp) sorted-neighborhood approach is similarly given by:

T~P = C~ log~ + CMCW’N + TGr,P

for a window size of W.

For a fixed accuracy rate, the question is then for

what value of W of the single pass sorted-neighborhood

method does the multz-pass approach perform better in

time, i.e. , when 1s T~P > T~P. Solving this inequality,

we have:

w>
r—1
— log N + rw + & (TCl~P – T./,P)

a

134

1000
/’

Key 1 (last name) -
Key 2 (first name) -+-

Key 3 (street addr) *---
800 - Multl-pass w, all keys x--- / L

600

400 -

200 ~

56,5 ~-,y~,,, ,,,,,,,,
Of

2 10 52 100 1000
Window Size (W)

(a) Time for each single-pass runs and the multi-pass run

55 I d

2 10 52 100 1000 10000
Window Size (W)

(b) Accuracy of each single-pass runs and the multi-pass

run

Figure4: Time and Accuracy fora Memory-based Database (13751 records)

w>
r—1
—log N+rw+

r—1
~TCl,P + —

a CY:NTC1mp

To validate this model, we generated a small database

of 13,751 records (7,500 original records, 5070 selected

for duplications, and 5 maximum duplicates per selected

record. The total size of the database in bytes was

approximately 1 MByte). once read, the database

stayed in core during all phases. We ran three

independent single-pass runs using different keys and

a multi-pass run using the results of the three single-

pass runs. The parameters for this experiment were

N = 13751 records and r = 3. For the particular

case were w = 10, we have a ~ 6, c N 1.2 x 10–5,

TC/,, = 1.2s, and T.lm, = 7. Thus, the multi-pass

approach dominates the single sort approach for these

datasets when W >41.

Figure 4(a) shows the time required to run each

independent run of the sorted-neighborhood method on

one processor, and the total time required for the muiti-

pass approach while figure 4(b) shows the accuracy of

each independent run as well as the accuracy of the

multi-pass approach (please note the logarithm scale).

For w = 10, figure 4(a) shows that the multi-pass

approach needed 56.5s to produce an accuracy rate

of 93.470 (figure 4(b)). Looking now at the times for

each single-pass run, their total time is close to 56s

for W = 52, slightly higher than estimated with the

above model. But the accuracy of all single-pass runs in

figure 4(b) at W = 52 goes from 73% to 80%, well below

the 93 .4~o accuracy level of the multi-pass approach.

Moreover, no single-pass run reaches an accuracy of

more than 9370 until W > 7000, at which point (not

shown in figure 4(a)) their execution time are over 4,800

seconds (80 minutes).

Let us now consider the issue when the process is

1/0 bound rather than a compute-bound main-memory

process. We consider three cases. In the first case,

the sorted-neighborhood method, one pass is needed

to create keys, iogN passes3 to globally sort the entire

database, and one final pass for the window scanning

phase. Thus, approximately 2 + iogN passes are

necessary. In the second case, the clustering method,

one pass is needed to assign the records to clusters

followed by another pass where each individual cluster

is independently processed by a main-memory sort and

a window scanning phase. The clustering method, with

approximately only 2 passes, would dominate the global

sorted-neighborhood method. Nevertheless, notice that

the actual difference in time, shown in figure 3(b), is

small for the case we considered. This is mainly due to

the fact that the window-scanning phase is, for the case

of our equational-theory, much more expensive than the

sorting or clustering phase and thus any time advantage

gained by first clustering and then sorting becomes

small with respect to the overall time.

The third case, the multi-pass approach, would seem

to be the worse of the lot. The total number of passes

will be a multiple of the number of passes required for

the method we chose to do each pass. For instance, if

we use the clustering method for 3 passes, we should

expect at least 6 passes over the dataset (for each key,

one pass to cluster and another pass to window scan

each cluster), while if we use the sorted-neighborhood

method, we should expect 6 + 310gN passes (3 separate

3 ~ ~ur ~XPeriments We used merge sort, as we~ as its Parallel

variant, which used a 16-way merge algorithm to merge the sorted

runs.

135

sorts). Clearly then the multt-pass approach would be

the worst performer in time over the less expensive

clustering method. Figure 3 shows this increase in time.

