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ABSTRACT 

Recent advancement in biotechnology has produced a massive 
amount of raw biological data which are accumulating at an 
exponential rate. Errors, redundancy and discrepancies are 
prevalent in the raw data, and there is a serious need for 
systematic approaches towards biological data cleaning. This 
work examines the extent of redundancy in biological data and 
proposes a method for detecting duplicates in biological data. 
Duplicate relations in a real-world biological dataset are modeled 
into forms of association rules so that these duplicate relations or 
rules can be induced from data with known duplicates using 
association rule mining. Our approach of using association rule 
induction to find duplicate relations is new. Evaluation of our 
method on a real-world dataset shows that our duplicate 
association rules can accurately identify up to 96.8% of the 
duplicates in the dataset at the accuracy of 0.3% false positives 
and 0.0038% false negatives.  

Categories and Subject Descriptors 
H.2.8 [Database Management]: Database Applications – data 
mining, scientific databases.  

General Terms 
Management 

Keywords 
Data cleaning, Association rules, Biological database 

1. INTRODUCTION 
Public sequence databases contain one of the most frequently 
accessed information on the Web. Databases such as GenBank [4] 
and Swiss-Prot [6] provide descriptions of common biological 
entities (genes, proteins, among others), and are intensively 
utilized by molecular biologists for their research. Over the last 
two decades, the rapid development of biological databases has 
been driven by an explosive growth of data due to high 
throughput sequencing and automation in genetics and 
proteomics. For example, the most recent statistical report of 
GenBank shows that the number of GenBank sequences has 
doubled over two years from the 14,976,310 sequences in 2001 to 
30,968,418 sequences in 2003. 

At the same time, numerous computational methods and 
algorithms, particularly in data mining, have been developed to 
extract the hidden knowledge in these data that is relevant to our 
understanding of the biological systems. Data mining results can 
be highly sensitive to the noise (errors and missing values) in the 
training datasets, therefore demanding that the datasets to contain 
only high quality data which are correct, accurate, consistent and 
concise. But in reality, public sequence data are incomplete, 
noisy, erroneous and highly redundant. The classes of errors 
contributing to the low quality of the public sequence databases 
are discussed in [18]. 

The protein or DNA sequences submitted by biologists from 
numerous sequencing centers and laboratories around the world to 
the public sequence databases are subjected to various sources of 
redundancy:  
1. The same sequence may be submitted by the biologist to 

more than one database without cross-referencing these 
records. 

2. The sequence is submitted more than once to a same 
database.  

3. Annotations of the same sequence are submitted separately 
by different research groups. 

4. Fragments and partial entries of the same protein or DNA 
sequence may be stored in different database records. 

Biological data duplicates are varying representations of the same 
protein or DNA sequences in different database records. They 
provide hints of the redundancy in biological datasets. For 
example, record 1 and 2 in figure 1 refer to the same protein 
found separately in a PIR [3] and a Swiss-Prot database records. 
The example is likely resulted from the submission of the same 
protein sequence to both PIR and Swiss-Prot without cross-
referencing to each other records. In this paper, we devise a 
method for determining the biological data duplicates. 

Fields Record 1 Record 2 
Locus ID P34180 S22388 

Definition Phospholipase A2, 
neutral precursor 
(Ammodytin I2)          
(Phosphatidylcholine 2-
acylhydrolase). 

phospholipase A2 (EC 
3.1.1.4) ammodytin I2 
precursor - western sand 
viper. 