However, notice the large difference in accuracy between

the multi-pass and single-pass approaches in figure 3(a).

Clearly the multt-pass approach has a larger accuracy

than any of the two single-pass approaches. Thus, in a

serial environment, the user must weigh this trade-off

between execution time and accuracy.

In the next section we explore parallel variants of the

three basic techniques discussed here to show that with

suitable parallel hardware, we can speed-up the multi-

pass approach to a level comparable to the time to do

a single-pass approach, but with a very high accuracy,

i.e. a few small windows ultimately wins.

4 Parallel implementation

With the use of a centralized parallel or distributed

shared-nothing multiprocessor computer we seek to

achieve a linear speedup over a serial computer. Here

we briefly sketch the means to achieve this goal.

4.1 Single and Multi-pass sorted

neighborhood method

The parallel implementation of the sorted-neighborhood

method is as follows. Let N be the number of records

in the database, P be the number of processors in

our multiprocessor environment, and w be the size (in

number of records) of the merge phase window.

For the sort phase, a coordinator processor (CP)

fragments the input database in a round-robin fashion

among all P sites. Each site then sorts its local fragment

in parallel. Then the CP does a P-way join, reading a

block at a time (as needed) from each of the P sites.

Conceptually, for the merge phase, we should start

by partitioning the input database into P fragments

and assign each fragment to a different processor. The

fragment assigned to processor i should replicate the last

w — 1 records from the fragment assigned to site i — 1,

for 1< i ~ P. Similarly, for 1 ~ i < P, the fragment at

site i should replicate the first w — 1 records from the

fragment at site i+ 1. These small “bands” of replicated

records are needed to make the fragmentation of the

database invisible when the window scanning process is

applied in parallel to each fragment. This fragmentation
strategy is depicted in figure 5.

For concreteness, we divide the database as follows.

Let &f be the number of records that fit in memory

at each of the P sites. The CP reads a block of Azf

records and sends them to site 1 which stores them

in memory and starts applying the window scanning

procedure. The CP stores the last w – 1 of the block

sent to site 1 and reads M — (w — 1) records from

disk, for a total of M records which are then sent

to site 2. This algorithm is repeated for each site in

N records
k x

I k--M+ I
1 1

. ..1
t , (

P
Site1 P Site 3 J ““” &

Site ‘2 S,te 4 Site (P-1)

Figure 5: Partition of a sorted database with ‘(bards”

of replicated tuples.

a round-robin order until there are no more records

available from the input database. Notice that the total

number of replicated records is larger for this approach

than the method described in the previous paragraph.

Nevertheless, with this approach the amount of time a

processor is idle is reduced, and each site does not need

to write the received blocks into disk since its processing

is in memory. In fact, as each site receives a block of

records, it applies the window scanning procedure to the

records, sends the resulting pairs (a pair of tuple id’s)

back to the CP, discards the current block, and waits

for the CP to send another block.

We implemented this method on an HP cluster

consisting of 8 HP9000 processors interconnected by a

FDDI network. Figure 6(a) shows the total time taken

for each of the three independent runs from figure 2 as

the number of processors increases. The window size

for all these runs was 10 records. The figure also shows

the time it will take the sorted-neighborhood method

to execute all three independent runs over three times

the number of processors and then the computation

of the transitive closure of the results. Since we do

not have enough processors to actually run all sorted-

neighborhood runs concurrently, we must estimate this

time using the results of each independent run. We

ran all independent runs in turn and stored the results

on disk. We then computed the transitive closure over

the results stored on disk and measured the time for

this operation. The total time, if we run all runs

concurrently, is approximately the maximum time taken

by any independent run plus the time to compute

the closure. Notice that the speed-ups obtained as

the number of processors grows are sublinear. The

obvious overhead is paid in the process of reading and

broadcasting of data to all processors.

4.2 Single and Multi-pass clustering method

The parallel implementation of the clustering method

works as follows. Let N be the number of records in

the database, P the number of processors and C the

number of clusters we want to form per processor. Given

a frequency distribution histogram, we divide its range

into C’P subranges as described in section 2.2.1. Each

processor is assigned C of those subranges. To cluster

the data, a coordinator processor reads the database

136

2000

1500

@

?
1= 1000

500

0

,-—
,—r –.