Database swissprot: locus pir: locus S22388; 

Proceedings of the Second European Workshop on Data Mining and Text Mining in Bioinformatics

35



source    PA2N_VIPAA, 
accession P34180; 

Organism Vipera ammodytes 
ammodytes 

Vipera ammodytes 
ammodytes 

Sequence MRTLWIVAVCLIGVE
GNLYQFGNMIFKMTK
KSALLSYSNYGCYCG
WGGKGKPQDATDRC
CFVHDCCYGRVNGC
DPKLSIYSYSFENGDI
VCGGDDPCLRAVCEC
DRVAAICFGENLNTY
DKKYKNYPSSHCTET
EQC 

MRTLWIVAVCLIGVE
GNLYQFGNMIFKMTK
KSALLSYSNYGCYCG
WGGKGKPQDATDRC
CFVHDCCYGRVNGC
DPKLSIYSYSFENGDI
VCGGDDPCLRAVCEC
DRVAAICFGENLNTY
DKKYKNYPSSHCTET
EQC 

Figure 1. Duplicate protein records. Record 1 and 2 are 
protein sequences from different databases. 

We carried out an analysis of scorpion toxins in SCORPION, a 
fully referenced database of 221 scorpion toxins [20] to assess the 
extent of redundancy in biological data. The SCORPION records 
compiled from public database sources GenBank/GenPept [4], 
Swiss-Prot, EMBL [10], DDBJ [17], TrEMBL [6], PIR [3] and 
PDB [8] using keyword searches, were found to be overlapping to 
various degrees. Among the 143 duplicated scorpion toxins found 
by manual inspection, 27 toxins are replicated in any two 
different databases and 13 were replicated across any five 
different databases (Figure 2A).  
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Figure 2A. Number of scorpion toxins replicated across two or 

more databases. 
 
Figure 2B reports the number of duplicate scorpion toxin records 
found in each database. The extent of redundancy of data records 
in databases is most extensive in GenBank; 135 records are 
replicated in other databases. But again, the GenBank database 
contains the largest and most widely used pool of biological 
sequences. PDB duplicates refer to database records describing 
varying 3D structural views of the same protein sequence. These 
records have different orientations or conformations of the same 
protein sequence. For example, Entrez [21] records 1DJT_A and 
1DJT_B are separate spatial organisations of the same scorpion 
toxins. 

To ensure non-redundancy in the SCORPION dataset, duplicate 
records were deleted and redundant or partial records were merge-
joined by the biologist manually.  
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Figure 2B. Number of duplicate records in each database. 

In this paper, we explore the matching criteria for comparing pairs 
of biological records and develop models of the duplicate 
relations in biological data using association rules mining. Our 
method of modeling and mining duplicate relations using 
association rule mining is new. 

The rest of the paper is organised as follows: In section 2, we 
present some background knowledge of the problem and related 
works. We present our materials and methods in section 3. In 
section 4, we discuss results of our experiments and we conclude 
in section 6. 

2. RELATED WORK 
2.1 Data cleaning 
The process of detecting and removing database defects and 
duplicates is referred to as data cleaning. Early works in data 
cleaning have focused on the merge/purge problem [13, 14]. The 
merge/purge problem addresses the fundamental issue that 
database records existing in disparate forms may refer to the same 
real world object and in the detection of these inexact duplicates 
in a database. Most data-cleaning methods are intended for 
managing customer information, and the data cleaning 
marketplace is largely focused on the cleaning of address and 
name lists for various marketing tasks. The merge/purge method, 
for example, has been commercialized into the TDMSUITE [24] 
and the Sagent solutions [15] which enable mailers to de-
duplicate their mailings.  

Duplicate relations can be learned from the datasets. Techniques 
that explore the adaptive learning of similarity measurements for 
string for duplicate detection are explored in [5, 9]. These 
techniques are appropriate for datasets which can be uniquely 
identified by a key field which is a string, such as the identifier 
names. For example, they can be used to detect the duplicates in 
figure 3 by matching only the name field “J.Koh” and “Judice 
Koh”. In the case of biological data, a record has more than one 
key field and we cannot rely on a single field match. Also, a 
biological record contains fields of other types which cannot be 
matched by string similarity measurements.  
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Fields Record 1 Record 2 
Name J.Koh Judice Koh 
ID 744147-H 744147 
Contact no. 97999914 63884783 

Figure 3. Duplicate customer records. 

Little work has been done on biological data cleaning and it is 
usually carried out in proprietary or ad-hoc manner, sometimes 
even manual. Systematic processes are lacking. From among the 
few examples, [23] uses stringent selection criteria to select 310 
complete and unique records of Homo sapiens splice sites from 
the 4300 raw records in EMBL database. Although rigorous 
elimination of data is effective in removing redundancy, it may 
result in loss of critical information. In another example, a 
sequence structure parser is used to find missing or inconsistent 
features in records using the constraints of gene structure [19]. 
The method is only limited to detecting violations of the gene 
structure.  

2.2 Association Rule Mining 
Association rules mining or induction is commonly used in 
market basket analysis to find items frequently bought together by 
shoppers. The first algorithm for mining frequent item sets is the 
Apriori was used for market basket analysis [2]. For example, if 
amazon.com discovers that shoppers who buy the book “Data 
Mining: Concepts and Techniques” usually buy another book 
“Data Mining: Practical Machine Learning Tools and Techniques 
with Java Implementations”, they can arrange an offer for an offer 
package of these 2 books to increase their competitiveness in sale. 
The rules are induced from items that are most frequently 
occurred together, known as the frequent item set. A rule “Buy(A) 
^ Buy(B) → Buy(C)” indicates that a customer who buys item A 
and item B buys C, with the interestingness of this rule measured 
from probabilities of support and confidence. The support is the 
percentage of transactions in amazon.com that contain A, B and 
C. The confidence is the percentage of transactions that contain A 
and B also containing C. Intuitively, the antecedent of this rule 
refers to the pattern or the set of frequent items, that is associated 
with a phenomenon which is the consequent.  

Association rule mining has been applied to data cleaning to 
detect outliers but not in detecting duplicates. A method for 
cleaning data of using ordinal association rules is presented in 
[12]. Patterns of ordinal relationships among the fields in the 
dataset are mined to determine the common orderings of field 
values in a dataset. Deviations from these orderings are identified 
as “dirty data”. Also, interval association rule induction is used in 
[11] to detect outlier values. Both methods are suitable for 
eliminating the outliers in datasets which do not follow the 
frequent patterns of field values. They cannot be used for 
detecting duplicates. Also they can only be applied to datasets 
with only numerical fields. Biological datasets contains few 
numerical fields. 

3. PROBLEM FORMULATION 
3.1 Duplicate Relation Models 
Each duplicate relation or overall similarity of two records in a 
biological dataset is determined from the similarities of selected 
record fields. Thus, duplicate relations can be represented by a 
conjunctive clause of the value requirements of selected fields or 

matching criteria. Duplicate relations of this form are also known 
as the merging rules. An example of a duplicate relation model is 
the rule that two records with (1) identical protein or DNA 
sequence, (2) are of the same length, and (3) belong to the same 
species, are duplicates. The rule can be represented as: 

Identical protein ^ same length ^ same species → duplicate 

The conjunctive clause can be translated into a set of restricted 
values on each of the matching criteria, which can be calculated 
by applying data type specific similarity functions (S for sequence 
similarity, N for numerical ratio and M for Boolean matching) on 
the sequence, sequence length and species fields respectively. 

S(Seq)=1.0 ^ N(Seq Length)=1.0 ^ M(species)=1 → 
duplicate 

If we encode the matching values as items, the rule takes the form 
of an association rule and we can easily apply association rule 
mining to induce models of the duplicate relations from dataset of 
known duplicates.  

SE1.0 ^ LE1.0 ^ SP1 → duplicate 
The antecedents of this association rule are restricted values of the 
three criteria and the consequent is the duplicate relation.  

3.2 Matching Criteria 
Biological records from Entrez are compared across a set of nine 
matching criteria (Figure 4). Because a biological record contains 
three main types of fields: (1) Protein and DNA sequences, (2) 
categorical fields, and (3) free-text strings, varying mechanisms 
for comparing the different fields or criteria are used, and we refer 
to them as the similarity functions. These functions measure the 
degree of similarity of corresponding fields. 