Key #1 (Last Name) +--
Key #2 (Lwst Name) +--- -
Key #3 (St Addrs) ..@

Multi-pass over 3 keys (3 times more P’s) +---

-.,

---—.!+—..= *

..

i

1 2 3 4 5 6
Number of Processors per Run

(a) Sorted Neighborhood M,thod

2000

1500

~
:
F= 1000

500

0

Key #1 Last Name) +-

[’Key #2 Lirst Name) -+---
x Key #3 (St Addrs) *
+ Multlpass over 3 keys (3 t!mes more P’s) —+—

1 2 3 4 5 6
Number of Processors per Run

(b) Clustering Method

Figure 6: Time Results for the Sorted-neighborhood and Clustering Methods (1,000,000 records, w= 10)

and sends each record to the appropriate processor.

Each processor saves the received records in the proper

local cluster. (Notice that we may precompute the

cluster assignment ofeachrecord forthe alternative keys

on the mulit-pass approach in only a single pass over

the data.) Once the coordinator finishes reading and

clustering the data among the processors, all processors

sort and apply the window scanning method to their

local clusters. Alternatively, to scale the process up,

multiple coordinators can be used to cluster the data in

parallel, followed by a final “cluster merging phase”.

Load balancing of the operation becomes an issue

when weusemore than one processor and the histogram

method does a bad job of partitioning the data. Our

program attempts to do an initial static load balancing.

The coordinator processor keeps track of how many

records it sent to each processor (and cluster) and

therefore it knows, at the end of the clustering stage,

how balanced the partition is. It then redistributes

the clusters among processors using a longest processing

tzme jinst[8] strategy. That is, move the largest job in an

overloaded processor to the most underloaded processor,

and repeat until a ‘(well” balanced load is obtained.

In [4] we detailed the load balancing algorithm in the

context of parallel database joins.

The time results for the clustering method are

depicted in figure 6(b). These results are for the same

database used to obtain the timing results for the sorted

neighborhood method, a window size of 10 records,

and 100 clusters per processor. Comparing the two

graphs in figure 6 we note that the clustering method

is, as expected, a faster parallel process than the sorted-

neighborhood method.

4.3 Scaling Up

3500

3000

2500

Sorted-Neighborhood Method

SNM 10% duphcates -+--
SNM 30% duplicates —
SNM 50% duplicates —=——

Clustering frst, 10% duplicates -+--
Clustering flrsl, 30% duplicates +--
Clustemg first, 500/. duplicates +- /1

‘:&.----.....-----”----..._* ----------
..-----------------

*_

01 I
0.4 0.6 0.8 1.6

Total num;er of re~o?ds (x t’M~
18

Figure 7: Time performance of the sorted-neighborhood

and clustering methods

Finally, we demonstrate that the sorted neighborhood

and clustering methods scale well as the size of the

database increases. We created 4 databases with no

duplicates of different sizes (.5, 1, 1.5, and 2 x 106

records) and, for each one of them, we selected 107o,

30%, and 50% of its tuples for duplication. We

again ran three concurrent but independent runs of

the sorted-neighborhood method (and the clustering

method), each with a different key, and then computed

the transitive closure of the results. Each independent

run used 4 processors. The results are shown in figure 7.

As expected, the time increases linearly as the size of

the databases increase independent of the duplication

factor.

Using the graphs in figure 7 we can estimate how

4Thus, we generated 12 databases.

137

much time it will take to process 1 billion records using

both methods. We assume the time will keep grow-

ing linearly as the size of the database increases. For

the sorted-neighborhood method, let us consider the

last point of the 30’?lo graph. Here, a database with

2,639,892 records was processed in 2172 seconds (in-

cluding all the 1/0 time). Thus, given a database

with 1,000, 000,000 records, we will need approximately

1X109X -2 s = 8.2276 x 105 s s 10 days. Do-

ing the same analysis with the clustering method, we

first notice that a database of size 2,639,892 records

was processed in 1621 seconds. Thus, given a database

with 1,000,000,000 records, we will need approximately

1X109X -2 s = 6.1404 x 105 s R 7 days. Of

course, doubling the speed of the workstations and uti-

lizing the various RAID-based striping optimizations to

double disk 1/0 speeds discussed in [13] and elsewhere

(which is certainly possible today since the HP pro-

cessors and disks used here are slow compared to, for

example, Alpha workstations with modern RAID-disk

technology) would produce a total time that is at least

half the estimated time, i

5 Conclusion

The sorted neighborhood

e. within 3-4 days.