Protein or DNA sequences are matched using their percentage 
identity scores computed from BLAST 2 sequences (bl2seq) 
algorithm [22]. Bl2seq utilize the gapped BLAST 2.0 algorithm 
[1] to align and compare pair-wise DNA-DNA or protein-protein 
sequences, and the percentage identity scores reflect the degree of 
similarity of the two sequences. We denote the sequence 
similarity function as S. 

Categorical fields contain values belonging to a fixed value-set. 
For example, the organism fields in Entrez records are derived 
from the taxonomy of the organisms, which are fixed values 
already established in the GenBank database. Same field values 
are scored as either 1 (belongs to same category) or 0 (belongs to 
different category), and we denote the Boolean matching as 
similarity function M. 

The third type of data fields are the free-text strings. The most 
common method for comparing string is the Edit distance or 
Levenshtein distance [16]. The edit distance computes the 
minimum number of edit operations (insertions, deletions, and 
substitutions) of single characters that are needed to transform 
from one string to another, and we denote the edit distance by E.  

Figure 5 shows an example of the similarity scores of the 
ORIGIN sequence field, the ORGANISM field and the 
DEFINITION of two scorpion venom records in Entrez. 
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LOCUS       P82950                   121 aa            linear   VRT 15-MAR-2004 
DEFINITION  Phospholipase A2 homolog (Myotoxin II). 
ACCESSION   P82950 
VERSION     P82950  GI:17433156 
DBSOURCE    swissprot: locus PA2H_ATRNM, accession P82950; 
            class: standard. 
            created: Feb 28, 2003. 
            sequence updated: Feb 28, 2003. 
            annotation updated: Mar 15, 2004. 
             
            xrefs (non-sequence databases): HSSPP81165, InterProIPR001211, 
            PfamPF00068, PRINTSPR00389, ProDomPD000303, SMARTSM00085, 
            PROSITEPS00119, PROSITEPS00118 
KEYWORDS    Toxin; Cytolysis. 
SOURCE      Atropoides nummifer 
  ORGANISM  Atropoides nummifer 
            Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; 
            Lepidosauria; Squamata; Scleroglossa; Serpentes; Colubroidea; 
            Viperidae; Crotalinae; Atropoides. 
REFERENCE   1  (residues 1 to 121) 
  AUTHORS   Angulo,Y., Olamendi-Portugal,T., Alape-Giron,A., Possani,L.D. and 
            Lomonte,B. 
  TITLE     Structural characterization and phylogenetic relationships of 
            myotoxin II from Atropoides (Bothrops) nummifer snake venom, a 
            Lys49 phospholipase A(2) homologue 
  JOURNAL   Int. J. Biochem. Cell Biol. 34 (10), 1268-1278 (2002) 
  MEDLINE   22123469 
   PUBMED   12127577 
  REMARK    SEQUENCE. 
            TISSUE=Venom 
COMMENT     [FUNCTION] Myotoxic and cytolytic protein that lacks PA2 enzymatic 
            activity. 
            [SUBUNIT] Homodimer. 
            [SUBCELLULAR LOCATION] Secreted. 
            [MISCELLANEOUS] Does not bind calcium as one of the calcium binding 
            ligands is lost (Asp->Lys in position 48). 
            [SIMILARITY] Belongs to the phospholipase A2 family. Group II 
            subfamily. 
FEATURES             Location/Qualifiers 
     source          1..121 
                     /organism="Atropoides nummifer" 
                     /db_xref="taxon:44730" 
     Protein         1..121 
                     /product="Phospholipase A2 homolog" 
     Bond            bond(28,44) 
                     /bond_type="disulfide" 
                     /note="By similarity." 
     Bond            bond(43,95) 
                     /bond_type="disulfide" 
                     /note="By similarity." 
     Site            47 
                     /site_type="active" 
                     /note="By similarity." 
     Site            89 
                     /site_type="active" 
                     /note="By similarity." 
ORIGIN       
        1 nlyqlwkmil qetgknaaps ygfygcncgv gsrgkpkdat drccfvhkcc ykaltdcspk 
       61 tdsysyswkd ktivcgknnp clkqececdk avaiclrdnl dtynknykiy pkplckkadd 
      121 c 
// 

Figure 4. Matching criteria in Entrez records. 

 
 
 
 

2. N(Seq Length) = numerical ratio of  the 
length of two sequences.  

3. E(Def) = String edit 
distance of the definitions.  

6. M(Species) = 
Records belongs to 
same (1) or 
different (0) spe
and gen

cies 
us. 

4. M(PDB) = Same source 
of data from PDB. 

7. M(Ref) = ratio of similar 
references shared by two 
records. 

8. M(Features) = ratio of 
similar bond and site features 
in two records. 

1. E(Accession) = String edit distance of the 
accessions.  

5. M(DB) = Records from 
the same database source. 

9. S(Seq) = similarity of 
the sequences by bl2seq 
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 1910194A P45639 Score 
ORIGIN MCMPCFTTD

HQMARKCDD
CCGGKGRGK
CYGPQCLCR 

MCMPCFTTD
HQMARKCDD
CCGGKGRGK
CYGPQCLCR 

1 

ORGANISM Leiurus 
quinquestriatus 
quinquestriatus 

Leiurus 
quinquestriatus 
quinquestriatus 

1 

DEFINITION chlorotoxin. Chlorotoxin 0.92 
Figure 5. Similarity scores of Entrez records 1910194A and 

P45639. 

4. MATERIALS AND METHODS 
Our proposed framework for finding the duplicates in biological 
data is shown in Figure 6. We first select matching criteria for 
comparing record pairs. Selective attributes based on these 
matching criteria of the record pairs are compared using varying 
similarity functions which depend on the data types of the 
attributes. The similarity values for each pair of records in the 
training data are computed and used to generate the association 
rules that describe the duplicates. These association rules can be 
used to detect duplicates in biological datasets. 
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AAG39642 AAG39643 AC0.9 LE1.0 DE1.0 DB1 SP1 RF1.0 
PD0 FT1.0 SQ1.0 
AAG39642 Q9GNG8 AC0.1 LE1.0 DE0.4 DB0 SP1 RF1.0 
PD0 FT0.1 SQ1.0 
P00599 PSNJ1W AC0.2 LE1.0 DE0.4 DB0 SP1 RF1.0 PD0 
FT1.0 SQ1.0 
P01486 NTSREB AC0.0 LE1.0 DE0.3 DB0 SP1 RF1.0 PD0 
FT1.0 SQ1.0 
O57385 CAA11159 AC0.1 LE1.0 DE0.5 DB0 SP1 RF0.0 PD0 
FT0.1 SQ1.0 
S32792 P24663 AC0.0 LE1.0 DE0.4 DB0 SP1 RF0.5 PD0 
FT1.0 SQ1.0 
P45629 S53330 AC0.0 LE1.0 DE0.2 DB0 SP1 RF1.0 PD0 
FT1.0 SQ1.0 
Figure 7A. Field labels from each pair of duplicates in 

training dataset.  

LE1.0 PD0 SQ1.0  (99.7%) 
SP1 PD0 SQ1.0  (97.1%) 
SP1 LE1.0 PD0 SQ1.0  (96.8%) 
DB0 PD0 SQ1.0  (93.1%) 
DB0 LE1.0 PD0 SQ1.0  (92.8%) 
DB0 SP1 PD0 SQ1.0  (90.4%) 
DB0 SP1 LE1.0 PD0 SQ1.0  (90.1%) 
RF1.0 SP1 LE1.0 PD0 SQ1.0  (47.6%) 
RF1.0 DB0 LE1.0 PD0 SQ1.0  (44.0%) 
AC0.0 DB0 LE1.0 PD0 SQ1.0  (43.9%) 
RF1.0 DB0 SP1 LE1.0 PD0  (42.7%)  