method described in this pa-

per is expensiv; due to the sorting phase, as well as ~he

need to search in large windows for high accuracy. An

alternative method based on data clustering modestly

improves the process in time. However, neither achieves

high accuracy without inspecting large neighborhoods

of records. Of particular interest is that performing the

merge/purge process multiple times over small windows,

followed by the computation of the transitive closure,

dominates in accuracy for either method. While multi-

ple passes with small windows increases the number of

successful matches, small windows also favor decreases

in false positives, leading to high overall accuracy of the

merge phase! An alternative view is that a single pass

approach would be far slower to achieve a comparable

accuracy as a multi-pass approach.

In this paper we have only addressed the most time

consuming and important part of the merge/purge

problem, namely, the merge phase. We have not

addressed the purge phase. In many applications the

purge phase requires complex functions to extract or

“deduce” relevant information from merged records,

including various statistical measures. The rule base

comes in handy here as well. The consequent of the

rules can be programmed to specify selective extraction,

purging, and even deduction of information, i.e. “data-

directed” projections, selections and deductions can be

specified in the rule sets when matching records are

found.

6 Acknowledgments

We thank Dan Schutzer of Citicorp for valuable discus-

sions and support of this work.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

R. Agrawal and H. V. Jagadish. Multiprocessor

Transitive Closure Algorithms. In Proc. Int’1Syrnp. on

Databases in Parallel and Distributed Systems, pages

56-66, December 1988.

M. A. Bickel. Automatic Correction to Misspelled

Names: a Fourth-generation Language Approach.

Communications of the ACM, 30(3):224-228, 1987.

D. Bitton and D. .J. DeWitt. Duplicate Record

Elimination in Large Data Files. ACM Transactions

on Database Systems, 8(2):255–265, June 1983.

H. M. Dewan, M. A. HernAndez, K. Mok, and S. Stolfo.

Predictive Load Balancing of Parallel Hash-Joins over

Heterogeneous Processors in the Presence of Data Skew.

In Proc. 3rd Int’1 Conf. on Parallel and Distributed

lnformatton Systems, pages 40-49, September 1994.

D. J. DeWitt, J. F. Naughton, and D. A. Schneider. An

Evaluation of Non-Equijoin Algorithms. In Proc. 17th

Int ‘1. C’onf. on Very Large Databases, pages 443-452,

Barcelona, Spain, 1991.

C. L. Forgy. 0PS5 User’s Manual. Technical Report

CMU-CS-81-135, Carnegie Mellon University, July

1981.

S. Ghandeharizadeh. Physical Database Design an Mul-

tiprocessor Database Systems. PhD thesis, Department

of Computer Science, University of Wisconsin - Madi-

son, 1990.

R. Graham. Bounds on multiprocessing timing anoma-

lies. SIAM Journal of Computtngj 17:416-429, 1969.

M. A. Herntindez. A Generalization of Band-Joins and

the Merge/Purge Problem. Technical Report CUCS-

005-1995, Department of Computer Science, Columbia

University, February 1995.

W. Kent. The Breakdown of the Information Model in

Multi-Database Systems. SIGMOD Record, 20(4):10-

15, December 1991.

K. Kukich. Techniques for Automatically Correcting

Words in Text. ACM Computing Surveys, 24(4):377-

439, 1992.

D. P. Miranker, B. Lofaso, G. Farmer, A. Chandra,

and D. Brant. On a TREAT-based Production System

Compiler. In Proc. 10th Int’1 Conf. on Expert Systems,

pages 617-630, 1990.

C. Nyberg, T. Barclay, Z. Cvetanovic, J. Gray, and

D. Lomet. AlphaSort: A RISC Machine Sort. In

Proceedings oj the 1994 A CM- SIGMOD Conference,

pages 233–242, 1994.

Y. R. Wang and S. E. Madnick. The Inter-Database

Instance Identification Problem in Integrating Au-

tonomous Systems. In Proceedings of the Sizth Interna-

tional Conference on Data Engineering, February 1989.

138