In Proceedings of
Text Mining in B
in Pisa, Italy. 24. S
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Select matching criteria
Figure 7B. Frequent itemsets from association rule mining. 
The values in the brackets are the support measures of the 

association rules. 
Compute similarity scores from known duplicate pairs
5. EXPERIMENT 
5.1 DATASET 
We evaluate our method on real-world sequence annotations from 
Generate association rules 
the Entrez retrieval system which contain protein records from 
various database sources, including sequence data from the 
translated coding regions from DNA sequences in GenBank, 
Detect duplicates using the rules 

e 6. Duplicate detection framework. 

aset contains the similarity scores of pairs of 
e nine criteria. To generate the items from the 
e the values with field labels (Figure 7A). For 

es such as the sequence similarity scores which 
.0, the values are partitioned into equiwidth bins 
quence similarity score item “SQ0.95” becomes 

tion of the Apriori algorithm in [7] is used for 
ciation rules from the training. Figure 7B shows 

emsets or rules generated from the apriori 
elect the rules with support measures above the 
, and from among these rules, we determine the 
west FP% and FN% (the definition of these 

e given in 5.2) as the best rule. 

EMBL, and DDBJ as well as protein sequences submitted to PIR, 
SWISS-PROT, PRF, and PDB. 

Two set of records SD1 and SD2 are combined to form the 
training dataset. SD1 is the scorpion venom dataset containing 
520 records retrieved from Entrez using the keywords “scorpion 
AND (venom OR toxin)”. SD2 is the snake PLA2 venom dataset 
containing 780 records retrieved from Entrez using the keywords 
“serpentes AND venom AND PLA2”. The duplicates among 
these 1300 records are annotated separately by two biological 
domain experts. SD1 contains 251 duplicate pairs. SD2 contains 
444 duplicate pairs. 695 duplicate pairs are collectively identified.  

5.2 Performance measurements 
We compare the performance of using association rules induced 
from the training dataset to detect duplicates in the 1300 records 
of SD1 and SD2 with user or domain rules. The eight user rules 
are defined manually by domain experts based on their 
understanding of the biological data.  

Performance of the rules are evaluate using two measures, the 
false negative percentage (FN%) and the false positive percentage 
(FP%). The false negatives are the number of true record linkage 
pairs which are not identified by the rules. FN% equals 
100.NFN/|R|dup where NFN is the number of FNs and |R|dup is the 
total number of duplicate record linkages in the relation.  

 the Second European Conference on Data Mining and 
ioinformatics, held in conjunction with ECML/PKDD 
eptember, 2004.  
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Similarly, the false positives are the number of non-record 
linkages identified by the rules. FP% equals 100.NFP/|R| where 
NFP is the number of distinct record pairs mis-identified by the 
rules and |R| is the number of records in the relation. Good rules 
are indicated by low FN% and low FP%.  

5.3 Results 
Figure 8 shows the performance of detecting duplicates using user 
defined rules. The rule giving 1 false positive (FP% = 0.1) and 79 
false negatives (FN% = 0.0094) indicate that a pair of annotated 
sequences duplicate is best identified by the association rule that 
these sequences are identical S(Seq)=1.0, of the same sequence 
length N(Seq length)=1.0, belongs to the same species M(Species) 
and are from different data sources M(DB) = 0: 

S(Seq)=1.0 ^ N(Seq length)=1.0 ^ M(Species)=1 ^ M(DB)=0 
→ Duplicate 

Another rule giving lower FN% (63 false negatives) of 7.5 but 
higher FP% (36 false positives) of 5.2 indicates that duplicate 
relation has little dependency on the species of which the 
sequence belongs to. 

S(Seq)=1.0 ^ N(Seq length)=1.0 ^ M(DB)=0 → Duplicate 

Duplicates detected by user rules
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Rule 5 S(Seq)=1.0 ^ N(Seq length)=1..0 ^ M(Species)=1 ^ 
E(Def)=0.5 

Rule 6 S(Seq)=1.0 ^ N(Seq length)=1.0 ^ M(Species)=1 ^ 
E(Def)=0.6 

Rule 7 S(Seq) ^ N(Seq length)=1.0 ^  M(Species) ^ E(Def)=0.7 

Rule 8 S(Seq)=1.0 ^ N(Seq length)=1.0 ^ M(Species)=1 ^ 
E(Def)=0.8 

Figure 8. FP% and FN% using user rules for duplicate 
detection. 

Rules using the definition fields for duplicate detection show high 
degree of false negative and the FN% increases with more rigid 
requirement for similar definitions E(Def)=0.5 to 0.8.  Hence, the 
definition field of the sequence annotations is not a critical 

determinant of record similarity. In reality, standardized naming 
convention for proteins is lacking and hence, there is no 
restriction in defining a protein, giving rise to diverse names and 
definitions.  

The best rule induced from association rule mining gives 2 false 
positives (FP% = 0.3) and 38 false negatives (FN% = 0.0038) 
(Figure 9). This rule is supported by 96.8% of the training record 
pairs, indicating the 96.8% of the training record pairs have 
identical sequence S(Seq)=1.0, of the same sequence length 
N(Seq length)=1.0, belongs to the same species M(Species) and 
are both not PDB records M(PDB) = 0: 

S(Seq)=1 ^ N(Seq Length)=1 ^ M(Species)=1 ^ M(PDB)=0 
→ Duplicate 

Duplicates detected by association rules
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(96.8%) 
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Rule 5 S(Seq)=1 ^ M(Seq Length)=1 ^ M(PDB)=0 ^ M(DB)=0 
(92.8%) 

Rule 6 S(Seq)=1 ^ M(Species)=1 ^ M(PDB)=0 ^ M(DB)=0 
(90.4%) 

Rule 7 S(Seq)=1 ^ N(Seq Length)=1 ^ M(Species)=1 ^ M(PDB)=0 
^ M(DB)=0 (90.1%) 

Figure 9. FP% and FN% using association rules for duplicate 
detection. The values in brackets refer to the support 
measurements. 

The experiment with duplicate detection using user-defined rules 
and association rules indicate that association rule mining can 
detect duplicates more effectively than the user rules.  

The derivation of user rules for identifying duplicates requires 
good understanding of the data, and the combinations of criteria 
used are based on the user’s knowledge of biological domain. 
With our method, the rules are automatically generated. 
Intuitively, this means that the domain understanding of the 
duplicates is mined from the training dataset rather than defined 
by the users. In the last experiment with duplicates, we have 
shown that best association rule (2 false positives, 38 false 
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negatives) of the duplicate relation is more effective in identifying 
duplicates than the user rules (1 false positive, 79 false negatives). 
From the result, we also deduce that the key fields or criteria that 
can be used for comparing sequence annotations are (1) Sequence 
similarity, (2) Sequence length, (3) Species, and (4) Data sources. 

6. CONCLUSION 
With rapid growth of public biological data and fast development 
of computational methods based on mining of these data, 
achieving high quality datasets is becoming increasingly 
important for effective data mining. In this paper, we presented a 
novel method for data cleaning, specifically in duplicate 
detection, using association rule mining.  

The paper achieved preliminary contributions to biological data 
cleaning. It explores scoring functions and criteria for matching 
sequence records. Also, it introduces a new method for modeling 
duplicate relations using association rules. The method is 
evaluated with rules defined manually by domain experts. The 
duplicate detection rules identified from this paper can be used for 
cleaning any protein sequence annotations.  

This work focuses on the duplicate detection in a representative 
biological dataset using the Apriori method for association rule 
mining. Our future work in improving the duplicate detection 
method for large scale datasets will use this result as a basis.  
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